
Parameterized Complexity of Fair Vertex
Evaluation Problems
Dušan Knop
Algorithmics and Computational Complexity, Faculty IV, TU Berlin
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
dusan.knop@tu-berlin.de

Tomáš Masařík
Department of Applied Mathematics, Charles University, Prague, Czech Republic
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland
masarik@kam.mff.cuni.cz

Tomáš Toufar
Computer Science Institute, Charles University, Prague, Czech Republic
toufi@iuuk.mff.cuni.cz

Abstract
A prototypical graph problem is centered around a graph-theoretic property for a set of vertices
and a solution to it is a set of vertices for which the desired property holds. The task is to decide
whether, in the given graph, there exists a solution of a certain quality, where we use size as a quality
measure. In this work, we are changing the measure to the fair measure (cf. Lin and Sahni [27]).
The fair measure of a set of vertices S is (at most) k if the number of neighbors in the set S of any
vertex (in the input graph) does not exceed k. One possible way to study graph problems is by
defining the property in a certain logic. For a given objective, an evaluation problem is to find a
set (of vertices) that simultaneously minimizes the assumed measure and satisfies an appropriate
formula. More formally, we study the MSO Fair Vertex Evaluation, where the graph-theoretic
property is described by an MSO formula.

In the presented paper we show that there is an FPT algorithm for the MSO Fair Vertex
Evaluation problem for formulas with one free variable parameterized by the twin cover number
of the input graph and the size of the formula. One may define an extended variant of MSO Fair
Vertex Evaluation for formulas with ` free variables; here we measure a maximum number of
neighbors in each of the ` sets. However, such variant is W[1]-hard for parameter ` even on graphs
with twin cover one.

Furthermore, we study the Fair Vertex Cover (Fair VC) problem. Fair VC is among the
simplest problems with respect to the demanded property (i.e., the rest forms an edgeless graph).
On the negative side, Fair VC is W[1]-hard when parameterized by both treedepth and feedback
vertex set of the input graph. On the positive side, we provide an FPT algorithm for the parameter
modular width.
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1 Introduction

A prototypical graph problem is centered around a fixed property for a set of vertices.
A solution is any set of vertices for which the given property holds. In a similar manner, one
can define the solution as a set of vertices such that the given property holds when we remove
this set of vertices from the input graph. This leads to the introduction of deletion problems –
a standard reformulation of some classical problems in combinatorial optimization introduced
by Yannakakis [37]. Formally, for a graph property π we formulate a vertex deletion problem.
That is, given a graph G = (V,E), find a smallest possible set of vertices W such that G \W
satisfies the property π. Many classical problems can be formulated in this way such as
Minimum Vertex Cover (π describes an edgeless graph) or Minimum Feedback Vertex
Set (π is valid for forests).

Clearly, the complexity of a graph problem is governed by the associated property π.
We can either study one particular problem or a broader class of problems with related
graph-theoretic properties. One such relation comes from logic, for example, two properties
are related if it is possible to express both by a first order (FO) formula. Then, it is possible
to design a model checking algorithm that for any property π expressible in the fixed logic
decides whether the input graph with the vertices from W removed satisfies π or not.

Undoubtedly, Courcelle’s Theorem [4] for graph properties expressible in the monadic
second-order logic (MSO) on graphs of bounded treewidth plays a prime role among model
checking algorithms. In particular, Courcelle’s Theorem provides for an MSO sentence ϕ an
algorithm that given an n-vertex graph G with treewidth k decides whether ϕ holds in G in
time f(k, |ϕ|)n, where f is some computable function and |ϕ| is the quantifier depth of ϕ. In
terms of parameterized complexity, such an algorithm is called fixed-parameter tractable (the
problem belongs to the class FPT for the combined parameter k+ |ϕ|). We refer the reader to
monographs [7, 8] for background on parameterized complexity theory and algorithm design.
There are many more FPT model-checking algorithms, e.g., an algorithm for (existential
counting) modal logic model checking on graphs of bounded treewidth [33], MSO model
checking on graphs of bounded neighborhood diversity [24], or MSO model checking on
graphs of bounded shrubdepth [14] (generalizing the previous result). First order logic (FO)
model checking received recently quite some attention as well and algorithms for graphs
with bounded degree [34], nowhere dense graphs [16], and some dense graph classes [11] were
given.

Fair Objective. Fair deletion problems, introduced by Lin and Sahni [27], are such modific-
ations of deletion problems where instead of minimizing the size of the deleted set we change
the objective. The Fair Vertex Deletion problem is defined as follows. For a given graph
G = (V,E) and a property π, the task is to find a set W ⊆ V which minimizes the maximum
number of neighbors in the set W over all vertices, such that the property π holds in G \W .
Intuitively, the solution should not be concentrated in a neighborhood of any vertex. In order
to classify (fair) vertex deletion problems we study the associated decision version, that is,
we are interested in finding a set W of size at most k, for a given number k. Note that this
can introduce only polynomial slowdown, as the value of our objective is bounded by 0 from
below and by the number of vertices of the input graph from above (provided a solution
exists). Since we are about to use a formula with a free variable X to express the desired
property π, we naturally use X to represent the set of deleted vertices in the formula. The
fair cost of a set W ⊆ V is defined as maxv∈V |N(v) ∩W |. We refer to the function that
assigns each set W ⊆ V its fair cost as to the fair objective function. Here, we give a formal
definition of the computational problem when the property π is defined in some logic L.
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Fair L Vertex Deletion
Input: An undirected graph G = (V, E), an L sentence ϕ, and a positive integer k.
Question: Is there a set W ⊆ V of fair cost at most k such that G \W |= ϕ?

Let ϕ(X) be a formula with one free variable and let G = (V,E) be a graph. For a set
W ⊆ V by ϕ(W ) we mean that we substitute W for X in ϕ. The definition below can be
naturally generalized to contain ` free variables. We would like to point out one crucial
difference between deletion and evaluation problems, namely that in evaluation problems we
have access to the variable that represents the solution. This enables evaluation problems to
impose some conditions on the solution, e.g., we can ensure that the graph induced by the
solution has diameter at most 2 or is triangle-free.

Fair L Vertex Evaluation1

Input: An undirected graph G = (V, E), an L formula ϕ(X) with one free variable, and
a positive integer k.

Question: Is there a set W ⊆ V of fair cost at most k such that G |= ϕ(W )?

Minimizing the fair cost arises naturally for edge problems in many situations as well,
e.g., in defective coloring [6], which has been substantialy studied from the practical network
communication point of view [17, 19]. A graph G = (V,E) is (k, d)-colorable if every vertex
can be assigned a color from the set [k] in such a way that every vertex has at most d
neighbors of the same color. This problem can be reformulated in terms of fair deletion; we
aim to find a set of edges F such that graph G′ = (V, F ) has maximum degree d and G \ F
can be partitioned into k independent sets.

Related Results. There are several possible research directions once a model checking
algorithm is known. One possibility is to broaden the result either by enlarging the class
of graphs it works for or by extending the expressive power of the concerned logic, e.g., by
introducing a new predicate [23]. Another obvious possibility is to find the exact complexity
of the general model checking problem by providing better algorithms (e.g., for subclasses [24])
and/or lower-bounds for the problem [9, 25]. Finally, one may instead of deciding a sentence
turn attention to finding a set satisfying a formula with a free variable that is optimal with
respect to some objective function [1, 5, 15]. In this work, we take the last presented approach
– extending a previous work on MSO model checking for the fair objective function.

When extending a model checking result to incorporate an objective function or a
predicate, we face two substantial difficulties. On the one hand, we are trying to introduce
as strong extension as possible, while on the other, we try not to worsen the running time
too much. Of course, these two are in a clash. One evident possibility is to sacrifice the
running time and obtain an XP algorithm, that is, an algorithm running in time f(k)|G|g(k).
For example there is an XP algorithm for the Fair MSO2 Vertex Evaluation problems
parameterized by treewidth (and the size of the formula) by Kolman et al. [21] running
in time f(|ϕ|, tw(G))|G|g(tw(G)). An orthogonal extension is due to Szeider [35] for the
so-called local cardinality constraints (MSO-LCC) who gave an XP algorithm parameterized
by treewidth. If we decide to keep the FPT running time, such a result is not possible for
treedepth (consequently for treewidth), as we give W[1]-hardness result for a very basic

1 This problem is called Generalized Fair L Vertex-Deletion in [29] and in the respective conference
version [28]. However, we believe that evaluation is a more suitable expression and coincides with
standard terminology in logic.
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Fair L∅ Vertex Deletion problem2 in this paper. A weaker form of this hardness
was already known for FO logic [29]. Ganian and Obdržálek [15] study CardMSO and
provide an FPT algorithm parameterized by neighborhood diversity. Recently, Masařík
and Toufar [29] examined fair objective and provide an FPT algorithm for the Fair MSO1
Vertex Evaluation problem parameterized by neighborhood diversity. See also [20] for a
discussion of various extensions of the MSO.

We want to turn a particular attention to the Fair Vertex Cover (Fair VC) problem
which, besides its natural connection with Vertex Cover, has some further interesting
properties. For example, we can think about classical vertex cover as having several crossroads
(vertices) and roads (edges) that we need to monitor. However, people could get uneasy
if they will see too many policemen from one single crossroad. In contrast, if the vertex
cover has low fair cost, it covers all roads while keeping a low number of policemen in the
neighborhood of every single crossroad.

1.1 Our Results
We give a metatheorem for graphs having bounded twin cover. Twin cover (introduced by
Ganian [12]; see also [13]) is one possible generalization of the vertex cover number. Here,
we measure the number of vertices needed to cover all edges that are not twin-edges; an edge
{u, v} is a twin-edge if N(u) \ {v} = N(v) \ {u}. Ganian introduced twin cover in the hope
that it should be possible to extend algorithms designed for parameterization by the vertex
cover number to a broader class of graphs.

I Theorem 1. The Fair MSO1 Vertex Evaluation problem parameterized by the twin
cover number and the quantifier depth of the formula admits an FPT algorithm.

We want to point out here that in order to obtain this result we have to reprove the
original result of Ganian [12] for MSO1 model checking on graphs of bounded twin cover.
For this, we extend arguments given by Lampis [24] in the design of an FPT algorithm for
MSO1 model checking on graphs of bounded neighborhood diversity. We do this to obtain
better insight into the structure of the graph (a kernel) on which model checking is performed
(its size is bounded by a function of the parameter). This, in turn, allows us to find a
solution minimizing the fair cost and satisfying the MSO1 formula. The result by Ganian in
version [12] is based on the fact that graphs of bounded twin cover have bounded shrubdepth
and so MSO1 model checking algorithm on shrubdepth ([14, 10]) can be used.

When proving hardness results it is convenient to show the hardness result for a concrete
problem that is expressible by an MSO1 formula, yet as simple as possible. Therefore, we
introduce a key problem for Fair Vertex Deletion – the Fair VC problem.

Fair Vertex Cover (Fair VC)
Input: An undirected graph G = (V, E), and a positive integer k.
Question: Is there a set W ⊆ V of fair cost at most k such that G \W is an edgeless graph?

The Fair VC problem can be expressed in any logic that can express an edgeless graph
(we denote such logic L∅) which is way weaker than FO. Therefore, we propose a systematic
study of the Fair VC problem which, up to our knowledge, have not been considered before.

I Theorem 2. The Fair VC problem parameterized by treedepth td(G) and feedback vertex
set fvs(G) combined is W[1]-hard.

2 Here, L∅ stands for any logic that can express an edgeless graph.
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Table 1 The table summarize some related (with a citation) and all the presented (with a
reference) results on the studied parameters. Green cells denote FPT results, and red cells represent
hardness results. Logic L in metatheorems is specified by a logic used in the respective theorem.
Symbol ∗ denotes implied results from previous research and symbol Xdenotes new implied results.
A question mark (?) indicates that the complexity is unknown.

vc fvs + td tc nd cvd mw

Fair VC ∗ T2 ∗ ? T3
FV L Del MSO2 ∗ L∅ MSO1 MSO1 ∗ ? ?
FV L Eval MSO2 [29] L∅ MSO1 T1 MSO1 ∗ ? ?
`-FV L Eval MSO1 ∗ L∅ MSO1 T5 MSO1 [20] MSO1 MSO1

Note that this immediately yields W[1]-hardness and f(w)no(
√

w) lower bound for Fair L∅
Vertex Evaluation. Previously, an f(w)no(w1/3) lower bound was given for FO logic by
Masařík and Toufar [29]. Thus our result is stronger in both directions, i.e., the lower bound
is stronger, and the logic is less powerful. On the other hand, we show that Fair VC can be
solved efficiently in dense graph models.

I Theorem 3. The Fair VC problem parameterized by modular width mw(G) admits an FPT
algorithm with running time 2mw(G) ·mw(G) · n3, where n is the number of vertices in G.

We point out that the Fair VC problem is (rather trivially) AND-compositional and thus it
does not admit a polynomial kernel for parameterization by modular width.

I Lemma 4. The Fair VC problem parameterized by the modular width of the input graph
does not admit a polynomial kernel, unless NP ⊆ coNP/ poly.

Moreover, an analog to Theorem 3 cannot hold for parameterization by shrubdepth of the
input graph. This is a consequence of Theorem 2 and the fact that if a class of graphs has
bounded treedepth, then it has bounded shrubdepth (cf. [14, Proposition 3.4]).

Another limitation in a rush for extensions of Theorem 1 is given when aiming for more
free variables. More formally, the problem `-Fair L Vertex Evaluation has formula
ϕ(X1, . . . , X`) with ` free variables as an input andW1, . . . ,W` are the corresponding sets in G
of fair cost at most k. The fair cost of W1, . . . ,W` is defined as maxv∈V maxi∈[`] |N(v) ∩Wi|.
It is very surprising that such a generalization is not possible for parameterization by twin
cover, since the same extension is possible for parameterization by neighborhood diversity [20].
In fact, they prove something even stronger, i.e., an FPT algorithm parameterized by
neighborhood diversity in the context of MSOL

lin is given in [20]. In MSOL
lin one can specify

both lower- and upper-bound for each vertex and each free variable (i.e., a feasibility interval
is given for every vertex).

I Theorem 5 (F3). The `-Fair FO Vertex Evaluation problem is W[1]-hard for para-
meter ` even on graphs with twin cover of size one.

The reduction is done from the Unary `-Bin Packing problem; the lower-bound and
W[1]-hardness of Unary `-Bin Packing was given by Jansen et al. [18].

For an overview of the results, please refer to Table 1 and to Figure 1 for the hierarchy of
classes.

3 We mark a result by F if the proof is omitted and deferred to the full version (available on arXiv).

MFCS 2019
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cw

tw mw

cvd

sd

nd
tc

fvs
td

vc

Figure 1 Hierarchy of graph parameters with depicted complexity of the Fair L Vertex
Evaluation problem. An arrow indicates that a graph parameter upper-bounds the other. Thus,
hardness results are implied in the direction of arrows, and FPT algorithms are implied in the reverse
direction. Green colors indicate FPT results for MSO2, orange are FPT for MSO1, blue are open,
and red are hardness results. We denote treewidth by tw, shrubdepth by sd, and clique width by
cw. We refer to book [7] for definitions. Other parameters and their respective abbreviations are
defined in Subsection 1.2.

1.2 Preliminaries

For a positive integer n we denote [n] the set {1, . . . , n}. We deal with simple undirected
graphs, for further standard notation we refer to monographs: graph theory [30] and
parameterized complexity [7]. For a vertex v by N(v) we denote the neighborhood of v and
by N [v] we denote the closed neighborhood of vertex v, i.e., N(v) ∪ {v}.

A parameter closely related to twin cover is cluster vertex deletion (cvd(G)), that is,
the smallest number of vertices one has to delete from a graph in order to get a collection
of (disjoint) cliques. Treedepth of a graph G (td(G)) is the minimum height of a rooted
forest whose transitive closure contains the graph G [31]. Feedback vertex set (fvs(G)) is the
minimum number of vertices of a graph G whose removal leaves the graph without cycles.
Neighborhood diversity (nd(G)) is the smallest integer r such that the the vertex set of G can
be partitioned into r sets V1, . . . , Vr in such a way that the graph G[Vi] is either a clique or an
edgeless graph for all i ∈ [r] and the bipartite graph G[Vi, Vj ] is either a complete bipartite
graph or an edgeless graph for all distinct i, j ∈ [r]. Modular width of a graph G (mw(G)), is
the smallest positive integer r such that G can be obtained from an algebraic expression of
width at most r, defined as follows. The width of an expression A is the maximum number of
operands used by any occurrence of the substitution operation in A, where A is an algebraic
expression that uses the following operations:

1. Create an isolated vertex.

2. The substitution operation with respect to a template graph T with vertex set [r] and
graphs G1, . . . , Gr created by algebraic expression. The substitution operation, denoted
by T (G1, . . . , Gr), results in the graph on vertex set V = V1 ∪ · · · ∪ Vr and edge set
E = E1 ∪ · · · ∪ Er ∪

⋃
{i,j}∈E(T )

{
{u, v} : u ∈ Vi, v ∈ Vj

}
, where Gi = (Vi, Ei) for all

i ∈ [r].

An algebraic expression of width mw(G) can be computed in linear time [36].

We stick with standard definitions and notation in logic. For a comprehensive summary,
please consult a book by Libkin [26].



D. Knop, T. Masařík, and T. Toufar 33:7

2 Metatheorems for Fair Evaluation

We show an FPT algorithm as it is stated in Theorem 1. We give a more detailed statement
that implies the promised result straigthforwardly.

We split the proof into two parts. First, we show an algorithm for MSO1 model checking
parameterized by twin cover of the graph (Proposition 8). In the second part, we prove that
we can even compute the optimal fair cost (Proposition 12) and so derive the promised result.

Overview of the Algorithm. For the model checking algorithm, we closely follow the
approach of Lampis [24]. The idea is that if there is a large set of vertices with the same
closed neighborhood, then some of them are irrelevant, i.e., we can delete them without
affecting the truthfulness of the given formula ϕ. For graphs of bounded neighborhood
diversity using this rule alone can reduce the number of vertices below a bound that depends
on nd(G) and |ϕ| only, thus providing an FPT model checking algorithm. For the graphs
of bounded twin cover, this approach can be used to reduce the size of all (twin) cliques,
yet their number can still be large. We take the approach one step further and describe the
deletion of irrelevant cliques in a similar manner; these rules together yield a model checking
algorithm for graphs of bounded twin cover.

The reduction rules also lead to a notion of shape of a set W ⊆ V . The motivation behind
shapes is to partition all subsets of V such that if two sets W,W ′ have the same shape, then
G |= ϕ(W ) if and only if G |= ϕ(W ′). This allows us to consider only one set of each shape
for the purposes of model checking. Since the number of all distinct shapes is bounded by
some function of parameters, we can essentially brute force through all possible shapes.

A final ingredient is an algorithm that for a given shape outputs a subset of vertices with
this shape that minimizes the fair cost. This algorithm uses ILP techniques, in particular
minimizing quasiconvex function subject to linear constraints.

Notation. In what follows G = (V,E) is a graph and K is its twin cover of size k. An
MSO1 formula ϕ contains qS set quantifiers and qv element (vertex) quantifiers. Given a
twin cover K and A ⊆ K, we say that A is the cover set of a set S ⊆ V \K if every v ∈ S
has N(v) ∩ K = A. Note that, by the definition of twin cover, for all u, v ∈ V \ K with
{u, v} ∈ E we have that A is a cover set for u if and only if A is a cover set for v. We
say that two cliques have the same type if they have the same size and the same cover set.
Clearly, if the cover set is fixed, two cliques agree on type if and only if their sizes are the
same. We define a labeled graph, that is, a graph and a collection of labels on the vertices.
We say that two cliques have the same labeled type if all of them have the same size, the
same cover set and the same labels on vertices.

2.1 Model checking
I Proposition 6 ([24, Lemma 5 and Theorem 4]). Let φ be an MSO1 formula and let G
be a labeled graph. If there is a set S of more than 2qSqv vertices having the same closed
neighborhood and the same labels, then for any v ∈ S we have G |= ϕ if and only if G\ v |= ϕ.

In particular, if G is a graph with just one label, then for any clique C where each vertex
has exactly the same closed neighborhood in G the following holds. Either there is a vertex
v ∈ C such that G |= φ if and only if G \ v |= φ or the size of C is bounded by 2qS+1qv .

Proposition 6 bounds the size of a maximum clique in G \K because we can apply it
repeatedly for each clique that is bigger than the threshold 2qS+1qv. Now, we need to bound
the number of cliques of each type. For this, we establish the following technical lemma.

MFCS 2019
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I Lemma 7 (F). Let G be a labeled graph with twin cover K. Let ϕ be an MSO1 formula
with qv element quantifiers and qS set quantifiers. Suppose the size of a maximum clique in
G \K is bounded by r. If there are strictly more than

α(qS , qv) = 2rqS (qv + 1)

cliques of the same labeled type T , then there exists a clique C of the labeled type T such
that G |= ϕ if and only if G \ C |= ϕ.

From this, we can derive a model checking algorithm.

I Proposition 8 (F Model checking on graphs of bounded twin cover). Let G be a graph with
twin cover K of size k and the size of the maximum clique in G \K bounded by 2qSqv and ϕ
is an MSO1 sentence then either there exists a clique C ∈ G \K such that G |= φ if and only
if G \ C |= ϕ or the size of G is bounded by

k + (qv + 1)q2
v2k+2qS+2qS qSqv = 2O(k+2qS qSqv) .

2.2 Finding a Fair Solution
In the upcoming proof we follow the ideas of Masařík and Toufar [29]. They define, for a
given formula ϕ(X), a so-called shape of a set W ⊆ V in G. The idea behind a shape is that
in order to do the model checking we have deleted some vertices from G that cannot change
the outcome of ϕ(X), however, we have to derive a solution of minimal cost in the whole
graph G. Thus the shape characterizes a set under which ϕ(X) holds and we have to be able
to find a set W ⊆ V (G) for which ϕ(W ) holds and W minimizes the fair cost among sets
having this shape.

Shape. Let G = (V,E) be a graph, ϕ(X) an MSO formula, K ⊆ V a twin cover of G, A ⊆ K,
and let r = 2qS+2qv and α = 2r(qS+1)(qv + 1). Let C be the collection of all cliques in G such
that A is their cover set. We define an A-shape. An A-shape of size r is a two dimensional
table SA of dimension (r + 2)× (r + 2) indexed by {0, 1, . . . , r + 1} × {0, 1, . . . , r + 1}. Each
entry SA(i, j) ∈ {0, . . . , α+ 1}. The interpretation of SA(i, j) is the minimum of α+ 1 and
of the number of cliques C with N(C) = A such that

min(α+ 1, |C ∩W |) = i and min(α+ 1, |C \W |) = j.

Finally, the shape of X in G is a collection of A-shapes for all A ⊆ K.
A solution for C with cover set A can be formally described by a function sol : C → N× N.

The solution sol is valid if for every C ∈ C with sol(C) = (i, j) either i+ j = |C| or |C| ≥ r,
i = r+ 1 (or equivalently j = r+ 1), and i+ j < |C|. For an illustration of a valid assignment
please refer to Figure 2. We say that a valid solution sol is compatible with the shape SA

if S(i, j) =
∣∣sol−1(i, j)

∣∣, whenever S(i, j) ≤ α and
∣∣sol−1(i, j)

∣∣ ≥ α + 1 if S(i, j) = α + 1.
The A-shape SA is said to be valid if there exists a valid solution for SA. Note that such a
solution does not exist if the shape specifies too many (or too few) cliques of certain sizes.
The shape S is valid if all its A-shapes are valid.

The following lemma is a key observation about shapes.

I Lemma 9. Let ϕ be an MSO1 formula with one free variable, G a graph and W,W ′ two
subsets of vertices having the same shape. Then G |= ϕ(W ) if and only if G |= ϕ(W ′).
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Figure 2 Example of a 7×7 A-shape. All
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Proof. The proof follows using Proposition 6 and Lemma 7. Indeed, if we take the graph G
with one label corresponding to set W and apply the reduction rules given by Proposition 6
and Lemma 7 and repeat the same process with W ′, we obtain two isomorphic labeled
graphs. J

Lemma 9 allows us to say that a formula with one free variable holds under a shape since
it is irrelevant which subset of vertices of this particular shape is assigned to the free variable.
Also note that deciding whether the formula holds under the shape can be done in FPT time
by simply picking arbitrary assignment of the given shape and running a model checking
algorithm.

Lemma 11 computes a solution of minimal cost for an A-shape. We do this by reducing
the task to integer linear programming (ILP) while using non-linear objective. A fuction
f : Rp → R is separable convex if there exist convex functions fi : R→ R for i ∈ [p] such that
f(x1, . . . , xp) =

∑p
i=1 fi(xi).

I Theorem 10 ([32] – simplified). Integer linear programming with objective minimization
of a separable convex function in dimension p is FPT with respect to p and space exponential
in L the length of encoding of the ILP instance.

I Lemma 11. Let G = (V,E) be a graph, K be a twin cover of G, and ∅ 6= A ⊆ K. There is
an algorithm that given an A-shape SA of size r computes a valid solution for SA of minimal
cost in time f(|K|, r) · |G|O(1) or reports that SA is not valid.

Proof. Let C be the collection of all cliques such that A is their cover set. We split the task
of finding a minimal solution to SA into two independent parts depending on the size of
cliques assigned in the phase.

The first phase is for cliques in C with sizes at most r. Observe that these can be assigned
deterministically in a greedy way. This is because no cell of SA is shared by two sizes and
we can see that if there are more cells with value α on the corresponding diagonal we can
always prefer the top one as this minimizes the cost (see Figure 3). However, this is not
possible for larger cliques as they may in general share some cells of SA and thus we defer
them to the second phase.
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Now observe that the most important vertices for computing the cost are the vertices
constituting the set A. To see this just note that all other vertices see only A and their
neighborhood (a clique) which is at least as large as for the vertices in A. It follows that we
should only care about the number of selected vertices such that A is their cover set. Thus if
the size of all cliques in C is bounded in terms of k we are done. Alas, this is not the case.

We split the set C into sets C1, . . . , C2r, and Cmax. A clique C ∈ C belongs to C|C| if
1 ≤ |C| ≤ 2r and belongs to Cmax otherwise. Note that cliques from Cmax may be assigned
only to cells having at least one index r + 1. As mentioned we are about to design an ILP
with a non-linear objective function. This ILP has variables xq

i,j that express the number
of cliques from the set Cq assigned to the cell (i, j) of SA (that is, 1 ≤ i, j ≤ r + 1 and
q ∈ Q = {1, . . . , 2r} ∪ {max}). The obvious conditions are the following (the D symbol
translates to = if S(i, j) ≤ α while it translates to ≥ if S(i, j) = α+ 1).∑

q∈Q

xq
i,j D SA(i, j) 0 ≤ i, j ≤ r + 1

∑
0≤i,j≤r+1

xq
i,j = |Cq| ∀q ∈ Q

xq
i,j ≥ 0 0 ≤ i, j ≤ r + 1, ∀q ∈ Q

We are about to minimize the following objective∑
0≤i≤r+1;0≤j≤r

∑
1≤q≤2r

(q − j)xq
i,j +

∑
0≤i≤r+1

∑
∀q

i · xq
i,r+1 + g

(
xmax

r+1,0, . . . , x
max
r+1,r

)
,

where g : Nr → N is a function that has access to sizes of all cliques in Cmax and computes the
minimum possible assignment. We claim that the function g is a separable convex function
in variables xmax

r+1,0, . . . , x
max
r+1,r. The first summand of the objective function describes the

cliques of size at most 2r. Their price corresponds to the number of vertices in the clique q
minus the number of vertices that are not selected j. The second summand corresponds to
the last row, where the cheapest price is always the number of selected vertices i. The last
summand, discussed in the following paragraph, describes the assignment to the last row.
The result then follows from Theorem 10 as the number of integral variables is O(r3).

Observe that the value of g
(
xmax

r+1,0, . . . , x
max
r+1,r

)
is equal to sum of sizes of cliques “assigned

to the last row” minus
∑r

j=0 j · xmax
r+1,j . Now, g

(
xmax

r+1,0, . . . , x
max
r+1,r

)
= g′

(∑r
j=0 x

max
r+1,j

)
−∑r

j=0 j · xmax
r+1,j . Since all cliques in Cmax are eligible candidates to be assigned to the last

row and since it is always cheaper to assign there those of the smallest size among them, we
can define g′ based only on the number of cliques that are assigned to the last row. This
finishes the proof since g′ is a convex function. We defer the details on polynomial space to
the full version of the paper. J

Now we are ready to prove the main result of this section. It essentially follows by the
exhaustive search among all possible shapes S such that ϕ is true under S and application
of Lemma 11.

I Proposition 12. Let G = (V,E) be a graph with twin cover K of size k. For an MSO1
formula ϕ(X) with one free variable that represents the set to be deleted it is possible to find
a set W ⊆ V such that

ϕ(W ) holds in G and
the cost of W is minimized among all subset of V satisfying ϕ(X)

in time f(k, |ϕ|)|V |O(1) for some computable function f .
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Figure 4 An overview of the reduction in the proof of Theorem 2. The gray vertices are enforced
to be a part the fair vertex cover. If a vertex fair objective was lowered, then the resulting threshold
is beneath the vertex (the group of vertices).

Proof sketch. We proceed as follows. For every possible selection of K ∩W we generate
all possible shapes and check whether ϕ(X) evaluates to true under shape S and if so, we
compute W for S having the minimal fair-cost. J

3 The Fair VC problem

3.1 Hardness for Treedepth and Feedback Vertex Set
We observe substantial connection between Fair VC and Target Set Selection (TSS).
It is worth mentioning that Vertex Cover can be formulated in the language of TSS by
setting the threshold to deg(v) for every vertex v. As a result, our reduction given here is, in
certain sense, dual to the one given by Chopin et al. [3] for the TSS problem. However, we
will show that the structure of the solution for Fair VC is, in fact, the complement of the
structure of the solution for TSS given therein. The archetypal W[1]-hard problem is the
`-Multicolored Clique problem [7]:

`-Multicolored Clique Parameter: `
Input: An `-partite graph G = (V1 ∪ · · · ∪ V`, E), where Vc is an independent set for

every c ∈ [`] and they are pairwise disjoint.
Question: Is there a clique of the size ` in G?

Proof sketch of Theorem 2. Refer to figure 4. Observe that we can enforce a vertex v to
be a part of the fair vertex cover by attaching k + 1 degree 1 vertices to v. Notice further
that we may adjust (lower) the global budget k for individual vertex v by attaching vertices
to v and then attaching k new leaves to the newly added vertices.

There are three types of gadgets in our reduction, namely the vertex selection gadget, the
edge selection gadget, and the incidence check gadget. We start by enumerating the vertices
in each color class by numbers from [n] and edges by numbers in [m]. Now, we construct a
graph H in which we are going to look for a vertex cover of small fair cost. Throughout the
proof a, b are distinct numbers from [`].
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A selection gadget consists of z choice vertices (representing either the color class Va

with z = n or E{a,b} in which case z = m), a special vertex called guard, and a group of n2

enumeration vertices. The guard vertex is connected to all choice vertices, it is enforced to be
a part of the fair vertex cover, and its budget is lowered so that at most z − 1 choice vertices
can be in any fair vertex cover. The i-th choice vertex is connected to n private enumeration
vertices. We further divide these vertices into two parts – the lower part consists of q vertices
and the upper part consists of n− q vertices, where q refers to the vertex number. That is,
q = i in case of a vertex choice gadget and for an edge choice gadget, we let q = vi, where vi

is the number of the vertex incident to i-th edge in the corresponding colorclass.
The ab-incidence check gadget consist of two vertices c1

ab and c2
ab. Both c1

ab and c2
ab are

enforced to be a part of the solution and with a lowered budget in a way that at most n
vertices in the neighborhood of each of them can be part of any fair vertex cover. The vertex
c1

ab is connected to every lower part vertex in the selection gadget for Va and to every upper
a-part vertex in the selection gadget for E{a,b}. For c2

ab we exchange the role of upper- and
lower- parts.

B Claim 13. Suppose (G, `) is a yes-instance then there is a vertex cover in H with fair cost
at most k = max(m− 1, 2n).

Let K ⊆ V1 × · · · × V` be a clique in G. We now construct a vertex cover CK of H having
|N(w) ∩ CK | ≤ k for all w ∈W . The set CK contains the following:
1. all enforced vertices (including all guard and check vertices),
2. if v ∈ Va ∩K is the i-th vertex of Va, then all selection vertices of Va but the vertex i are

in CK and lower and upper enumeration vertices of i are in CK , and
3. if v ∈ Va ∩K and u ∈ Vb ∩K are adjacent through q-th edge of E{a,b}, then all selection

vertices of E{a,b} but the vertex q are in CK and q’s enumeration vertices are in CK .
The proof of the reverse direction is deferred to the full version due to space limitations.

It remains to discuss the ETH based lower-bound. This follows immediately from our
reduction and the result of Chen et al. [2] who proved that there is no f(k)no(`) algorithm
for `-Multicolored Clique unless ETH fails. Since we have td(G) + fvs(G) = O(`2) in
our reduction, the lower-bound follows. J

3.2 FPT algorithm for Modular Width
Since an algebraic expression A of width mw(G) can be computed in linear time [36], we can
assume that we have A on the input. We construct the rooted ordered tree T corresponding
to A. Each node t ∈ T is assigned a graph Gt ⊆ G, that is, the graph constructed by the
subexpression of A rooted at t. Suppose we are performing substitution operation at node
t with respect to template graph T and graphs G1, . . . , Gr. Denote the resulting graph Gt

and denote by ni the size of V (Gi).

Proof sketch of Theorem 3. The computation will be carried out recursively from the
bottom of the tree T . We first describe the structure of all vertex covers C in Gt. Observe
that if ij ∈ E(T ), then at least one of V (Gi), V (Gj) must be a subset of C. Thus, the set
CT := {i : V (Gi) ⊆ C} is a vertex cover of the template graph T . We call the CT the type
of the vertex cover C. Furthermore, every set C ∩ V (Gi) must be a vertex cover of Gi. Since
there are at most 2r vertex covers of T , we try all of these. Furthermore, every set C ∩V (Gi)
must be a vertex cover of Gi.

We now describe the fair cost of the cover C in terms of fair costs and sizes of the sets
C ∩ V (Gi). Let ci = |C ∩ V (Gi)| and let fi denote the fair cost of C ∩ V (Gi) in Gi. The
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fair cost of C in W ⊆ V (G) is defined as maxv∈W |C ∩ N(v)|. For i ∈ [r] the fair cost of
C in V (Gi) can be expressed as fi +

∑
j:ij∈E(T ) cj . If we know the type CT of the cover C,

this expression can be simplified based on whether i lies in CT or not. If i ∈ CT , then fi is
∆(Gi) (the maximal degree of Gi). If, on the other hand, i /∈ CT , then all its neighbors j are
in CT and in this case cj = nj . Combining these observations together we get

fair cost of C in Gi =
{

∆(Gi) +
∑

j /∈CT :ij∈E(T ) cj +
∑

j∈CT :ij∈E(T ) nj i ∈ CT ,

fi +
∑

j:ij∈E(T ) nj i /∈ CT .

From this we can design a dynamic program that computes the solution. J

4 Conclusions

Fair Edge L Deletion problems. One can define edge deletion problems in a similar way as
vertex deletion problems.

Fair L edge deletion
Input: An undirected graph G = (V, E), an L sentence ϕ, and a positive integer k.
Question: Is there a set F ⊆ E such that G \ F |= ϕ and for every vertex v of G, it holds

that |{e ∈ F : e 3 v}| ≤ k?

Recall, in dense graph classes one cannot obtain an MSO2 model checking algorithm running
in FPT-time [25]. This is the reason why evaluation problems do not make sense in this
context. In sparse graph classes, this problem was studied in [29] where W[1]-hardness was
obtained for Fair FO Edge Deletion on graphs of bounded treedepth and FPT algorithm was
derived for Fair MSO2 Edge Evaluation on graphs of bounded vertex cover.

The crucial open problem is to resolve the parameterized complexity of the Fair FO
Edge Deletion problems for parameterization by neighborhood diversity and twin cover.
To motivate the study we prove the following hardness result for parameterization by the
cluster vertex deletion number. Recall that for any graph its cluster vertex deletion number
is upper-bounded by the size of its twin cover.

I Theorem 14 (F). The Fair FO Edge Deletion problem is W[1]-hard when parameterized
by the cluster vertex deletion number of the input graph.

Generalization of parameters. Another open problem is to resolve the parameterized com-
plexity of the Fair MSO1 Vertex Evaluation problems with respect to graph parameters
generalizing neighborhood diversity or twin cover (e.g., modular width or cluster vertex
deletion number respectively).

MSO with Local Linear Constraints. Previously, an FPT algorithm for evaluation of a
fair objective was given for parameter neighborhood diversity [29]. That algorithm was
extended [20] to a so-called local linear constraints again for a formula ϕ(·) with one free
variable that is defined as follows. Every vertex v ∈ V (G) is accompanied with two positive
integers `(v), u(v), the lower and the upper bound, and the task is to find a set X that not
only G |= ϕ(X) but for each v ∈ V (G) it holds that `(v) ≤ |N(v) ∩X| ≤ u(v). Note that
this is a generalization as fair objective of value t can be tested in this framework by setting
`(v) = 0 and u(v) = t for every v ∈ V (G). Is this extension possible for parameterization by
the twin cover number?

MFCS 2019



33:14 Parameterized Complexity of Fair Vertex Evaluation Problems

Towards new fair problems. As we proposed the examination of Fair VC already, we
would like to turn an attention to exploring fair versions of other classical and well-studied
Vertex Deletion problems. In contrast, certain Fair Edge Deletion problems have got
some attention before, namely Fair Feedback Edge Set [27] or Fair Edge Odd Cycle
Transversal [22]. Besides Fair VC we propose a study of Fair Dominating Set and
Fair Feedback Vertex Set. In particular, it would be really interesting to know whether
fair variants of Vertex Cover and Dominating Set admit a similar behavior as in the
classical setting.

Furthemore, We would like to ask whether there is an NP-hard Fair Vertex Deletion
problem that admits an FPT algorithm for parameterization by treedepth (and feedback
vertex set) of the input graph.
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