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Abstract
In this work we introduce a new succinct variant of the word problem in a finitely generated group
G, which we call the power word problem: the input word may contain powers px, where p is a
finite word over generators of G and x is a binary encoded integer. The power word problem is a
restriction of the compressed word problem, where the input word is represented by a straight-line
program (i.e., an algebraic circuit over G). The main result of the paper states that the power word
problem for a finitely generated free group F is AC0-Turing-reducible to the word problem for F .
Moreover, the following hardness result is shown: For a wreath product G o Z, where G is either
free of rank at least two or finite non-solvable, the power word problem is complete for coNP. This
contrasts with the situation where G is abelian: then the power word problem is shown to be in TC0.
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1 Introduction

Algorithmic problems in group theory have a long tradition, going back to the work of Dehn
from 1911 [9]. One of the fundamental group theoretic decision problems introduced by
Dehn is the word problem for a finitely generated group G (with a fixed finite generating set
Σ): does a given word w ∈ Σ∗ evaluate to the group identity? Novikov [34] and Boone [8]
independently proved in the 1950’s the existence of finitely presented groups with undecidable
word problem. On the positive side, in many important classes of groups the word problem
is decidable, and in many cases also the computational complexity is quite low. Famous
examples are finitely generated linear groups, where the word problem belongs to deterministic
logarithmic space (L for short) [22] and hyperbolic groups where the word problem can be
solved in linear time [17] as well as in LOGCFL [23].

In recent years, also compressed versions of group theoretical decision problems, where
input words are represented in a succinct form, have attracted attention. One such succinct
representation are so-called straight-line programs, which are context-free grammars that
produce exactly one word. The size of such a grammar can be much smaller than the
word it produces. For instance, the word an can be produced by a straight-line program
of size O(logn). For the compressed word problem for the group G the input consists of
a straight-line program that produces a word w over the generators of G and it is asked
whether w evaluates to the identity element of G. This problem is a reformulation of the
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43:2 The Power Word Problem

circuit evaluation problem for G. The compressed word problem naturally appears when
one tries to solve the word problem in automorphism groups or semidirect products [25,
Section 4.2]. For the following classes of groups, the compressed word problem is known to
be solvable in polynomial time: finite groups (where the compressed word problem is either
P-complete or in NC2 [6]), finitely generated nilpotent groups [20] (where the complexity is
even in NC2), hyperbolic groups [18] (in particular, free groups), and virtually special groups
(i.e, finite extensions of subgroups of right-angled Artin groups) [25]. The latter class covers
for instance Coxeter groups, one-relator groups with torsion, fully residually free groups and
fundamental groups of hyperbolic 3-manifolds. For finitely generated linear groups there
is still a randomized polynomial time algorithm for the compressed word problem [26, 25].
Simple examples of groups where the compressed word problem is intractable are wreath
products G o Z with G a non-abelian group: for every such group the compressed word
problem is coNP-hard [25] (this includes for instance Thompson’s group F ); on the other
hand, if, in addition, G is finite, then the (ordinary) word problem for G o Z is in NC1 [37].

In this paper, we study a natural variant of the compressed word problem, called the
power word problem. An input for the power word problem for the group G is a tuple
(p1, x1, p2, x2, . . . , pn, xn) where every pi is a word over the group generators and every xi
is a binary encoded integer (such a tuple is called a power word); the question is whether
px1

1 px2
2 · · · pxn

n evaluates to the group identity of G.
From a power word (p1, x1, p2, x2, . . . , pn, xn) one can easily (e.g. by an AC0-reduction)

compute a straight-line program for the word px1
1 px2

2 · · · pxn
n . In this sense, the power word

problem is at most as difficult as the compressed word problem. On the other hand, both
power words and straight-line programs achieve exponential compression in the best case; so
the additional difficulty of the the compressed word problem does not come from a higher
compression rate but rather because straight-line programs can generate more “complex”
words.

Our main results for the power word problem are the following; in each case we compare
our results with the corresponding results for the compressed word problem:

The power word problem for every finitely generated nilpotent group is in DLOGTIME-
uniform TC0 and hence has the same complexity as the word problem (or the problem of
multiplying binary encoded integers). The proof is a straightforward adaption of a proof
from [33]. There, the special case, where all words pi in the input power word are single
generators, was shown to be in DLOGTIME-uniform TC0. The compressed word problem
for every finitely generated nilpotent group belongs to the class DET ⊆ NC2 and is hard
for the counting class C=L in case of a torsion-free nilpotent group [20].
The power word problem for a finitely generated group G is NC1-many-one-reducible to
the power word problem for any finite index subgroup of G. An analogous result holds
for the compressed word problem as well [20].
The power word problem for a finitely generated free group is AC0-Turing-reducible to
the word problem for F2 (the free group of rank two) and therefore belongs to L. In
contrast, it was shown in [24] that the compressed word problem for a finitely generated
free group of rank at least two is P-complete.
The power word problem for a wreath product G o Z with G finitely generated abelian
belongs to DLOGTIME-uniform TC0. For the compressed word problem for G o Z with G
finitely generated abelian only the existence of a randomized polynomial time algorithm
for the complement is known [21].
The power word problem for the wreath products F2 o Z and every wreath product G o Z,
where G is finite and non-solvable, is coNP-complete. For these groups this sharpens the
corresponding coNP-hardness result for the compressed word problem [25].
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Table 1 Our results on the power word problem compared to previous results on the (compressed)
word problem. Here WP stands for “word problem”.

class of groups PowerWP CompressedWP WP
nilpotent groups TC0 DET, C=L-hard [20] TC0 [35]
Grigorchuk group G La) PSPACE L [13]
non-abelian f.g. free Lb) P-complete [24] L [22]
G o Z for G f.g. abelian TC0 coRP [21] TC0 [30]
G o Z for G finite non-solvable coNP-complete PSPACE, coNP-hard [25] NC1 [37]
F2 o Z coNP-complete PSPACE, coNP-hard [25] Lb) [37]
finite extension of a f.g. group H NC1-many-one-reducible to PowerWP(H)

(resp. CompressedWP(H) [20], resp. WP(H) [37])

a) AC0-many-one-reducible to the word problem of G.
b) AC0-Turing-reducible to the word problem of F2.

The power word problem for the Grigorchuk group is uAC0-many-one-reducible to the
word problem. The word problem for the Grigorchuk group is in L [13], which implies that
the compressed word problem is in PSPACE. However, there is no non-trivial lower-bound
known for the compressed word problem for the Grigorchuk group.

Table 1 summarizes the above results. Due to space constraints we present only short proof
skteches for our main theorems; proofs of all lemmas can be found in the full version [27].

Related work. Implicitly, (variants of) the power word problem have been studied before.
In the commutative setting, Ge [14] has shown that one can verify in polynomial time an
identity αx1

1 αx2
2 · · ·αxn

n = 1, where the αi are elements of an algebraic number field and the
xi are binary encoded integers.

Another problem related to the power word problem is the knapsack problem [12, 28, 31]
for a finitely generated group G (with generating set Σ): for a given sequence of words
w,w1, . . . , wn ∈ Σ∗, the question is whether there exist x1, . . . , xn ∈ N such that w =
wx1

1 · · ·wxn
n holds in G. For many groups G one can show that if such x1, . . . , xn ∈ N exist,

then there exist such numbers of size 2poly(N), where N = |w|+ |w1|+ · · ·+ |wn| is the input
length. This holds for instance for right-angled Artin groups (also known as graph groups).
In this case, one nondeterministically guesses the binary encodings of numbers x1, . . . , xn and
then verifies, using an algorithm for the power word problem, whether wx1

1 · · ·wxn
n w−1 = 1

holds. In this way, it was shown in [28] that for every right-angled Artin group the knapsack
problem belongs to NP (using the fact that the compressed word problem and hence the
power word problem for a right-angled Artin group belongs to P).

In [16], Gurevich and Schupp present a polynomial time algorithm for a compressed
form of the subgroup membership problem for a free group F , where group elements are
represented in the form ax1

1 ax2
2 · · · axn

n with binary encoded integers xi. The ai must be
standard generators of the free group F . This is the same input representation as in [33]
and is more restrictive then our setting, where we allow powers of the form wx for w an
arbitrary word over the group generators (on the other hand, Gurevich and Schupp consider
the subgroup membership problem, which is more general than the word problem).

MFCS 2019
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2 Preliminaries

Words. An alphabet is a (finite or infinite) set Σ; an element a ∈ Σ is called a letter. The
free monoid over Σ is denoted by Σ∗, its elements are called words. The multiplication of the
monoid is concatenation of words. The identity element is the empty word 1. The length
of a word w is denoted by |w|. If w, p, x, q are words such that w = pxq, then we call x a
factor of w, p a prefix of w, and q a suffix of w. We write v ≤pref w (resp. v <pref w) if v is
a (strict) prefix of w and v ≤suff w (resp. v <suff w) if v is a (strict) suffix of w.

String rewriting systems. Let Σ be an alphabet and S ⊆ Σ∗ × Σ∗ be a set of pairs, called
a string rewriting system. We write ` → r if (`, r) ∈ S. The corresponding rewriting
relation =⇒

S
over Σ∗ is defined by: u =⇒

S
v if and only if there exist `→ r ∈ S and words

s, t ∈ Σ∗ such that u = s`t and v = srt. We also say that u can be rewritten to v in
one step. We write u k=⇒

S
v if u can be rewritten to v in exactly k steps, i.e., if there

are u0, . . . , uk with u = u0, v = uk and ui =⇒
S

ui+1 for 0 ≤ i ≤ k − 1. We denote the

transitive closure of =⇒
S

by +=⇒
S

=
⋃
k≥1

k=⇒
S

and the reflexive and transitive closure by
∗=⇒
S

=
⋃
k≥0

k=⇒
S

. Moreover ∗⇐⇒
S

is the reflexive, transitive, and symmetric closure of =⇒
S

;
it is the smallest congruence containing S. The set of irreducible word with respect to S is
IRR(S) = {w ∈ Σ∗ | there is no v with w =⇒

S
v}.

Free groups. LetX be a set andX−1 =
{
a−1

∣∣ a ∈ X }
be a disjoint copy ofX. We extend

the mapping a 7→ a−1 to an involution without fixed points on Σ = X ∪X−1 by (a−1)−1 = a

and finally to an involution without fixed points on Σ∗ by (a1a2 · · · an)−1 = a−1
n · · · a−1

2 a−1
1 .

For an integer z < 0 and w ∈ Σ∗ we write wz for (w−1)−z. The string rewriting system
S =

{
aa−1 → 1

∣∣ a ∈ Σ
}
is strongly confluent and terminating meaning that for every

word w ∈ Σ∗ there exists a unique word red(w) ∈ IRR(S) with w ∗=⇒
S

red(w) (for precise
definitions see e.g. [7, 19]). Words from IRR(S) are called freely reduced. The system S

defines the free group FX = Σ∗/S with basis X. More concretely, elements of FX can be
identified with freely reduced words, and the group product of u, v ∈ IRR(S) is defined
by red(uv). With this definition red : Σ∗ → FX becomes a monoid homomorphism that
commutes with the involution ·−1: red(w)−1 = red(w−1) for all words w ∈ Σ∗. If |X| = 2,
we write F2 for FX . It is known that for every countable set X, F2 contains an isomorphic
copy of FX .

Finitely generated groups and the power word problem. A group G is called finitely
generated if there exist a finite a finite set X and a surjective group homomorphism h : FX →
G. In this situation, the set Σ = X ∪X−1 is called a finite (symmetric) generating set for G.
For words u, v ∈ Σ∗ we usually say that u = v in G or u =G v in case h(red(u)) = h(red(v)).
The word problem for the finitely generated group G, WP(G) for short, is defined as follows:

input: a word w ∈ Σ∗.
question: does w =G 1 hold?

A power word (over Σ) is a tuple (p1, x1, p2, x2, . . . , pn, xn) where p1, . . . , pn ∈ Σ∗ are words
over the group generators (called the periods of the power word) and x1, . . . , xn ∈ Z
are integers that are given in binary notation. Such a power word represents the word
px1

1 px2
2 · · · pxn

n . Quite often, we will identify the power word (p1, x1, p2, x2, . . . , pn, xn) with
the word px1

1 px2
2 · · · pxn

n . Moreover, if xi = 1, then we usually omit the exponent 1 in a power
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word. The power word problem for the finitely generated group G, PowerWP(G) for short,
is defined as follows:

input: a power word (p1, x1, p2, x2, . . . , pn, xn).
question: does px1

1 px2
2 · · · pxn

n =G 1 hold?
Due to the binary encoded exponents, a power word can be seen as a succinct description
of an ordinary word. Hence, a priori, the power word problem for a group G could be
computationally more difficult than the word problem. We will see examples of groups G,
where PowerWP(G) is indeed more difficult than WP(G) (under standard assumptions
from complexity theory), as well as examples of groups G, where PowerWP(G) and WP(G)
are equally difficult.

Wreath products. Let G and H be groups. Consider the direct sum K =
⊕

h∈H Gh,
where Gh is a copy of G. We view K as the set G(H) of all mappings f : H → G such that
supp(f) := {h ∈ H | f(h) 6= 1} is finite, together with pointwise multiplication as the group
operation. The set supp(f) ⊆ H is called the support of f . The group H has a natural left
action on G(H) given by hf(a) = f(h−1a), where f ∈ G(H) and h, a ∈ H. The corresponding
semidirect product G(H) oH is the (restricted) wreath product G oH. In other words:

Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).
The multiplication in G o H is defined as follows: Let (f1, h1), (f2, h2) ∈ G o H. Then
(f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).

Complexity. We assume that the reader is familiar with the complexity classes P, NP, and
coNP and many-one reductions; see e.g. [2] for details. We use circuit complexity for classes
below deterministic logspace (L for short).

A language L ⊆ {0, 1}∗ is AC0-Turing-reducible to K ⊆ {0, 1}∗ if there is a family of
constant-depth, polynomial-size Boolean circuits with oracle gates for K deciding L. More
precisely, L ⊆ {0, 1}∗ belongs to AC0(K) if there exists a family (Cn)n≥0 of circuits which,
apart from the input gates x1, . . . , xn are built up from not, and, or, and oracle gates for K
(which output 1 if and only if their input is in K). All gates may have unbounded fan-in,
but there is a polynomial bound on the number of gates and wires and a constant bound
on the depth (length of a longest path from an input gate xi to the output gate o). Finally,
Cn accepts exactly the words from L ∩ {0, 1}n, i.e., if each input gate xi receives the input
ai ∈ {0, 1}, then a distinguished output gate evaluates to 1 if and only if a1a2 · · · an ∈ L.

In the following, we only consider DLOGTIME-uniform AC0(K) for which we write
uAC0(K). DLOGTIME-uniform means that there is a deterministic Turing machine which
decides in time O(logn) on input of two gate numbers (given in binary) and the string 1n
whether there is a wire between the two gates in the n-input circuit and also computes the
type of a given gate. For more details on these definitions we refer to [36]. If the languages
K and L in the above definition of uAC0(K) are defined over a non-binary alphabet Σ, then
one first has to fix a binary encoding of words over Σ.

The class uTC0 is defined as uAC0(Majority) where Majority is the problem to
determine whether the input contains more 1s than 0s. The class NC1 is the class of languages
accepted by Boolean circuits of bounded fan-in and logarithmic depth. When talking about
hardness for uTC0 or NC1 we use uAC0-Turing reductions unless stated otherwise. As a
consequence of Barrington’s theorem [3], we have NC1 = uAC0(WP(A5)) where A5 is the
alternating group over 5 elements [36, Corollary 4.54]. Moreover, the word problem for any
finite group G is in NC1. Robinson proved that the word problem for the free group F2 is
NC1-hard [35], i.e., NC1 ⊆ uAC0(WP(F2)).

MFCS 2019



43:6 The Power Word Problem

3 Results

In this section we state our (and prove the easy) results on the power word problem. Outlines
of the proofs of Theorems 2, 8 and 9 can be found in Sections 4 and 5, respectively.

I Theorem 1. If G is a finitely generated nilpotent group, then PowerWP(G) is in uTC0.

Proof. In [33], the so-called word problem with binary exponents was shown to be in uTC0

for finitely generated nilpotent groups. We can apply the same techniques as in [33]: we
compute Mal’cev normal forms of all pi [33, Theorem 5], then use the power polynomials
from [33, Lemma 2] to compute Mal’cev normal forms with binary exponents of all pxi

i .
Finally, we compute the Mal’cev normal form of px1

1 · · · pxn
n again using [33]. J

I Theorem 2. The power word problem for a finitely generated free group is AC0-Turing-
reducible to the word problem for the free group F2.

Notice that if the free group has rank one, then the power word problem is in uTC0 because
iterated addition is in uTC0.

I Remark 3. If the input is of the form (p1, x1, p2, x2, . . . , pn, xn) where all pi are freely
reduced, then the reduction in Theorem 2 is a uTC0-many-one reduction.

I Remark 4. One can consider variants of the power word problem, where the exponents are
not given in binary representation but in even more compact forms. Power circuits as defined
in [32] are such a representation that allow non-elementary compression for some integers.
The proof of Theorem 2 involves iterated addition and comparison of exponents. For power
circuits iterated addition is in uAC0 (just putting the power circuits next to each other), but
comparison (even for equality) is P-complete [38]. Hence, the variant of the power word
problem, where exponents are encoded with power circuits is P-complete for free groups.

I Remark 5. The proof of Theorem 2 can be easily generalized to free products. However, in
order to have a simpler presentation we only state and prove the result for free groups and
postpone the free product case to a future full version.

It is easy to see that the power word problem for every finite group belongs to NC1. The
following result generalizes this fact:

I Theorem 6. Let G be finitely generated and let H ≤ G have finite index. Then
PowerWP(G) is NC1-many-one-reducible to PowerWP(H).

Proof sketch. W.l.o.g. we can assume that H is a finitely generated normal subgroup and
R is a finite set of representatives of Q := G/H with 1 ∈ R. As a first step we replace in
the input power word every pxi

i by hyi

i p
zi
i where xi = yi |Q|+ zi, 0 ≤ zi < |Q| and hi is a

word over the generators of H with p|Q|i =G hi. Moreover, we write pzi
i as a word without

exponents. Using the conjugate collection process from [35, Theorem 5.2], the result can be
rewritten in the form hr where h is a power word in the subgroup H and r ∈ R. J

As an immediate consequence of Theorem 2, Theorem 6 and the NC1-hardness of the
word problem for F2 [35, Theorem 6.3] we obtain:

I Corollary 7. The power word problem for every finitely generated virtually free group is
AC0-Turing-reducible to the word problem for the free group F2.

I Theorem 8. For every finitely generated abelian group G, PowerWP(G o Z) is in uTC0.
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I Theorem 9. Let G be either a finite non-solvable group or a finitely generated free group
of rank at least two. Then PowerWP(G o Z) is coNP-complete.

I Theorem 10. The power word problem for the Grigorchuk group (as defined in [15] and
also known as first Grigorchuk group) is uAC0-many-one-reducible to its word problem.

Theorem 10 applies only if the generating set contains a neutral letter. Otherwise, the
reduction is in uTC0. It is well-know that the word problem for the Grigorchuk group is in L
(see e.g. [13]). Thus, also the power word problem is in L.

Proof sketch of Theorem 10. By [5, Theorem 6.6], every element of length N in the Grig-
orchuk group has order at most CN3/2 for some constant C. Since the order of every element
is a power of two, we can reduce all exponents modulo the smallest power of two ≥ CN3/2

where N is the length of the longest period pi. After that the words are short and can be
written without exponents. J

4 Proof of Theorem 2

The proof of Theorem 2 consists of two main steps: first we do some preprocessing leading to
a particularly nice instance of the power word problem. While this preprocessing is simple
from a theoretical point of view, it is where the main part of the workload is performed
during the execution of the algorithm. Then, in the second step, all exponents are reduced
to polynomial size. After this shortening process, the power word problem can be solved by
the ordinary word problem. The most difficult part is to prove correctness of the shortening
process. For this, we introduce a rewriting system over an extended alphabet of words with
exponents. We outline the proof in a sequence of lemmas which all follow rather easily from
the previous ones and we give some small hints how to prove the lemmas.

Preprocessing. We use the notations from the paragraph on free groups in Section 2. In
particular, recall that S =

{
aa−1 → 1

∣∣ a ∈ Σ
}
. Fix an arbitrary order on the input

alphabet Σ. This gives us the lexicographic order on Σ∗, which is denoted by �. Let
Ω ⊆ IRR(S) ⊆ Σ∗ denote the set of words w such that

w is non-empty,
w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Σ),
w is primitive (i.e, w cannot be written as un for n ≥ 2),
w is lexicographically minimal among all cyclic permutations of w and w−1 (i.e., w � uv
for all u, v ∈ Σ∗ with vu = w or vu = w−1).

Notice that Ω consists of Lyndon words [29, Chapter 5.1] with the stronger requirement of
being freely reduced, cyclically reduced and also minimal among the conjugacy class of the
inverse. The first aim is to rewrite the input power word in the form

w = s0p
x1
1 s1 · · · pxn

n sn with pi ∈ Ω and si ∈ IRR(S). (1)

The reason for this lies in the following crucial lemma which essentially says that, if a long
factor of pxi

i cancels with some pxj

j , then already pi = pj . Thus, only the same pi can cancel
implying that we can make the exponents of the different pi independently smaller.

I Lemma 11. Let p, q ∈ Ω, x, y ∈ Z and let v be a factor of px and w a factor of qy. If
vw

∗=⇒
S

1 and |v| = |w| ≥ |p|+ |q| − 1, then p = q.

MFCS 2019



43:8 The Power Word Problem

Proof. Since p and q are cyclically reduced, v and w are freely reduced, i.e., v = w−1 as words.
Thus, v has two periods |p| and |q|. Since v is long enough, by the theorem of Fine and Wilf
[10] it has also a period of gcd(|p| , |q|). This means that also p and q have period gcd(|p| , |q|)
(since cyclic permutations of p and q are factors of v). Assuming gcd(|p| , |q|) < |p|, would
mean that p is a proper power contradicting the fact that p is primitive. Hence, |p| = |q|.
Since |v| ≥ |p|+ |q| − 1 = 2 |p| − 1, p is a factor of v, which itself is a factor of q−y. Thus, p
is a cyclic permutation of q or of q−1. By the last condition on Ω, this implies p = q. J

I Lemma 12. The following is in uAC0(WP(F2)): given a power word v, compute a power
word w of the form (1) such that v =FX

w.

The proof of this lemma is straightforward using [39, Proposition 20] in order to compute
freely reduced words. We call these steps the preprocessing steps. Henceforth, we will assume
that the inputs for the power word problem are given in the form (1).

The symbolic reduction system. We define the infinite alphabet ∆ = ∆′ ∪ ∆′′ with
∆′ = Ω× (Z \ {0}) and ∆′′ = IRR(S) \ {1}. We write px for (p, x) ∈ ∆′. A word over ∆ can
be read as a word over Σ in the natural way. Formally, we can define a canonical projection
π : ∆∗ → Σ∗ that maps a symbol a ∈ ∆ to the corresponding word over Σ, but most of the
times we will not write π explicitly.

Whenever there is the risk of confusion, we write |v|Σ to denote the length of v ∈ ∆∗
read over Σ (i.e., |v|Σ = |π(v)|) whereas |v|∆ is the length over ∆. Moreover, we denote
the number of occurrences of letters from ∆′ in w with |w|∆′ . Finally, for a symbol s ∈ ∆′′
define λ(s) = |s|Σ and for px ∈ ∆′ set λ(px) = |p|Σ. For u = a1 · · · am ∈ ∆∗ with ai ∈ ∆ for
1 ≤ i ≤ m we define λ(u) =

∑m
i=1 λ(ai). Thus, λ(u) is the number of letters from Σ required

to write down u ignoring the binary exponents.
A word w as in (1), which has been preprocessed as in the previous section, can be viewed

as word over ∆ with w ∈ ((∆′′ ∪ {1})∆′)∗(∆′′ ∪ {1}), |w|∆′ = n and |w|∆ ≤ 2n+ 1 (we only
have ≤ because some si might be empty).

We define the infinite string rewriting system T over ∆∗ by the following rewrite rules,
where px, py, qy ∈ ∆′, s, t ∈ ∆′′, r ∈ ∆′′ ∪ {1}, and d, e ∈ Z. Here, p0 is identified with the
empty word. Note that the strings in the rewrite rules are over the alphabet ∆, whereas the
strings in the if-conditions are over the alphabet Σ.

pxpy → px+y (2)

pxqy → px−drqy−e if p 6= q, pxqy
+=⇒
S

px−drqy−e ∈ IRR(S) for (3)

r = p′q′ with p′ <pref p
sign(x) and q′ <suff q

sign(y)

st→ r if st +=⇒
S

r ∈ IRR(S) (4)

pxs→ px−dr if pxs +=⇒
S

px−dr ∈ IRR(S) for (5)

r = p′s′ with p′ <pref p
sign(x) and s′ <suff s

spx → rpx−d if spx +=⇒
S

rpx−d ∈ IRR(S) for (6)

r = s′p′ with s′ <pref s and p′ <suff p
sign(x)

I Lemma 13. The following length bounds hold in the above rules:
in rule (3): 0 < |r|Σ ≤ |p|Σ + |q|Σ, |d| ≤ |q|Σ, and |e| ≤ |p|Σ
in rules (5) and (6): |d| ≤ |s|Σ.
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The inequalities |d| ≤ |q|Σ and |e| ≤ |p|Σ follow from Lemma 11. The other inequalities are
obvious. The next lemma is also straightforward from the definition.

I Lemma 14. For u ∈ ∆∗ we have u =FX
1 if and only if u ∗=⇒

T
1.

I Lemma 15. Let u ∈ ∆∗. If u ∗=⇒
T

v, then u ≤k=⇒
T

v for k = 2 |u|∆ + 4 |u|∆′ ≤ 6 |u|∆.

Proof sketch. The proof is based on the fact that at most 2|u|∆′ − 3 applications of rules of
the form (3) can occur. These are the only length increasing rules. All other rules either
decrease the number of non-reduced two-letter factors of u (this can happen at most |u|∆ − 1
times) or decrease the length of u (this can happen at most |u|∆ + 2|u|∆′ − 3 times). J

Consider a word u ∈ ∆∗ and p ∈ Ω. Let ∆p = {px | x ∈ Z \ {0}}. We can write u
uniquely as u = u0p

y1u1 · · · pymum with ui ∈ (∆ \∆p)∗. We define ηip(u) =
∑i
j=1 yj and

ηp(u) = ηmp (u). By Lemma 13 we know that all rules of T change ηp(·) by at most λ(u). We
can use this observation in order to show the next lemma by induction on k.

I Lemma 16. Let u k=⇒
T

v. Then for all v′ ≤pref v with v′ ∈ ∆∗ there is some u′ ∈ ∆∗ with
u′ ≤pref u and |ηp(u′)− ηp(v′)| ≤ (k + 1)2 λ(u).

The shortened version of a word. Take a word u ∈ ∆∗ and p ∈ Ω and write u as
u = u0p

y1u1 · · · pymum with ui ∈ (∆ \ ∆p)∗ (we are only interested in the case that px
appears as a letter in u for some x ∈ Z). Let C be a finite set of finite, non-empty, non-
overlapping intervals of integers, i.e., we can write C = { [`j , rj ] | 1 ≤ j ≤ k } for k = |C| and
`j ≤ rj for all j. We can assume that the intervals are ordered increasingly, i.e., we have
rj < `j+1. We set dj = rj − `j + 1 > 0. We say that u is compatible with C if ηip(u) 6∈ [`j , rj ]
for any i, j. If w is compatible with C, we define the shortened version SC(u) of u: for
i ∈ {1, . . . ,m} we set

Ci = Ci(u) =
{{

j
∣∣ 1 ≤ j ≤ k, ηi−1

p (u) < `j ≤ rj < ηip(u)
}

if yi > 0{
j
∣∣ 1 ≤ j ≤ k, ηip(u) < `j ≤ rj < ηi−1

p (u)
}

if yi < 0,

i.e., Ci collects all intervals between ηi−1
p (u) and ηip(u). Then SC(u) is defined by

SC(u) = u0p
z1u1 · · · pzmum where

zi = yi − sign(yi) ·
∑
j∈Ci

dj =
{
yi −

∑
j∈Ci

dj if yi > 0,
yi +

∑
j∈Ci

dj if yi < 0.

A straightforward computation yields the next lemma:

I Lemma 17. For all i we have zi 6= 0 and sign(zi) = sign(yi). In particular, if u ∈ IRR(T ),
then also SC(u) ∈ IRR(T ).

Furthermore, we define distp(u, C) = min
{ ∣∣ηip(u)− x

∣∣ ∣∣ 0 ≤ i ≤ m,x ∈ [`, r] ∈ C
}
. Note

that distp(u, C) > 0 if and only if u is compatible with C. Moreover, if distp(u, C) = a,
v = v0p

z1v1 · · · pzmvm, and
∣∣ηip(u)− ηip(v)

∣∣ ≤ b for all i ≤ m, then distp(v, C) ≥ a− b.

I Lemma 18. If distp(u, C) > (k + 1)2 λ(u) and u k=⇒
T

v, then SC(u) k=⇒
T

SC(v).
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c5

c6

c2

c3

c9

c7

c8

c1

c4

d1

d3

d4

d7

Figure 1 The red shaded parts represent the intervals from the set CK
u,p in (7). The differences

c3 − c2, c6 − c5, c7 − c6 and c9 − c8 are strictly smaller than 2K.

Proof sketch. The first step for proving this lemma is to show that if distp(u, C) > λ(u) and
u =⇒

T
v, then SC(u) =⇒

T
SC(v). To see this this, we distinguish between the rules applied:

When applying one of the rules (3)–(6), we have Ci(u) = Ci(v) for all i since the exponents
are only changed slightly. Thus, the shortening process does the same on v as on u. When
applying a rule (2), the exponents are added, which is compatible with the shortening process.
Now we obtain the lemma by induction on k. In order to see that distp(u, C) > λ(u) is
satisfied in the inductive step, we use Lemma 16. J

We define a set of intervals which should be “cut out” from u as follows: We write
{ c1, . . . , cl } =

{
ηip(u)

∣∣ 0 ≤ i ≤ m
}
with c1 < · · · < cl and we set

CKu,p = { [cj +K, cj+1 −K] | 1 ≤ j ≤ l − 1, cj+1 − cj ≥ 2K } . (7)

Notice that distp(u, CKu,p) = K (given that CKu,p 6= ∅). The situation is shown in Figure 1.

I Proposition 19. Let p ∈ Ω, u = u0p
y1u1 · · · pymum ∈ ∆∗ with ui ∈ (∆ \ ∆p)∗, and

K = (6 |u|∆ + 1)2 λ(u) + 1. Then u =FX
1 if and only if SC(u) =FX

1 for C = CKu,p.

Proof. By Lemma 14 we have u =FX
1 if and only if u ∗=⇒

T
1. Let k = 6 |u|∆. By Lemma 15,

for all u ∗=⇒
T

v we have u ≤k=⇒
T

v. By the choice of C, we have distp(u, C) > (k + 1)2 λ(u).

Hence, we can apply Lemma 18, which implies that SC(u) ∗=⇒
T

SC(v) where v is a T -reduced
(thus freely reduced) word for u. Clearly, if v is the empty word, then SC(v) will be the
empty word. On the other hand, if v is non-empty, then SC(v) is non-empty and T -reduced
by Lemma 17. Hence, we have u =FX

1 if and only if SC(u) =FX
1. J

I Lemma 20. Let p, u, K, and C be as in Proposition 19 and SC(u) = u0p
z1u1 · · · pzmum.

Then |zi| ≤ m · (2 · (6 |u|∆ + 1)2 · λ(u) + 1) for all 1 ≤ i ≤ m.
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Proof of Theorem 2. We start with the preprocessing as described in Lemma 12 leading to
a word w = s0p

x1
1 s1 · · · pxn

n sn with pi ∈ Ω and si ∈ IRR(S) as in (1). After that we apply
the shortening procedure for all p ∈ { pi | 1 ≤ i ≤ n }. This can be done in parallel for all p,
as the outcome of the shortening only depends on the p-exponents. By Lemma 20 this leads
to a word ŵ of polynomial length. Finally, we can test whether ŵ =FX

1 using one oracle
gate for WP(F2) (recall that F2 contains a copy of FX). The computations for shortening
only involve iterated addition (and comparisons of integers), which is in uTC0 and, thus, can
be solved in uAC0 with oracle gates for WP(F2). J

5 The power word problem in wreath products

The goal of this section is to prove Theorems 8 and 9. We first fix some notation. Let G
be a finitely generated group with the finite symmetric generating set Σ. For Z we fix the
generator a. Hence Σ ∪ {a, a−1} is a symmetric generating set for the wreath product G o Z.
For a word w = v0a

e1v1 · · · aenvn with ei ∈ {−1, 1} and vi ∈ Σ∗ let σ(w) = e1 + · · · + en.
With I(w) we denote the interval [b, c] ⊆ Z, where b (resp., c) is the minimal (resp., maximal)
integer of the form e1 + · · ·+ ei for 0 ≤ i ≤ n. Note that if w represents (f, d) ∈ G o Z, then
d = σ(w), supp(f) ⊆ I(w) and 0, d ∈ I(w).

Periodic words over groups. We recall a construction from [12]. With G+ we denote
the set of all tuples (g0, . . . , gq−1) over G of arbitrary length q ≥ 1. With Gω we denote
the set of all mappings f : N → G. Elements of Gω can be seen as infinite sequences (or
words) over the set G. We define the binary operation ⊗ on Gω by pointwise multiplication:
(f ⊗ g)(n) = f(n)g(n). The identity element is the mapping id with id(n) = 1 for all n ∈ N.
For f1, f2, . . . , fn ∈ Gω we write

⊗n
i=1 fi for f1 ⊗ f2 ⊗ · · · ⊗ fn. If G is abelian, we write∑n

i=1 fi for
⊗n

i=1 fi. A function f ∈ Gω is periodic with period q ≥ 1 if f(k) = f(k + q) for
all k ≥ 0. In this case, f can specified by the tuple (f(0), . . . , f(q − 1)). Vice versa, a tuple
u = (g0, . . . , gq−1) ∈ G+ defines the periodic function fu ∈ Gω with fu(n · q + r) = gr for
n ≥ 0 and 0 ≤ r < q. One can view this mapping as the sequence uω obtained by taking
infinitely many repetitions of u. Let Gρ be the set of all periodic functions from Gω. If f1
is periodic with period q1 and f2 is periodic with period q2, then f1 ⊗ f2 is periodic with
period q1q2 (in fact, lcm(q1, q2)). Hence, Gρ forms a countable subgroup of Gω. Note that
Gρ is not finitely generated: The subgroup generated by elements fi ∈ Gρ with period qi
(1 ≤ i ≤ n) contains only functions with period lcm(q1, . . . , qn). For n ≥ 0 we define the
subgroup Gρn of all f ∈ Gρ with f(k) = 1 for all 0 ≤ k ≤ n − 1. We consider the uniform
membership problem for subgroups Gρn, Membership(Gρ∗) for short:

input: tuples u1, . . . , un ∈ G+ (elements of G are represented by finite words over Σ) and
a binary encoded number m.
question: does

⊗n
i=1 fui

belong to Gρm?
The following result was shown in [12]:

I Theorem 21. For every finitely generated abelian group G, Membership(Gρ∗) is in uTC0.

I Lemma 22. Let w ∈ (Σ ∪ {a, a−1})∗ with σ(w) 6= 0, n ≥ 1, and I(wn) = [b, c]. Moreover,
let s = c − b + 1 be the size of the interval I(w) and let (g, n · σ(w)) ∈ G o Z be the group
element represented by wn. Then g is periodic on the interval [b+ s, c− s] with period |σ(w)|.

I Example 23. Let us consider the wreath product Z o Z and let the left copy of Z in the
wreath product be generated by b. Consider the word w = ba−1babab3ab3ab5a−1b and let
n = 8. We have σ(w) = 2 and I(w) = [−1, 3]. Moreover, w represents the group element
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(f, 2) with f(−1) = 1, f(0) = 2, f(1) = 3, f(2) = 4, and f(3) = 5. Let us now consider the
word w8. The following diagram shows how to obtain the corresponding element of Z o Z:

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
1 2 4 6 9 6 9 6 9 6 9 6 9 6 9 6 8 4 5

We have I(w8) = [−1, 17] and σ(w8) = 8σ(w) = 16. If (g, 16) is the group element represented
by w8, then the function g is periodic on the interval [2, 14] (which includes the interval
[−1 + s, 17− s], where s = |I(w)| = 5) with period 2.

Proofs of Theorem 8 and 9. A conjunctive truth-table reduction is a Turing reduction
where the output is the conjunction over the outputs of all oracle gates.

I Proposition 24. For every finitely generated group G, PowerWP(G o Z) is conjunctive
truth-table uTC0-reducible to Membership(Gρ∗) and PowerWP(G).

Proof sketch. Let w = ux1
1 ux2

2 · · ·u
xk

k be the input power word and let (f, d) ∈ G o Z be the
element represented by w. We can check in uTC0 whether d = 0. The difficult part is to
check whether f is the zero-mapping. For this we compute an interval I (of exponential size)
that contains the support of f . We then partition I into two sets C and I \C. The set C has
polynomial size and we can check whether f is the zero-mapping on C using polynomially
many oracle calls to PowerWP(G). The complement I \ C can be written as a union of
polynomially many intervals. The crucial property of C is that on each of these intervals f
can be written as a sum of periodic sequences; for this we use Lemma 22. Using oracle calls
to Membership(Gρ∗) allows us to check whether f is the zero mapping on I \ C. J

Since for a finitely generated abelian group G, one can solve PowerWP(G) in uTC0,
Theorem 8 is a consequence of Proposition 24 and Theorem 21.

We split the proof of Theorem 9 into three propositions: one for the upper bound and
two for the lower bounds. It is straightforward to show that if the word problem for the
finitely generated group G belongs to coNP, then also Membership(Gρ∗) belongs to coNP.
Since coNP is closed under conjunctive truth-table uTC0-reducibility, Proposition 24 yields:

I Proposition 25. Let G be a finitely generated group such that PowerWP(G) belongs to
coNP. Then also PowerWP(G o Z) belongs to coNP.

I Proposition 26. If G is a finite, non-solvable group, PowerWP(G o Z) is coNP-hard.

Proof sketch. Barrington [4] proved the following result: Let C be a fan-in two boolean
circuit of depth d with n input gates x1, . . . , xn. From C one can compute a sequence of
triples (a so-called G-program) PC = (k1, g1, h1)(k2, g2, h2) · · · (k`, g`, h`) ∈ ([1, n]×G×G)∗
of length ` ≤ (4|G|)d such that for every input valuation v : {x1, . . . , xn} → {0, 1} the
following two statements are equivalent:
(a) C evaluates to 0 under the input valuation v.
(b) c1c2 · · · c` = 1 in G, where ci = gi if v(xki

) = 0 and ci = hi if v(xki
) = 1.
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This G-program is constructed as a sequence of iterated commutators, based on the observa-
tion that [g, h] = 1 if and only if g = 1 or h = 1 (given some reasonable assumptions on g
and h). Every formula C in conjunctive normal form can be written as a circuit of depth
O(log |C|). Hence the G-program PC has length polynomial in |C|. From [4] it is easy to see
that on input of the formula C, the G-program PC can be computed in logspace.

Let PC = (k1, g1, h1) · · · (k`, g`, h`) and x1, . . . , xn be the variables in C. We compute
in logspace the n first primes p1, . . . , pn and M =

∏n
i=1 pi (the latter in binary notation).

Let a denote the generator of Z in the wreath product G o Z. We now compute for every
1 ≤ i ≤ ` the power word wi = (hi(agi)pki

−1a)M/pkia−M and set wC = w1w2 · · ·w`. The
group element of G o Z represented by wC is of the form (f, 0).

We claim that wC = 1 in G oZ if and only if C is unsatisfiable: For a number z ∈ [0,M−1]
we define the valuation vz : {x1, . . . , xn} → {0, 1} by vz(xi) = 1 if z ≡ 0 mod pi and vz(xi) =
0 otherwise. By the Chinese remainder theorem, for every valuation v : {x1, . . . , xn} → {0, 1}
there exists z ∈ [0,M − 1] with v = vz. Based on the above statements (a) and (b), the final
step of the proof checks that f(z) = 1 if and only if C evaluates to 0 under vz. J

I Proposition 27. Let F be a finitely generated free group of rank at least two. Then
PowerWP(F o Z) is coNP-hard.

The proof is almost the same as for Proposition 26. The difference is that we mimic Robinson’s
proof that the word problem for F2 is NC1-hard [35] instead of Barrington’s result.

6 Further Research

We conjecture that the method of Section 4 can be generalized to right-angled Artin groups
(RAAGs – also known as graph groups) and hyperbolic groups, and hence that the power word
problem for a RAAG (resp., hyperbolic group) G is AC0-Turing-reducible to the word problem
for G. One may also try to prove transfer results for the power word problem with respect
to group theoretical constructions, e.g., graph products, HNN extensions and amalgamated
products over finite subgroups. For finitely generated linear groups, the power word problem
leads to the problem of computing matrix powers with binary encoded exponents. The
complexity of this problem is open; variants of this problem have been studied in [1, 11].

Another open question is what happens if we allow nested exponents. We conjecture
that in the free group for any nesting depth bounded by a constant the problem is still in
uAC0(WP(F2)). However, for unbounded nesting depth it is not clear what happens: we
only know that it is in P since it is a special case of the compressed word problem; but it
still could be in uAC0(WP(F2)) or it could be P-complete or somewhere in between.
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