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—— Abstract

A t-dimensional orthogonal representation of a hypergraph is an assignment of nonzero vectors in R*
to its vertices, such that every hyperedge contains two vertices whose vectors are orthogonal. The
orthogonality dimension of a hypergraph H, denoted by E(H ), is the smallest integer ¢ for which
there exists a t-dimensional orthogonal representation of H. In this paper we study computational
aspects of the orthogonality dimension of graphs and hypergraphs. We prove that for every k > 4, it
is NP-hard (resp. quasi-NP-hard) to distinguish n-vertex k-uniform hypergraphs H with &(H) < 2
from those satisfying £(H) > Q(log® n) for some constant § > 0 (resp. £(H) > Q(log'~°™") n)). For
graphs, we relate the NP-hardness of approximating the orthogonality dimension to a variant of a
long-standing conjecture of Stahl. We also consider the algorithmic problem in which given a graph
G with £(G) < 3 the goal is to find an orthogonal representation of G' of as low dimension as possible,
and provide a polynomial time approximation algorithm based on semidefinite programming.
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1 Introduction

A t-dimensional orthogonal representation of a hypergraph H = (V, E) is an assignment of a
nonzero real vector u,, € R to every vertex v € V, such that every hyperedge e € E contains
two vertices v,v’ € e whose vectors u, and u,s are orthogonal. The orthogonality dimension
of H, denoted by £(H), is the smallest integer ¢ for which there exists a t-dimensional
orthogonal representation of H.! The notion of orthogonal representations was introduced
for graphs by Lovédsz [38] in the study of the Shannon capacity and was later involved
in a geometric characterization of connectivity properties of graphs by Lovéasz, Saks, and
Schrijver [40]. The orthogonality dimension over the complex field was used by de Wolf [15] in
a characterization of the quantum one-round communication complexity of promise equality
problems and by Cameron et al. [11] in the study of the quantum chromatic number of
graphs (see also [43, 7, 8]). An extension of orthogonal representations, called orthogonal
bi-representations, was introduced by Haemers [26] and has found several further applications
to information theory and to theoretical computer science.

Orthogonal representations of graphs are sometimes defined in the literature as orthogonal representations
of the complement, namely, the definition requires vectors associated with non-adjacent vertices to
be orthogonal. In this paper we have decided to use the other definition because it is extended more
naturally to hypergraphs. For a graph G, one can view the notation £(G) as standing for £(G).
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Orthogonal representations can be viewed as a generalization of hypergraph vertex
colorings, one of the most fundamental and extensively studied topics in graph theory. Recall
that a hypergraph H is said to be c-colorable if one can assign one of ¢ colors to every vertex of
H such that no hyperedge is monochromatic. The chromatic number of H, denoted by x(H),
is the smallest integer ¢ for which H is c-colorable. Obviously, every c-coloring of H induces
a c-dimensional orthogonal representation of H by assigning the ith unit vector e; € R to
every vertex colored by the ith color. On the other hand, given a ¢-dimensional orthogonal
representation (u,),cy of H one can assign to every vertex v the vector in {—1,0,+1}" that
consists of the signs of the entries of u,, and since nonzero orthogonal vectors have distinct
sign vectors it follows that H is 3'-colorable. We conclude that every hypergraph H satisfies

logs x(H) < §(H) < x(H). (1)

The upper bound in (1) can clearly be tight (take, e.g., a complete graph), and it turns out
that there exist graphs whose orthogonality dimension is exponentially smaller than their
chromatic number (see Proposition 7).

The current work studies the problem of approximating the orthogonality dimension of
graphs and hypergraphs. This research direction was already suggested in the late eighties
by Lovész et al. [40], who remarked that computing the orthogonality dimension of graphs
seems to be a difficult task (see also [39]). Nevertheless, the only hardness result we are
aware of for this graph parameter is the one of Peeters [42], who proved that for every t > 3
it is NP-hard to decide whether an input graph G satisfies £(G) < t (see also [7]). Before
stating our hardness and algorithmic results, we overview related previous work on graph
and hypergraph coloring.

1.1 Graph and Hypergraph Coloring

It is well known that the problem of deciding whether an input graph is c-colorable can be
easily solved in polynomial time for ¢ € {1,2} and is NP-hard for every ¢ > 3 [30].

In 1976, Garey and Johnson [21] have discovered an interesting connection between
hardness of graph coloring and the multichromatic numbers of Kneser graphs. For integers
d > 2s, the Kneser graph K(d,s) is the graph whose vertices are all the s-subsets of [d],
where two sets are adjacent if they are disjoint. A k-tuple coloring f of a graph G = (V, E)
is an assignment f(v) of a set of k colors to every vertex v € V such that f(v) N f(v') =0
whenever v and v’ are adjacent in G. The kth multichromatic number of G, denoted by
Xk(G), is the smallest integer ¢ for which G has a k-tuple coloring with ¢ colors. Equivalently,
Xk(G) is the smallest integer ¢ for which there exists a homomorphism from G to the Kneser
graph K(c, k). Note that x1(G) is simply the standard chromatic number x(G). In the
seventies, Stahl [45] has made the following conjecture regarding the multichromatic numbers
of Kneser graphs (see also [19]).

» Conjecture 1 ([45]). For all integers k and d > 2s,

i(K(d, ) = [g - (d — 25) + 2k.
More than forty years later, Conjecture 1 is still widely open. While the right-hand side
in the conjecture is known to form an upper bound on xx(K(d,s)) for all values of k, d
and s, the conjecture was confirmed only for a few special cases. For k = 1, the conjecture
was proved by Lovdsz [37] in a breakthrough application of algebraic topology confirming a
conjecture by Kneser [33]. Stahl [45] proved that the conjecture holds whenever 1 < k < s,
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d = 2s+ 1, or k is divisible by s. Garey and Johnson [21] proved the case of s = 3 and
k = 4, namely, that x4(K(d,3)) = 2d — 4, and used it in the analysis of a reduction from
3-colorability to prove that for every ¢ > 6, it is NP-hard to distinguish between graphs G
that satisfy x(G) < ¢ and those that satisfy x(G) > 2¢ — 4.

In 1993, Khanna, Linial, and Safra [32] proved that it is NP-hard to decide whether an
input graph G satisfies x(G) < 3 or x(G) > 5 (see also [25]). As observed in [6], combining
this result with the proof technique of [21] and the case of s = 3 and k& = 5 in Conjecture 1
proved by Stahl [46] (who confirmed there the conjecture for s < 3 and all integers k and d),
it follows that for every ¢ > 6 it is NP-hard to distinguish between the cases x(G) < ¢ and
X(G) > 2¢— 2. Brakensiek and Guruswami [6] improved this result using different techniques
and proved the NP-hardness of deciding whether a given graph G satisfies x(G) < ¢ or
X(G) > 2¢ — 1 for all ¢ > 3. In a recent work of Bulin, Krokhin, and Oprsal [10], the latter
condition was further improved to x(G) > 2¢. We note that Dinur, Mossel, and Regev [16]
proved that assuming a certain variant of the unique games conjecture, deciding whether a
given graph G satisfies x(G) < 3 or x(G) > ¢ is NP-hard for every ¢ > 4.

We next consider, for any constant k > 3, the problem of deciding whether an input
k-uniform hypergraph (i.e., a hypergraph each of its hyperedges contains exactly k vertices)
is c-colorable. While the problem can clearly be solved in polynomial time for ¢ = 1, it
was shown to be NP-hard for ¢ = 2 and k = 3 by Lovész [36], motivating the study of the
following gap problem: Given an n-vertex k-uniform hypergraph H, decide whether x(H) < 2
or x(H) > ¢. Guruswami, Hastad, and Sudan [24] proved that the problem is NP-hard for
k > 4 and every constant ¢ > 3. By combining their proof with the later PCP theorem of
Moshkovitz and Raz [41], this result also follows for the super-constant ¢ = Q(ﬁ%).
For k£ = 3, the NP-hardness was proved for every constant ¢ > 3 by Dinur, Regev, and
Smyth [17]. Their proof approach was extended in a recent work of Bhangale [3], who
obtained NP-hardness for every k > 4 with the improved super-constant ¢ = Q(log6 n) where
§ > 0 is some constant. Under the complexity assumption NP & DTIME(QP"W(1Og ")), several
stronger hardness results are known. This includes the case of k = 3 and ¢ = Q(¥/loglogn)
proved in [17] and the case of k >4 and ¢ = Q(lolg‘;igo <) proved in [3]. For additional related
results see, e.g., [3, Table 1] and the references therein.

On the algorithmic side, significant efforts have been made in the literature to obtain
polynomial time algorithms for coloring n-vertex 3-colorable graphs using as few colors
as possible. This line of research was initiated by a simple algorithm of Wigderson [47]
that used O(y/n) colors. In a series of increasingly sophisticated combinatorial algorithms,
Blum [4] improved the number of colors to O(n?/#). Then, Karger, Motwani, and Sudan [29]
introduced an algorithm based on a semidefinite relaxation and improved the number of colors
to 5(n1/ 4). Combining the combinatorial approach of [4] and the semidefinite relaxation
of [29], Blum and Karger [4, 5] improved it to 5(n3/ 14)which was later improved by Arora,
Chlamtac, and Charikar [2] and by Chlamtac [13] to O(n%2*) and O(n?2072) respectively.
The combinatorial component of these algorithms was recently improved by Kawarabayashi
and Thorup [31], who reduced the number of colors to O(n?199%). Halperin et al. [27] have
obtained analogue results for coloring n-vertex c-colorable graphs for all constants ¢ > 4, e.g.,
for ¢ = 4 there exists an efficient algorithm that uses 6(717/ 193 colors.

For hypergraphs, there exists a simple combinatorial algorithm that given an n-vertex
k-uniform 2-colorable hypergraph finds in polynomial time a coloring with 6(711_1/ k) colors,
as was shown independently by Alon et al. [1] and by Chen and Frieze [12]. For k = 3,
this algorithm was combined in [1, 12] with the semidefinite programming approach of [29]
to obtain a better bound of O(n?/?), which was later improved to O(n'/?) by Krivelevich,
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Nathaniel, and Sudakov [35]. We note, however, that Alon et al. [1] have provided evidence
that the powerful semidefinite approach cannot be applied to coloring k-uniform hypergraphs
for k > 4.

1.2 Qur Contribution

The present paper offers hardness and algorithmic results on the orthogonality dimension of
graphs and hypergraphs. We first mention that known hardness results on the chromatic
number can be used to derive hardness results for the orthogonality dimension. Indeed,
the inequalities given in (1) yield that for every integers ¢; and t2, NP-hardness of deciding
whether an input k-uniform hypergraph H satisfies x(H) < t; or x(H) > t2 immediately
implies the NP-hardness of deciding whether it satisfies (H) < t; or £&(H) > loggts. In
particular, the hardness results of [17, 25] imply that for all constants k > 3 and ¢t > 3, it is
NP-hard to decide whether an input k-uniform hypergraph H satisfies £(H) < 2 or £(H) > t.
For k = 2, such a result follows from [16] under a variant of the unique games conjecture.
However, for super-constant hardness gaps this implication leads to an exponential loss.
In particular, it follows from [3] that for every k > 4 it is NP-hard to distinguish n-vertex
k-uniform hypergraphs H with £(H) < 2 from those satisfying £(H) > Q(loglogn). We
prove that this exponential loss can be avoided.

» Theorem 2. Let k > 4 be a fized integer.

1. There exists a constant § > 0 for which it is NP-hard to decide whether an input n-vertex
k-uniform hypergraph H satisfies E(H) <2 or £(H) > log® n.

2. Assuming NP & DTIME(nCUoslogn)) - for every constant ¢ > 0 there is no polynomial
time algorithm that decides whether an input n-vertex k-uniform hypergraph H satisfies

§(H) <2 or§(H) > ¢ 28t

We next consider the hardness of approximating the orthogonality dimension of graphs.
Our result involves a generalization of orthogonal representations of graphs defined as follows.
A t-dimensional orthogonal k-subspace representation of a graph G = (V, E) is an assignment
of a subspace U, C R with dim(U,) = k to every vertex v € V, such that the subspaces
U, and U, are orthogonal whenever v and v’ are adjacent in G. For a graph G, let £, (G)
denote the smallest integer ¢ for which there exists a t-dimensional orthogonal k-subspace
representation of G. Note that &,(G) = £(G) for every graph G. We prove the following
result.

» Theorem 3. For every graph F, it is NP-hard to decide whether an input graph G satisfies
§(G) S &(F) or £(G) = E4(F).

With Theorem 3 in hand, it is of interest to find graphs F for which &,(F) is large
compared to &;(F). We consider here, in light of Conjecture 1, the behavior of the &,
parameters on the Kneser graphs K(d,s). For k = 1, it was recently shown that the
orthogonality dimension and the chromatic number coincide on Kneser graphs [28]. We
further observe, as an application of a result of Bukh and Cox [9], that the values of xj and
£, coincide on the Kneser graphs K (d, s) for every k divisible by s (that is, for all integers
(>1andd>2s, & (K(d,s)) = xes(K(d,s)) =£-d, and in particular £5(K(d,3)) = d; see
Corollary 17). It would be natural to ask whether this is also the case for k = 4 and s = 3.

» Question 4. Is it true that for every d > 6, &,(K(d,3)) =2d —47?



. Haviv

A positive answer to Question 4 would imply that for every ¢ > 6, it is NP-hard to decide
whether an input graph G satisfies £(G) < t or £(G) > 2t — 4, analogously to the hardness
result of [21] for the chromatic number.?

We finally consider the algorithmic problem in which given an n-vertex k-uniform hyper-
graph H with constant orthogonality dimension, the goal is to find an orthogonal representa-
tion of H of as low dimension as possible. It is not difficult to show that a hypergraph H
satisfies £(H) < 2 if and only if it is 2-colorable. Hence, by the algorithm of Krivelevich et
al. [35], given an n-vertex 3-uniform hypergraph H with £(H) < 2 it is possible to efficiently
find a coloring of H that uses 5(711/ %) colors, and, in particular, to obtain an orthogonal
representation of H of this dimension. For graphs, the first nontrivial case is where we are
given as input an n-vertex graph G with £(G) < 3, for which we prove the following result.

» Theorem 5. There exists a randomized polynomial time algorithm that given an n-vertex
graph G satisfying £(G) < 3, finds a coloring of G that uses at most O(n°2413) colors. In
particular, the algorithm finds an orthogonal representation of G of dimension O(n°2413).

In fact, we prove a stronger statement than that of Theorem 5, allowing the input graph G to
satisfy £, (G) < 3k for some integer k (rather than the special case k = 1; see Theorem 23).

1.3 Overview of Proofs
Hardness of Approximating the Orthogonality Dimension of Hypergraphs

Theorem 2 is proved in two steps. In the first, we show that approximating the orthogonality
dimension of k-uniform hypergraphs becomes harder as the uniformity parameter k grows,
and in the second we prove the hardness result for 4-uniform hypergraphs. By combining
the two, Theorem 2 follows. We elaborate below on each of these two steps.

The uniformity reduction

Our goal is to show that for every k1 < ko, one can efficiently transform a given k;-uniform
hypergraph H; to a ko-uniform hypergraph Hy so that £(H;) = £(Hy). We borrow a
reduction used in [24] for hypergraph coloring and prove that it preserves the orthogonality
dimension. For simplicity of presentation, let us consider here the case of k1 = 2 and ko = 4.
Given an n-vertex graph G = (V, E) we construct a 4-uniform hypergraph H whose vertex
set consists of £ copies Vi,...,Vy of V. For i € [{], let E; denote the collection of 2-subsets of
V; that correspond to the edges of G. The hyperedges of H are defined as all possible unions
of pairs of sets picked from distinct collections E; and E;.

As a warm-up, we observe that for a sufficiently large ¢, say £ = n + 1, we have
X(G) = x(H). Indeed, if G is c-colorable then the c-coloring of G applied to each of the
copies of V in H implies that H is c-colorable. On the other hand, if G is not c-colorable
then for every coloring of H by c¢ colors, every graph (V;, F;) contains a monochromatic edge.
By £ > c, there are 7 # j and sets e; € E; and ez € Ej such that all vertices of e; U ea share
the same color. This implies the existence of a monochromatic hyperedge in H, hence H is
not c-colorable.

We next show that for a sufficiently large ¢ we have £(G) = £(H). The first direction is
equally easy, namely, if G has a t-dimensional orthogonal representation then by assigning
its vectors to every copy of V in H we get a t-dimensional orthogonal representation of

2 Tt can be shown, using a result of [9], that every d > 6 satisfies £, (K (d,3)) > [4d/3] (see Lemma 16).
Combining this bound with Theorem 3, it follows that for every ¢ > 6 it is NP-hard to decide whether
an input graph G satisfies £(G) <t or {(G) > [4t/3].
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H. For the other direction, assume that G satisfies £(G) > ¢, and suppose for the sake
of contradiction that £(H) < t, i.e., there exists a t-dimensional orthogonal representation
(wo)vev(a) of H. By £(G) > t, for every i € [(] there are two vertices a;, b; € V; adjacent in
G whose vectors are not orthogonal, that is, (ug,,up,) # 0. Now, it suffices to show that for
some i # j the four vectors u,,, up,, uq;, up; are pairwise non-orthogonal, as this would imply
a contradiction to the fact that {a;,b;,a;,b;} is a hyperedge of H. It is not difficult to see
that for some i # j the vectors u,, and uyp,; are not orthogonal. Indeed, let M; € R*t be the
matrix whose rows are the vectors u,, for i € [{], and let M, € R**? be the matrix whose
rows are the vectors uy, for i € [¢]. Consider the matrix M € R** defined by M = M, - M,
and notice that its diagonal entries are all nonzero (because (ug,, up,) # 0 for every i) and
that its rank is at most ¢. Assuming that £ > t, the matrix M must have some nonzero
non-diagonal entry (otherwise its rank is £), implying that (uq,,up;) # 0 for some i # j.
This, however, still does not complete the argument, since it might be the case that for these
indices 7 and j, one of the inner products (ua,, Ua;), (Up,, Ua,), and (uy,,up;) is zero, avoiding
the contradiction.

To overcome this difficulty, we use a symmetrization argument showing that the assump-
tion £(H) <t implies that H has some t'-dimensional orthogonal representation (wo)vev (m),
where ¢’ is not too large, with the following symmetry property: For every i and j, if
{(Wq,;, wp;) # 0 then the inner products (wq,, wa,), (Wp,, Wa;), and (ws,,wy;) are all nonzero.
With such an orthogonal representation, applying the above argument with ¢ > ¢’ would
certainly imply a contradiction and complete the proof. We achieve the symmetry property
for ' = t* using vector tensor products. Namely, we assign to every vertex a; the vector
Wa; = Uq; @ Up; @ Uqg; @ Up,, to every vertex b; the vector wy, = uﬁz & ufﬁ?, and to every
other vertex v the vector w, = u®*. It is straightforward to verify that (Wy)vev (m) forms a
t’-dimensional orthogonal representation of H. Moreover, by standard properties of tensor
products we have

<wai7wbj> = <uai’uaj> ’ <Ub,;, uaj> ) <Ua7;, ub_7'> : <ubi7ubj>7

which can be used to obtain that if (w,,,ws;) # 0 then the other three inner products
(Wa;, Wa, ), (Wh;, Wa,), and (ws,,wy;) are nonzero as well. This completes the proof sketch
for k1 = 2 and ke = 4. For the proof of the general case, we generalize the tensor-based
argument to k-tuples of vertices and extend the matrix reasoning applied above using bounds
on off-diagonal Ramsey numbers.

Hardness for 4-uniform hypergraphs

We next consider the hardness of approximating the orthogonality dimension of 4-uniform
hypergraphs. A significant difficulty in proving such a result lies at the challenge of proving
strong lower bounds on the orthogonality dimension. For the sake of comparison, in most
hardness proofs for hypergraph coloring the lower bound on the chromatic number of the
hypergraph H constructed by the reduction is shown by an upper bound on its independence
number «(H) and the standard inequality x(H) > %
for the orthogonality dimension, which in certain cases can be exponentially smaller than

. This approach cannot be used

this ratio (see Proposition 7). Exceptions of this approach, where the lower bound on the
chromatic number is not proved via the independence number, are the works of Dinur et
al. [17] and Bhangale [3] on which we elaborate next.

A standard technique in proving hardness of approximation results is to reduce from
the Label Cover problem, in which given a collection of constraints over a set of variables
the goal is to decide whether there exists an assignment that satisfies all the constraints or
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any assignment satisfies only a small fraction of them. In such reductions, every variable
over a domain [R] is encoded via an error-correcting code known as the long code, and the
constraints are replaced by “inner” constraints designed for the specific studied problem. One
way to view the long code is as the graph whose vertices are all subsets of [R] where two sets
are adjacent if they are disjoint [18]. In the hardness proof of [17] for the chromatic number
of 3-uniform hypergraphs, this graph was replaced by the induced subgraph that consists
only of subsets of a given size (i.e., a Kneser graph), where a label o € [R] is encoded by the
2-coloring of the vertices according to whether the sets contain a or not. The analysis of [17]
is crucially based on the large chromatic number of Kneser graphs [37] and on the property
that every coloring of Kneser graphs with number of colors smaller than their chromatic
number enforces a large color class that includes a monochromatic edge. The latter property
was proved in [17] using the chromatic number of the Schrijver graph [44], a vertex-critical
subgraph of the Kneser graph. The approach of [17] was recently extended by Bhangale [3],
who used in his long code construction only the vertices of the Schrijver graph. The fact that
this subgraph has much fewer vertices and yet large chromatic number has led to improved
hardness factors. However, for the analysis to work the “inner” constraints had to include
four vertices, and this is the reason that the result was obtained for 4-uniform hypergraphs
(and not for 3-uniform hypergraphs as in [17]).

In the current work we prove the hardness of approximating the orthogonality dimension
of 4-uniform hypergraphs using the reduction applied in [3] for hypergraph coloring. While
we achieve the same hardness factors as in [3], the analysis relies on several different
ideas and tools. This includes the aforementioned symmetrization argument for orthogonal
representations, a lower bound of Golovnev et al. [23] on the sparsity of low rank matrices
with nonzero entries on the diagonal, and the orthogonality dimension of Schrijver graphs
determined in [28] (see Theorem 8).

Hardness of Approximating the Orthogonality Dimension of Graphs

Theorem 3 relates the hardness of approximating the orthogonality dimension of graphs
to orthogonal subspace representations. Our starting point is the NP-hardness of deciding
whether an input graph G satisfies £(G) < 3 [42]. Following an approach of Garey and
Johnson [21], our reduction constructs a graph G’ defined as the lexicographic product of
some fixed graph F' and the input graph G. Namely, we replace every vertex of F' by a copy
of G and replace every edge of F' by a complete bipartite graph between the vertex sets
associated with its endpoints (see Definition 11). We then show that if £(G) < 3 then G’
has a &;(F)-dimensional orthogonal representation, whereas if £(G) > 4 the orthogonality
dimension of G’ is at least £,(F). It would be interesting to figure out the best hardness
factors that Theorem 3 can yield (see Question 4). We note, though, that our approach is
limited to multiplicative hardness gaps bounded by 2, as it is easy to see that every graph F
satisfies £4(F) < &5(F) + &, (F) < 2-&(F).

Coloring Graphs with Orthogonality Dimension Three

Consider the problem in which given an n-vertex graph G satisfying £(G) < 3, the goal
is to find an orthogonal representation of G of as low dimension as possible. Employing
an approach of [14], we attempt to find a coloring of G with a small number of colors, as
this in particular gives an orthogonal representation of the same dimension. As mentioned
before, for every ¢ > 3 there are known efficient algorithms for coloring n-vertex c-colorable

graphs, however, our only guarantee on G is that its orthogonality dimension is at most 3.
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Interestingly, it follows from a theorem of Kochen and Specker [34] (see also [22]) that the
largest possible chromatic number of such a graph is 4. It follows that given an n-vertex
graph G with £(G) < 3, one can simply apply the efficient algorithm of [27] for coloring
4-colorable graphs to obtain a coloring of G by 6(71"’) colors where v = 7/19 ~ 0.368.

To improve on this bound, we show an efficient algorithm that finds a large independent
set in a given graph G satisfying £(G) < 3. We consider two cases according to the maximum
degree in the graph. If G has a vertex of large degree then the algorithm finds a large
independent set in its neighborhood. This can be done since the assumption £(G) < 3
implies that the neighborhood of every vertex of G is 2-colorable (just as for 3-colorable
graphs). Otherwise, in case that all the degrees in G are small, we use an algorithm of
Karger et al. [29] based on a semidefinite relaxation of the chromatic number, called the
vector chromatic number. Our analysis relies on a result by Lovasz [38] relating the (strict)
vector chromatic number of graphs to their orthogonality dimension. Now, by repeatedly
omitting independent sets in G, we obtain a coloring that uses 5(n1/ 4) colors. This can be

(n%-2413) by applying the refined analysis of Arora et al. [2] for the

slightly improved to o)
rounding algorithm of [29].

As already mentioned, our algorithm can handle any graph G that satisfies &, (G) < 3k
for some integer k, rather than for k = 1 (see Theorem 23). The generalized analysis involves
a connection, recently proved by Bukh and Cox [9], between the (strict) vector chromatic

number and the graph parameters §,,.

1.4 OQutline

The rest of the paper is organized as follows. In Section 2, we provide some background on
the orthogonality dimension and on the Kneser and Schrijver graphs. In Section 3, we prove
our hardness and algorithmic results on the orthogonality dimension of graphs, confirming
Theorems 3 and 5. The analysis of the uniformity reduction and the proof of Theorem 2 can
be found in the full version of the paper.

2 Preliminaries

2.1 Orthogonality Dimension

We define the orthogonality dimension of hypergraphs over a general field.

» Definition 6. A t-dimensional orthogonal representation of a hypergraph H = (V| E) over
a field F is an assignment of a vector w, € Ft with (u,,u,) # 0 to every vertex v € V,
such that for every hyperedge e € E there are two vertices v,v’' € e satisfying (u,,u, ) = 0.
The orthogonality dimension of a hypergraph H = (V, E) over F, denoted by £(H,F), is the
smallest integer t for which there exists a t-dimensional orthogonal representation of H over
F. For the real field R, we let £(H) stand for £(H,R).

The following proposition shows that there are graphs whose orthogonality dimension is
exponentially smaller than their chromatic number.

» Proposition 7. There exists an explicit family of graphs Gy such that £(Gy) < t and

Proof. Let t be an integer divisible by 4. Consider the graph G; = (V, E) whose vertices are
all the £-subsets of [t] where two sets A, B € V are adjacent if their intersection size satisfies

2
|AN B| = £. Notice that by |A| = |B| = £, this condition is equivalent to |[A A B| = 5.

13
4 27
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Assign to every vertex A the vector uy € {£1}* where (us); = +1ifi € A and (u4); = —1
otherwise. We claim that (u4)acy is an orthogonal representation of G;. Indeed, for every
adjacent vertices A, B € V we have

(ua,up) = (~1) - |JAAB|+ (t—|AAB|) =t —2-|AA B| = 0.

This implies that £(G;) < t. On the other hand, by a celebrated result of Frankl and Radl [20],
a(Gy) < 2¢t for some ¢ < 1, implying that

(i/2)

> 2 2(1—0—0(1))~t
a(Gy) = 20t 7 ’

X(Gt) >

completing the proof. <

2.2 Kneser and Schrijver Graphs

For integers d > 2s, the Kneser graph K (d, s) is the graph whose vertices are all the s-subsets
of [d], where two sets are adjacent if they are disjoint.

A set A C [d] is said to be stable if it does not contain two consecutive elements modulo
d (that is, if i € Atheni+1¢ A, and if d € A then 1 ¢ A). In other words, a stable subset
of [d] is an independent set in the cycle Cyq with the numbering from 1 to d along the cycle.
For integers d > 2s, the Schrijver graph S(d, s) is the graph whose vertices are all the stable
s-subsets of [d], where two sets are adjacent if they are disjoint.

The orthogonality dimension of the Kneser and Schrijver graphs was determined in [28]
using topological methods.
» Theorem 8 ([28]). For every d > 2s, &(K(d,s)) =&(S(d,s)) =d—2s+ 2.

The number of vertices in K(d, s) is clearly (i) We need the following simple bound,
given in [17], on the number of vertices in S(d, s).

» Lemma 9 ([17]). For every d > 2s, the number of vertices in S(d, s) is at most (d:iQS).

3 The Orthogonality Dimension of Graphs

In this section we focus on the orthogonality dimension of graphs and prove Theorems 3
and 5.

3.1 Orthogonal Subspace Representations

We generalize the notion of orthogonal representations over the real field by assigning to every
vertex a subspace of a given dimension, so that adjacent vertices are assigned to orthogonal
subspaces.

» Definition 10. A t-dimensional orthogonal k-subspace representation of a graph G = (V, E)
is an assignment of a subspace U, C R with dim(U,) = k to every vertex v € V, such that
the subspaces U, and U, are orthogonal whenever v and v' are adjacent in G. For a graph
G, let £,(G) denote the smallest integer t for which there exists a t-dimensional orthogonal
k-subspace representation of G.

Clearly, £(G) = &,(G) for every graph G. It is also easy to see that the multichromatic
numbers of graphs, defined in Section 1.1, bound the parameters ¢, from above, namely,
£.(G) < xx(Q) for every G and k.
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3.2 Hardness

In this section we prove Theorem 3, namely that for every graph F, it is NP-hard to decide
whether an input graph G satisfies £(G) < &;(F) or £(G) > £,(F). The proof employs the
notion of lexicographic product of graphs, defined as follows.

» Definition 11. The lexicographic product of the graphs G1 = (V1, E1) and Gy = (Va, Es),
denoted by G1 @ Go, is the graph whose vertex set is Vi x Vo where two vertices (x1,y1) and
(x2,y2) are adjacent if either {x1,z2} € By or 1 = x2 and {y1,y2} € Es.

One can view the graph GG; e G as the graph obtained from G; by replacing every vertex by
a copy of G2 and replacing every edge by a complete bipartite graph between the vertex sets
associated with its endpoints. We need the following property of the orthogonality dimension
of lexicographic products of graphs.

» Lemma 12. For every two graphs G1 and Go, £(G1 e Go) = £,.(G1) where k = £(Gs).

Proof. Let G = (Vi, Ey) and Gy = (Va, E») be two graphs and denote k = £(Gy).

We first prove that £(Gy e Ga) > £,.(G1). Denote t = (G o G3), then there exists a
t-dimensional orthogonal representation (u(y,y))(z,y)evy xv, Of G1 ® Ga. For every x € V1, let
U, denote the subspace of R spanned by all vectors U(z,y) With y € Va. By the definition
of G1 @ G, the subspaces U,, and U, are orthogonal whenever z and z’ are adjacent in G.
Further, for every « € Vi, the restriction of the given orthogonal representation to the copy
of G associated with o forms an orthogonal representation of Ga, so by k = £(G5) it follows
that dim(U,) > k. This implies that there exists a {-dimensional orthogonal k-subspace
representation of G, hence &, (G1) < t, as required.

We next prove that (G e Ga) < £,.(Gy). Denote t = &, (Gy), then there exists a
t-dimensional orthogonal k-subspace representation (U, )zev, of G1. By k = &(Gs), there
exists a k-dimensional orthogonal representation (uy)ycv, of Ga. For every x € Vi, the fact
that dim(U,) = k implies that there exists an orthogonal linear transformation 7T, from
R* onto U,. We assign to every vertex (z,y) € Vi x Va of G; e G2 the nonzero vector
Wizy) = Te(uy) € R?. We claim that this is a ¢-dimensional orthogonal representation of
G1 @ G3. To see this, let (z1,y1) and (x2,y2) be two adjacent vertices in Gy  Go. If 21 and
x9 are adjacent in Gy then the subspaces U,, and U,, are orthogonal, hence the vectors
W(gy 1) € Uz, and wyy, 4,) € Uz, are orthogonal as well. Otherwise, x1 = z2 and the vertices
y1 and yo are adjacent in G». This implies that the vectors u,, and u,, are orthogonal, and
since T}, preserves inner products it follows that Ty, (u,, ) and T}, (u,,) are orthogonal, and
we are done. |

Equipped with Lemma 12, we are ready to prove Theorem 3.

Proof of Theorem 3. Fix a graph F. We reduce from the NP-hard problem of deciding
whether an input graph G satisfies £(G) < 3 [42]. The reduction maps an input graph G to
the lexicographic product G’ = F ¢ G of F and G. The graph G’ can clearly be constructed
in polynomial time. The correctness of the reduction follows from Lemma 12. Indeed, we
have £(G') = &, (F) for k = £(G), so if £(G) < 3 then £(G') < &5(F) and if £(G) > 4 then
§(G") = &4(F). <

3.3 Algorithm

Before presenting our algorithm, we provide some background on the vector chromatic
number of graphs.
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3.3.1 Vector Chromatic Number

Consider the following two relaxations of the chromatic number of graphs, due to Karger,
Motwani, and Sudan [29].

» Definition 13. For a graph G = (V, E) the vector chromatic number of G, denoted by
xv(G), is the minimal real value of k > 1 for which there exists an assignment of a unit real

vector u, to every vertex v € V. such that (U, u,) < fﬁ whenever v and v’ are adjacent

n G.

» Definition 14. For a graph G = (V, E) the strict vector chromatic number of G, denoted

by XSS)(G), is the minimal real value of kK > 1 for which there exists an assignment of a
unit real vector u, to every vertex v € V such that (u,,u,) = —ﬁ whenever v and v’ are

adjacent in G.

It is well known and easy to verify that for every graph G, x+(G) < XE,S)(G) < x(G). Karger
et al. [29] have obtained the following algorithmic result.

» Theorem 15 ([29]). There exists a randomized polynomial time algorithm that given an
n-vertez graph G with mazimum degree at most A and xv(G) < k for some k > 2, finds an
independent set of size QU x2s7x)-

Note that the well-known Lovdsz ¥-function, introduced in [38], is known to satisfy
HG) = ) (G) for every graph G [29]. Combining this with a result of [38], it follows that
the orthogonality dimension forms an upper bound on the strict vector chromatic number,
that is, £(G) > xg,s)(G) for every graph G. This was recently generalized by Bukh and Cox
as follows (see [9, Proposition 23]).

» Lemma 16 ([9]). For every graph G and an integer k, &,.(G) >k - XS,S)(G).

We derive that the graph parameters &, and xj coincide on Kneser graphs K(d, s)
whenever k is divisible by s.

» Corollary 17. For all integers £ > 1 and d > 2s, &, (K(d,s)) =¢-d.

Proof. For the upper bound on &,  (K(d,s)), recall that Conjecture 1 was confirmed for
k= (s in [45], hence &, (K (d,s)) < x¢.s(K(d,s)) = £-d. For the lower bound, combine
Lemma 16 with the fact that X\(,s) (K(d,s)) = 2 (see [38]), to get that &, ,(K(d,s)) > (-d. <«

3.3.2 The Algorithm

We present an efficient algorithm that given a graph G that satisfies £(G) < 3 (or, more
generally, £, (G) < 3k for some k), finds a coloring of G with relatively few colors. We use
the following simple claim of Blum [4] which reduces the algorithmic task of coloring a graph
to the algorithmic task of finding a large independent set in it.

» Claim 18 ([4]). Let G be a graph family which is closed under taking induced subgraphs,
let c1,co > 1 be arbitrary fized constants, and let f : N = N be any non-decreasing function
satisfying c1 - f(n) < f(2n) < co- f(n) for all sufficiently large n. Then if there exists a
(randomized) polynomial time algorithm which finds an independent set of size f(n) in any
n-vertex graph G € G, then there exists a (randomized) polynomial time algorithm which
finds an O(%)-colom’ny of any n-vertex graph G € G.

We need the following two simple lemmas.

39:11

MFCS 2019



39:12

Approximating the Orthogonality Dimension of Graphs and Hypergraphs

» Lemma 19. Let G = (V, E) be a graph such that £,(G) < 2k for some integer k. Then G
is 2-colorable.

Proof. Let G = (V, E) be a graph satisfying £, (G) < 2k, and let (U, ),ev be a 2k-dimensional
orthogonal k-subspace representation of G. It suffices to prove that every connected compon-
ent of G is 2-colorable. Fix a vertex v in some connected component of G, and observe that
there exists a unique subspace of R?* of dimension k orthogonal to U,. This implies that the
orthogonal subspace representation of G provides a 2-coloring of the connected component
of v, where the vertices of even distance from v are assigned to U, and the vertices of odd
distance from v are assigned to its orthogonal complement U;-, so we are done. |

For a graph G and a vertex v, let N(v) denote the neighborhood of v in G and let G[N (v)]
denote the subgraph of G induced by N (v).

» Lemma 20. Let G = (V, E) be a graph such that &,(G) < 3k for some integer k. Then
for every vertex v € V' the subgraph G[N (v)] is 2-colorable.

Proof. Let G = (V, E) be a graph satisfying £, (G) < 3k, and let (U, )yev be a 3k-dimensional
orthogonal k-subspace representation of G. Let v € V be a vertex in G. The subspace U, is
orthogonal to all subspaces U, with v' € N(v). By dim(U,) = k, the orthogonal complement
of U, in R®* has dimension 2k. It follows that G[N(v)] admits a 2k-dimensional orthogonal
k-subspace representation, hence by Lemma 19 it is 2-colorable, as required. |

We are ready to prove the following result.

» Theorem 21. There exists a randomized polynomial time algorithm that given an n-vertex
graph G that satisfies £,(G) < 3k for some k, finds a coloring of G that uses at most O(n'/*)
colors. In particular, the algorithm finds an orthogonal representation of G of dimension
O(n'/4).

Proof. By Claim 18 it suffices to show that there exists a randomized polynomial time
algorithm that given an n-vertex graph G = (V, E) with £, (G) < 3k for some k, finds in
G an independent set of size (Nl(n‘g/ 4). We consider two possible cases. Suppose first that
there exists a vertex v € V in G whose degree is at least A = n®/4. Then by Lemma 20
the subgraph G[N(v)] is 2-colorable, so we can find an independent set in G of size at least
% by finding in polynomial time a 2-coloring of G[N(v)] and taking a largest color class.
Otherwise, the maximum degree of G is at most A. By Lemma 16 we have

&(G)
k

W (G) < xP(G) < <3,

so by Theorem 15 we can find in polynomial time an independent set of size (NZ(A%L/J) > SNZ(n?’/ 4,

and we are done. |

To improve the number of used colors, we employ the following result that stems from the
analysis by Arora et al. [2] of the semidefinite relaxation of [29]. (For an explicit statement,
see [14, Lemma 4.12], applied with o = 0.5, ¢ = 0.04843726, and ¢ ~ 0.7587.)

» Theorem 22 ([2]). There exists a randomized polynomial time algorithm that given an
n-vertex graph G with mazimum degree at most A = n% 787 and x,(G) < 3, finds an
independent set in G of size at least Q(n - A793179) > Q(n0-7587),

By applying Theorem 22 instead of Theorem 15 in the proof of Theorem 21, we obtain
the following slight improvement, confirming Theorem 5.
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» Theorem 23. There exists a randomized polynomial time algorithm that given an n-vertex
graph G that satisfies £,(G) < 3k for some k, finds a coloring of G that uses at most

O(n%2413) colors.
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