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Abstract
The problem of d-Path Vertex Cover, d-PVC lies in determining a subset F of vertices of
a given graph G = (V, E) such that G \ F does not contain a path on d vertices. The paths we
aim to cover need not to be induced. It is known that the d-PVC problem is NP-complete for any
d ≥ 2. When parameterized by the size of the solution k, 5-PVC has direct trivial algorithm with
O(5knO(1)) running time and, since d-PVC is a special case of d-Hitting Set, an algorithm running
in O(4.0755knO(1)) time is known. In this paper we present an iterative compression algorithm that
solves the 5-PVC problem in O(4knO(1)) time.
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1 Introduction

The problem of d-Path Vertex Cover, d-PVC lies in determining a subset F of vertices of
a given graph G = (V,E) such that G\F does not contain a path on d vertices (even not a non-
induced one). The problem was first introduced by Brešar et al. [1], but its NP-completeness
for any d ≥ 2 follows already from the meta-theorem of Lewis and Yannakakis [11]. The
2-PVC problem corresponds to the well known Vertex Cover problem and the 3-PVC
problem is also known as Maximum Dissociation Set. The d-PVC problem is motivated
by the field of designing secure wireless communication protocols [12] or in route planning
and speeding up shortest path queries [9].

Since the problem is NP-hard, any algorithm solving the problem exactly is expected to
have exponential running time. If one measures the running time solely in terms of the input
size, then several efficient (faster than trivial enumeration) exact algorithms are known for
2-PVC and 3-PVC. In particular, 2-PVC (Vertex Cover) can be solved in O(1.1996n)
time and polynomial space due to Xiao and Nagamochi [20] and 3-PVC can be solved in
O(1.4656n) time and polynomial space due to Xiao and Kou [18].

In this paper we aim on the parameterized analysis of the problem, that is, to confine the
exponential part of the running time to a specific parameter of the input, presumably much
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32:2 Faster FPT Algorithm for 5-Path Vertex Cover

smaller than the input size. Algorithms achieving running time f(k)nO(1) are called para-
meterized, fixed-parameter tractable, or FPT. See Cygan et al. [3] for a broader introduction
to parameterized algorithms.

When parameterized by the size of the solution k, the d-PVC problem is directly solvable
by a trivial FPT algorithm that runs in O∗(dk) time.1 However, since d-PVC is a special
case of d-Hitting Set, it was shown by Fomin et al. [6] that for any d ≥ 4 we have an
algorithm solving d-PVC in O∗((d− 0.9245)k). In order to find more efficient solutions, the
problem has been extensively studied in a setting where d is a small constant. For the 2-PVC
(Vertex Cover) problem, the algorithm of Chen, Kanj, and Xia [2] has the currently best
known running time of O∗(1.2738k). For 3-PVC, Tu [16] used iterative compression to
achieve a running time O∗(2k). This was later improved by Katrenič [10] to O∗(1.8127k),
by Xiao and Kou [19] to O∗(1.7485k) by using a branch-and-reduce approach and it was
further improved by Tsur [15] to O∗(1.713k). For the 4-PVC problem, Tu and Jin [17] again
used iterative compression and achieved a running time O∗(3k) and Tsur [14] claims to have
an algorithm with running time O∗(2.619k).

We present an algorithm that solves the 5-PVC problem parameterized by the size of the
solution k in O∗(4k) time by employing the iterative compression technique. Using the result
of Fomin et al. [7] this also yields O(1.7501n) time algorithm improving upon previously
known O(1.7547n) time algorithm.

Organization of this paper. We introduce the notation and define the 5-PVC problem in
section 2. Our disjoint compression routine for iterative compression is exposed in section 3.
We conclude this paper with a few open questions. Due to space constraints most proofs
were deferred to the full version of this paper. However, to showcase our technique of proving
the correctness of our algorithm, we included the proofs of correctness for Rules (R10) and
(R13.1), and proofs of Lemmata 18 and 21.

2 Preliminaries

We use the O∗ notation as described by Fomin and Kratsch [8], which is a modification of
the big-O notation suppressing all polynomially bounded factors. We use the notation of
parameterized complexity as described by Cygan et al. [3]. We use standard graph notation
and consider simple and undirected graphs unless otherwise stated. Vertices of graph G are
denoted by V (G), edges by E(G). By G[X] we denote the subgraph of G induced by vertices
of X ⊆ V (G). By N(v) we denote the set of neighbors of v ∈ V (G) in G. Analogically,
N(X) =

⋃
x∈X N(x) denotes the set of neighbors of vertices in X ⊆ V (G). The degree of

vertex v is denoted by deg(v) = |N(v)|. For simplicity, we write G \ v for v ∈ V (G) and
G \X for X ⊆ V (G) as shorthands for G[V (G) \ {v}] and G[V (G) \X], respectively.

A k-path, denoted as an ordered k-tuple Pk = (p1, p2, . . . , pk), is a path on k vertices
{p1, p2, . . . , pk}. A path Pk starts at vertex x when p1 = x. A k-cycle is a cycle on k vertices.
A triangle is a 3-cycle. A P5-free graph is a graph that does not contain a P5 as a subgraph
(the P5 need not to be induced). The 5-Path Vertex Cover problem is formally defined
as follows:

5-Path Vertex Cover, 5-PVC
Input: A graph G = (V, E), an integer k ∈ Z+

0 .
Output: A set F ⊆ V , such that |F | ≤ k and G \ F is a P5-free graph.

1 The O∗() notation suppresses all factors polynomial in the input size.
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I Definition 1. A star is a graph S with vertices V (S) = {s} ∪ {l1, . . . , lk}, k ≥ 3 and edges
E(S) = {{s, li} | i ∈ {1, . . . , k}}. Vertex s is called a center, vertices L = {l1, . . . , lk} are
called leaves.

I Definition 2. A star with a triangle is a graph S4 with vertices V (S4) = {s, t1, t2} ∪
{l1, . . . , lk}, k ≥ 1 and edges E(S4) = {{s, t1}, {s, t2}, {t1, t2}} ∪ {{s, li} | i ∈ {1, . . . , k}}.
Vertex s is called a center, vertices T = {t1, t2} are called triangle vertices and vertices
L = {l1, . . . , lk} are called leaves.

I Definition 3. A di-star is a graph D with vertices V (D) = {s, s′} ∪ {l1, . . . , lk} ∪
{l′1, . . . , l′m}, k ≥ 1,m ≥ 1 and edges E(D) = {{s, s′}} ∪ {{s, li} | i ∈ {1, . . . , k}} ∪
{{s′, l′j} | j ∈ {1, . . . ,m}}. Vertices s, s′ are called centers, vertices L = {l1, . . . , lk} and
L′ = {l′1, . . . , l′m} are called leaves.

I Lemma 4. If a connected graph is P5-free and has more than 5 vertices, then it is a star,
a star with a triangle, or a di-star.

3 5-PVC with P5-free bipartition

We employ the generic iterative compression framework as described by Cygan et al. [3,
pages 80–81]. We skip the generic steps and only present the disjoint compression routine
(see the full version of the paper for a brief discussion of the whole iterative compression
algorithm). That is, we assume that we are given a solution to the problem and search for
another solution which is strictly smaller than and disjoint from the given one. Moreover,
if the graph induced by the given solution contains a P5, then we can directly answer no.
Hence our routine disjoint_r restricts itself to a problem called 5-PVC with P5-free
Bipartition and we need it to run in O∗(3k) time.

A P5-free bipartition of graph G = (V,E) is a pair (V1, V2) such that V = V1 ∪ V2,
V1 ∩ V2 = ∅ and G[V1], G[V2] are P5-free. The 5-PVC with P5-free Bipartition problem
is formally defined as follows:

5-PVC with P5-free Bipartition, 5-PVCwB
Input: A graph G = (V, E) with P5-free bipartition (V1, V2), an integer k ∈ Z+

0 .
Output: A set F ⊆ V2, such that |F | ≤ k and G \ F is a P5-free graph.

Throughout this paper the vertices from V1 will be also referred to as “red” vertices and
vertices from V2 will be also refereed to as “blue” vertices.

3.1 Algorithm
Our algorithm is a recursive procedure disjoint_r(G,V1, V2, F, k), where G is the input
graph, V1, V2 are the partitions of the P5-free bipartition of G, F is the solution being
constructed, and k is the maximum number of vertices we can still add to F . The procedure
repeatedly tries to apply a series of rules with a condition that a rule (RI) can be applied
only if all rules that come before (RI) cannot be applied. It is paramount that in every call
of disjoint_r at least one rule can be applied. The main work is done in rules of two types:
reduction rules and branching rules. To make it easier for the reader we also use rules called
context rules, which only describe the configuration we are currently in and serve as some
sort of a parent rules for their subrules.

MFCS 2019
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A reduction rule is used to simplify a problem instance, i.e. remove some vertices or edges
from G and possibly add some vertices to a solution, or to halt the algorithm. A branching
rule splits the problem instance into at least two subinstances. The branching is based on
subsets of vertices that we try to add to a solution and by adding them to the solution we
also remove them from G.

The notation we use to denote the individual branches of a branching rule is as follows:
〈X1 | X2 | . . . | Xl 〉. Such a rule has l branches and X1, X2, . . . , Xl are subsets of V2 which
we try to add to the solution. This rule is translated into the following l calls of the procedure:

disjoint_r(G \Xi, V1, V2 \Xi, F ∪Xi, k − |Xi|) for i ∈ {1, . . . , l}

A rule is applicable if the conditions of the rule are satisfied and none of the previous
rules is applicable. If a context rule is not applicable, it means that none of its subrules is
applicable.

A reduction rule is correct if it satisfies that the problem instance has a solution if and
only if the simplified problem instance has a solution. A branching rule is correct if it satisfies
that the problem instance has a solution if and only if at least one of the branches of the
rule will return a solution.

When we say we delete a vertex, we mean that we remove it from G and also add it to
the solution F . When we say we remove a vertex, we mean that we remove it from G and
do not add it to the solution F .

For the rest of this paper assume that the parameters of the current call of disjoint_r
are G,V1, V2, F, k.

3.2 Preprocessing
I Reduction rule (R0). This rule stops the recursion of disjoint_r. It has three stopping
conditions:
1. If k < 0, return no solution;
2. else if G is P5-free, return F ;
3. else if k = 0, return no solution.

I Reduction rule (R1). Let v ∈ V (G) be a vertex such that there is no P5 in G that uses v.
Then remove v from G.

I Branching rule (R2). Let P be a P5 in G with X = V (P ) ∩ V2 such that |X| ≤ 3. Then
branch on 〈x1 | x2 | . . . 〉, xi ∈ X, i.e. branch on the blue vertices of P .

I Lemma 5. Assume that Rules (R0) – (R2) are not applicable. Then for each vertex
v ∈ V (G) there exists a P5 in G that uses v; every P5 in G uses exactly one red vertex; and
there are only isolated vertices in G[V1].

3.3 Dealing with isolated vertices in G[V2]
I Lemma 6. Assume that Rules (R0) – (R2) are not applicable. Let v be an isolated vertex in
G[V2] and let F be a solution to 5-PVCwB which uses vertex v. Then there exists a solution
F ′ that does not use vertex v and |F ′| ≤ |F |.

I Branching rule (R3). Let v be an isolated vertex in G[V2] and let P = (v, w, x, y, z) be
a P5 where w is a red vertex. Then branch on 〈x | y | z 〉.

I Lemma 7. Assume that Rules (R0) – (R3) are not applicable. Then there are no isolated
vertices in G[V2].
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3.4 Dealing with isolated edges in G[V2]
I Lemma 8. Assume that Rules (R0) – (R3) are not applicable. Let v be a blue vertex to
which at least two red vertices are connected and let Cv be a connected component of G[V2]
which contains v. Then for each red vertex w connected to v we have that N(w) ⊆ V (Cv).

I Lemma 9. Assume that Rules (R0) – (R3) are not applicable. Let e = {u, v} be a blue
edge to which at least two red vertices are connected in a way that to both u and v there is at
least one red vertex connected. Let Ce be a connected component of G[V2] which contains e.
Then for each red vertex w connected to e we have that N(w) ⊆ V (Ce).

I Lemma 10. Let X be a subset of V2 such that N(X) ∩ V1 = ∅ and |N(X) ∩ V2| = 1. If
there exists a solution F such that F ∩ X 6= ∅, then there exists a solution F ′ such that
F ′ ∩X = ∅ and |F ′| ≤ |F |.

I Definition 11. We say that two nodes x, y are twins if N(x) \ {y} = N(y) \ {x}.

I Lemma 12. Let x, y be blue vertices that are twins. Let F be a solution and x ∈ F . Then
at least one of the following holds:
(1) y ∈ F ,
(2) F ′ = (F \ {x}) ∪ {y} is a solution.

I Branching rule (R4). Let e = {u, v} be an isolated edge in G[V2]. We know from
Lemmata 8 and 9 that there is only one red vertex w connected to e, because if there were
at least two red vertices connected to e, then there would be no P5 that uses vertices from e.
Let there be a red vertex w connected to at least one vertex in e. If w is connected only to
one vertex in e, let that vertex be v. Assume that x is some vertex to which w connects
outside e and let y be a neighbor of x in G[V2]. Then branch on 〈 v | x | y 〉.

I Lemma 13. Assume that Rules (R0) – (R4) are not applicable. Then there are no isolated
edges in G[V2].

3.5 Dealing with isolated P3 paths in G[V2]
I Context rule (R5). Let P be a P3 = (t, u, v) that forms a connected component in G[V2].
From Lemmata 5, 8 and 9 we know that there is only one red vertex w connected to P . We
further know that w must be connected to some component of G[V2] other than P , otherwise
no P5 could be formed. Assume that x is some vertex to which w connects outside P and
let y be a neighbor of x in G[V2]. This rule is split into four subrules (R5.1), (R5.2), (R5.3)
and (R5.4) based on how w is connected to P .

I Branching rule (R5.1). Vertex w is connected only to v in P . Then branch on 〈 v | x 〉.

I Branching rule (R5.2). Vertex w is connected only to u, v in P . Then branch on
〈u | v | x 〉.

I Branching rule (R5.3). Vertex w is connected only to u in P . Then branch on 〈u | x | y 〉.

I Branching rule (R5.4). Vertex w is connected to t, v in P and w can be also connected
to u in P . Then branch on 〈u | v | x 〉.

I Lemma 14. Assume that Rules (R0) – (R5) are not applicable. Then there are no isolated
P3 paths in G[V2].

MFCS 2019
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3.6 Dealing with isolated triangles in G[V2]
I Context rule (R6). Let T be a K3 = {t, u, v} that forms a connected component in G[V2].
From Lemmata 5 and 8 we know that there is only one red vertex w connected to T . We
further know that w must be connected to some component of G[V2] other than T , otherwise
no P5 could be formed. Assume that x is some vertex to which w connects outside T and
let y be a neighbor of x in G[V2]. This rule is split into three subrules (R6.1), (R6.2) and
(R6.3) based on how w is connected to T .

I Branching rule (R6.1). Vertex w is connected only to one vertex in T , let that vertex
be v. Then branch on 〈 v | x 〉.

I Branching rule (R6.2). Vertex w is connected to exactly two vertices in T , let those
vertices be u, v. Then branch on 〈 t | v | x 〉.

I Branching rule (R6.3). Vertex w is connected to all vertices in T . Then branch on 〈 v | x 〉.

I Lemma 15. Assume that Rules (R0) – (R6) are not applicable. Then there are no isolated
triangles in G[V2].

3.7 Dealing with 4-cycles in G[V2]
I Lemma 16. Let C be a connected component of G[V2] and X = V (C) ∩N(V1). Let F be
a solution that deletes at least |X| vertices in C. Then F ′ = (F \V (C))∪X is also a solution
and |F ′| ≤ |F |.

I Context rule (R7). Let Q be a connected component in G[V2] such that Q is a subgraph
of K4 and a 4-cycle is a subgraph of Q, label the vertices of the 4-cycle (v1, v2, v3, v4). We will
call pairs of vertices {v1, v3} and {v2, v4} diagonal, all other pairs will be called non-diagonal.
Edges corresponding to diagonal (non-diagonal) pairs are called diagonal (non-diagonal)
edges, respectively. This rule is split into two subrules (R7.1), (R7.2) based on the number
of red vertices connected to Q.

I Reduction rule (R7.1). Assume that there are at least two red vertices connected to Q.
Then delete any vertex vi in Q and add it to the solution F .

I Context rule (R7.2). Assume that there is only one red vertex w connected to Q and
X = V (Q)∩N(w). This rule is split into five subrules (R7.2a), (R7.2b), (R7.2c), (R7.2d) and
(R7.2e) based on how w is connected to Q and whether w is connected to other components.

I Reduction rule (R7.2a). Vertex w is connected only to one vertex in Q, let it be v1. Then
delete v1 and add it to the solution F .

I Branching rule (R7.2b). Set X contains at least one diagonal pair, let that pair be
{v1, v3}. Then branch on 〈 v1 | v2 | v4 〉.

I Branching rule (R7.2c). Set X contains exactly one non-diagonal pair, let that pair be
{v1, v2}, and case (a) either both diagonal edges are in Q , or case (b) none of them is. Then
branch on 〈 v1 | v3 | v4 〉

I Reduction rule (R7.2d). Set X contains exactly one non-diagonal pair, let that pair be
{v1, v2} and exactly one diagonal edge is in Q, let that edge be {v1, v3}. Furthermore, w is
connected only to Q, i.e. N(w) ⊆ V (Q). Then delete any vertex vi in Q and add it to the
solution F .
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I Branching rule (R7.2e). Set X contains exactly one non-diagonal pair, let that pair be
{v1, v2} and exactly one diagonal edge is in Q, let that edge be {v1, v3}. Furthermore, w
is connected to at least one more component of G[V2] other than Q, label the vertex to
which w connects outside Q as x and let y be a neighbor of x in G[V2]. Then branch on
〈 {v1, v2} | x | y 〉.

I Lemma 17. Assume that Rules (R0) – (R7) are not applicable. Then there is no component
of G[V2] that contains a 4-cycle as a subgraph.

3.8 Dealing with stars in G[V2]
In this subsection we consider a connected component of G[V2] which is isomorphic to a
star. Through this subsection we denote it by S and label its vertices as in Definition 1. We
remark that, as none of the Rules (R0) – (R7) is applicable, there is exactly one red vertex
connected to S.

I Context rule (R8). Let S be a star in G[V2] and let w be a red vertex connected to S.
This rule is divided into three subrules (R8.1), (R8.2) and (R8.3) based on how w is connected
to S.

I Branching rule (R8.1). A red vertex w is connected to at least two leaves of S, let those
two leaves be l1, l2. Then branch on 〈 l1 | s | L \ {l1, l2} 〉.

I Branching rule (R8.2). A red vertex w is connected only to s in S and w is connected to
some other vertex x in G[V2] outside S and y is a neighbor of x in G[V2]. Then branch on
〈 s | x | y 〉.

I Branching rule (R8.3). A red vertex w is connected to l1 in S, w can be connected also
to s in S, and w is connected to some other vertex x in G[V2] outside S. Then branch on
〈 s | l1 | x 〉.

I Lemma 18. Assume that Rules (R0) – (R8) are not applicable. Then there are no stars
in G[V2].

Proof. For contradiction assume that Rules (R0) – (R8) are not applicable and there is
a star S in G[V2].

If there is no P5 that uses vertices from S, then Rule (R1) is applicable on S. Suppose
there are at least two red vertices connected to S. If the red vertices are not connected to
a single vertex or a single edge in S, then Rule (R2) is applicable, since there is a P5 that
uses at least two red vertices. So suppose the red vertices are connected to a single vertex or
a single edge in S. Then from Lemmata 8 and 9 we know that those red vertices are not
connected to any other vertices outside S. Consequently, there cannot be a P5 that uses
vertices from S and again Rule (R1) is applicable on S.

So suppose that there is a P5 that uses vertices from S and there is only one red vertex w
connected to S. If w is connected to two leaves, then Rule (R8.1) is applicable. So suppose
that w is not connected to two leaves. There are three not mutually isomorphic possibilities
how w can be connected to S: {l1}, {s}, and {l1, s}. In those cases we apply Rules (R8.3),
(R8.2), and (R8.3), respectively. J

3.9 Dealing with stars with a triangle in G[V2]
In this subsection we consider a connected component of G[V2] which is isomorphic to a star
with a triangle. Through this subsection we denote it by S4 and label its vertices as in
Definition 2.

MFCS 2019
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I Context rule (R9). Let S4 be a star with a triangle in G[V2] and let w be a red vertex
connected to S4. This rule is divided into four subrules (R9.1), (R9.2), (R9.3) and (R9.4)
based on how w is connected to S4.

I Branching rule (R9.1). There is a red vertex w such that {t1, t2} ⊆ N(w). Then branch
on 〈 t1 | s | L 〉.

I Branching rule (R9.2). There is a red vertex w such that |{t1, t2} ∩N(w)| = 1, assume
that w is connected to t1. Then branch on 〈 t1 | s | L 〉.

I Lemma 19. Assume that Rules (R0) – (R9.1) are not applicable and the assumptions of
Rule (R9.2) are satisfied. If F is a solution that contains t2, then at least one of the following
holds:
(1) t1 ∈ F ,
(2) F ′ = (F \ {t2}) ∪ {t1} is a solution.

I Branching rule (R9.3). There is a red vertex w connected to a leaf of S4, let that leaf
be l1. Then branch on 〈 l1 | s 〉.

I Branching rule (R9.4). A red vertex w is connected only to s in S4. Then w must be
also connected to some component of G[V2] other than S4, otherwise no P5 would occur in
the component containing S4. Label the vertex to which w connects outside S4 as x. Then
branch on 〈 s | x 〉.

I Lemma 20. Assume that Rules (R0) – (R9) are not applicable. Then there are no stars
with a triangle in G[V2].

3.10 Dealing with di-stars in G[V2]
In this subsection we consider a connected component of G[V2] which is isomorphic to a
di-star. Through this subsection we denote it by D and label its vertices as in Definition 3.

I Branching rule (R10). Let D be a di-star in G[V2] and let there be a red vertex w

connected to at least two leaves on the same side of the di-star, i.e. |N(w) ∩ L| ≥ 2 or
|N(w) ∩ L′| ≥ 2. Assume that those leaves are from L and l1, l2 are among them. Observe
that there is no other red vertex connected to l1, l2. Then branch on 〈 l1 | s | s′ 〉.

Proof of correctness. We have to delete something in {l1, l2, s, s′} and since l1, l2 are twins,
from Lemma 12 we know that we have to try only one of them, thus branching on 〈 l1 | s | s′ 〉
is correct. J

I Context rule (R11). Let D be a di-star in G[V2] and let w be the only red vertex connected
to D such that {s, s′} ⊆ N(w). This rule is split into three subrules (R11.1), (R11.2), and
(R11.3) based on the degrees of s and s′.

I Context rule (R11.1). Assume that both s, s′ have degree two in G[V2], i.e. the di-star D
is actually a P4. This rule is split into four subrules (R11.1a), (R11.1b), (R11.1c), and
(R11.1d) based on how w is connected to D and whether w is connected to other components.

I Branching rule (R11.1a). Vertex w is connected only to s, s′ in D. Then branch on
〈 s | s′ 〉.

I Branching rule (R11.1b). Vertex w is connected to s, s′ and to one leaf in D, let that
leaf be l1. Then branch on 〈 l1 | s | s′ 〉.
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I Branching rule (R11.1c). Vertex w is connected to l1, l′1, s, s′ in D and to at least one
other component of G[V2], label the vertex w connects to outside D as x and the neighbor
of x in G[V2] as y. Then branch on 〈x | y | {l1, s′} | {s, l′1} | {s, s′} 〉.

I Reduction rule (R11.1d). Vertex w is connected only to l1, l′1, s, s′ in D and to no other
component of G[V2]. Then delete any vertex v in D and add it to the solution F .

I Context rule (R11.2). Assume that exactly one of s, s′ has degree at least 3 in G[V2], let
it be s. This rule is split into four subrules (R11.2a), (R11.2b), (R11.2c), and (R11.2d) based
on how w is connected to D.

I Branching rule (R11.2a). Vertex w is connected only to s, s′ in D. Then branch on
〈 s | s′ 〉.

I Branching rule (R11.2b). Vertex w is connected to s, s′ and exactly one leaf from L in D,
let that leaf be l1. Then branch on 〈 l1 | s | s′ 〉.

I Branching rule (R11.2c). Vertex w is connected to s, s′, l′1 in D. Then branch on
〈 l′1 | s | s′ 〉.

I Branching rule (R11.2d). Vertex w is connected to s, s′, l′1 and exactly one leaf from L

in D, let that leaf be l1. Then branch on 〈 l1 | s | s′ 〉.

I Branching rule (R11.3). Assume that both s, s′ in D have degree at least 3 in G[V2].
Then branch on 〈L | s | s′ | L′ 〉.

I Context rule (R12). Let D be a di-star in G[V2] and let w be the only red vertex connected
to D such that w is connected to D by exactly two edges. We know that w is connected
to a subset of {l1, s, s′, l′1}, but not to both s and s′. This rule is split into three subrules
(R12.1), (R12.2), and (R12.3) based on how w is connected to D.

I Branching rule (R12.1). Vertex w is connected to a center and its leaf in D, let them
be s and l1. Then branch on 〈 l1 | s 〉.

I Branching rule (R12.2). Vertex w is connected to a center and to a leaf of the other
center in D, let them be s′ and l1. Then branch on 〈 l1 | s | s′ 〉.

I Context rule (R12.3). Vertex w is connected to two opposite leaves in D, let them be l1
and l′1. This rule is split into four subrules (R12.3a), (R12.3b), (R12.3c), and (R12.3d) based
on the degrees of s and s′ and whether w is connected to other components.

I Branching rule (R12.3a). Both s, s′ in D have degree 2 in G[V2] and w is connected to
a component of G[V2] other than D, let x be the vertex w connects to outside D and let y
be a neighbor of x in G[V2]. Then branch on 〈x | y | {l1, l′1} 〉.

I Reduction rule (R12.3b). Both s, s′ in D have degree 2 in G[V2] and w is not connected
to a component of G[V2] other than D. Then delete any vertex v in D and add it to the
solution F .

I Branching rule (R12.3c). Exactly one of s, s′ in D has degree at least 3 in G[V2], let it
be s. Then branch on 〈 l1 | s | l′1 〉.

I Branching rule (R12.3d). Both s, s′ in D have degree at least 3 in G[V2]. Then branch
on 〈 s | s′ | {l1, l′1} 〉.

MFCS 2019
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I Context rule (R13). Let D be a di-star in G[V2] and let w be the only red vertex connected
to D such that w is connected to D by exactly three edges. We know that w is connected to
a subset of {l1, s, s′, l′1}, but not to both s and s′. Assume that w is connected to l1, s, l′1.
This rule is split into four subrules (R13.1), (R13.2), (R13.3) and (R13.4) based on the
degrees of s and s′ and whether w is connected to other components.

I Branching rule (R13.1). Both s, s′ in D have degree 2 in G[V2] and w is connected to at
least one other component of G[V2], label the vertex w connects to outside D as x and the
neighbor of x in G[V2] as y. Then branch on 〈x | y | {l1, s′} | {s, l′1} 〉.

Proof of correctness. If none of the vertices x, y is deleted, then we have to delete at least
two and, by Lemma 16, at most three vertices in D. Suppose we wanted to delete exactly
two vertices. Out of six possible pairs, only {l1, s′}, {s, s′}, {s, l′1} lead to a solution. We
do not have to try {s, s′}, since if we delete s, then Lemma 10 becomes applicable and we
may delete l′1 instead of s′. Finally, if we wanted to delete three vertices, then by Lemma 16
those vertices would be {l1, s, l′1}, but this is already covered by branching on {s, l′1}. Thus
branching on 〈x | y | {l1, s′} | {s, l′1} 〉 is correct. J

I Reduction rule (R13.2). Both s, s′ in D have degree 2 in G[V2] and w is not connected
to other component of G[V2]. Then delete any vertex v in D and add it to the solution F .

I Branching rule (R13.3). Vertex s in D has degree at least 3 in G[V2]. Then branch on
〈 l1 | s | l′1 〉.

I Branching rule (R13.4). Vertex s′ in D has degree at least 3 in G[V2]. Then branch on
〈 l1 | s′ | l′1 〉.

I Context rule (R14). There is exactly one red vertex w connected to D by one edge. This
rule is split into two subrules (R14.1) and (R14.2) based on how w is connected to D.

I Reduction rule (R14.1). Vertex w is connected to a leaf in D, let it be l1. Then delete l1
and add it to the solution F .

I Branching rule (R14.2). Vertex w is connected to a center in D, let it be s, and w is
connected to at least one component of G[V2] other than D, label the vertex w connects to
outside D as x. Then branch on 〈 s | x 〉.

I Reduction rule (R15). There are at least two red vertices connected to D by exactly one
edge and they are connected to a single vertex. From Lemma 8 we know, that the red vertices
are not connected to a component of G[V2] other than D and hence the single vertex must
be a leaf, let it be l1, otherwise no P5 would be formed and Rule (R1) would be applicable.
Then delete l1 and add it to the solution F .

I Branching rule (R16). There are at least two red vertices connected to D by exactly one
edge and they are connected to two opposite leaves, let those leaves be l1, l′1. Assume that
there is at least one red vertex connected to each one of them. Further assume that the red
vertices connected to l1 are not connected to a component of G[V2] other than D. Then
branch on 〈 s′ | l′1 〉.

I Branching rule (R17). Let there be a di-star D and the two red vertices w,w′ connected
to D are connected to leaves l1, l′1, respectively, and at least one of the centers has degree at
least three, let it be s. Then branch on 〈 s | s′ | l′1 〉.
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I Branching rule (R18). Let there be a di-star D and the two red vertices w,w′ connected
to D are connected to leaves l1, l′1, respectively, and both centers have degree exactly two.
Then branch on 〈 l1 | l′1 〉.

I Lemma 21. Assume that Rules (R0) – (R9) are not applicable. Then at least one of Rules
(R10) – (R18) is applicable.

Proof. From Lemma 4 together with Lemmata 7, 13, 14, 15, 17, 18 and 20 we are now in
the situation in which all components of G[V2] are di-stars and there must be a di-star D
in G[V2] such that there is a P5 that uses the vertices of D which implies there is at least
one red vertex connected to D. For contradiction assume that Rules (R10) – (R18) are not
applicable, i.e. no rules are applicable.

Let w be some red vertex connected to D. If |N(w) ∩ L| ≥ 2 or |N(w) ∩ L′| ≥ 2, then
Rule (R10) is applicable. If there there is a red vertex w connected to li and a red vertex w′
connected to lj , j 6= i, then Rule (R2) applies. Similarly with vertices connected to l′i and l′j .
So for the rest of this proof assume that each red vertex can be connected only to vertices
l1, s, s

′, or l′1.
Firstly, assume that there is only one red vertex w connected to D. In Table 1 we list

all possibilities (omitting several isomorphic cases) based on how w is connected to D, on
the degrees of s and s′, and whether w is connected only to D (N(w) ⊆ V (D)) or w is also
connected outside D (N(w) 6⊆ V (D)).

Observe that if there were at least two red vertices connected to D and w was connected
to D by at least two edges, then Rule (R2) would be applicable with the only exception in case
where w is connected to {l1, s} or {s′, l′1} and the other red vertices to s or s′, respectively.
But this exception is resolved by Rule (R1) since vertices connected only to s or s′ in this
configuration are not used by any P5. With this in mind, if there are at least two red vertices
connected to D, then they are connected to D by only one edge.

Secondly, assume that there are at least two red vertices connected to D by exactly one
edge. Let X ⊆ V (D) be the vertices to which the red vertices are connected in D. Again, if
|X ∩ L| ≥ 2 or |X ∩ L′| ≥ 2, then Rule (R2) applies. So suppose that X ⊆ {l1, s, s′, l′1}. If
{l1, s′} ⊆ X or {s, l′1} ⊆ X (which covers also cases where |X| ≥ 3), then again Rule (R2) is
applicable. If the vertices are connected to a single edge, then at least one of the vertices of
such edge is a center, the vertices connected to it are not used by any P5, and Rule (R1)
applies. We conclude that the red vertices may be connected only to a single vertex or to
two opposite leaves in D.

Thirdly, assume that the red vertices are connected to a single vertex. If that vertex is
a leaf, then Rule (R15) is applicable, otherwise Rule (R1) is applicable.

Fourthly, assume that the red vertices are connected to two opposite leaves, let them
be l1 and l′1, and let W be the set of red vertices connected to l1 and W ′ be the set of red
vertices connected to l′1. If the vertices in W or in W ′ (or both) are not connected to any
component other than D, then Rule (R16) is applicable. This is the case whenever |W | ≥ 2
or |W ′| ≥ 2 by Lemma 8.

Observe that now we are in situation in which there are exactly two red vertices w and
w′ connected to D by exactly one edge and these vertices are connected to l1 and l′1, assume
that w is connected to l1 and w′ is connected to l′1. Furthermore, vertices w and w′ are
connected to at least one other di-star in G[V2]. If at least one of L,L′ has size at least two,
then Rule (R17) is applicable, otherwise all di-stars in G[V2] are actually a P4 paths and
Rule (R18) is applicable.

Finally, there is no di-star remaining in G[V2] which together with Lemmata 4, 7, 13, 14,
15, 17, 18 and 20 implies that G[V2] = ∅ and since V1, V2 is a P5-free bipartition, there is no
P5 path remaining in G and Rule (R0) is applicable. J
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Table 1 Possible configurations of single red vertex w and D in Lemma 21.

aaaaaaaN(w) ∩ V (D)

N(w) 6⊆ V (D) N(w) ⊆ V (D)
|L| = 1, |L| > 1, |L| > 1, |L| = 1, |L| > 1, |L| > 1,

|L′| = 1 |L′| = 1 |L′| > 1 |L′| = 1 |L′| = 1 |L′| > 1
{l1} (R14.1) (R14.1) (R14.1) (R14.1) (R14.1) (R14.1)
{s} (R14.2) (R14.2) (R14.2) (R1) (R1) (R1)
{s′} (R14.2) (R14.2) (R14.2) (R1) (R1) (R1)
{l′1} (R14.1) (R14.1) (R14.1) (R14.1) (R14.1) (R14.1)
{l1, s} (R12.1) (R12.1) (R12.1) (R12.1) (R12.1) (R12.1)
{l1, s′} (R12.2) (R12.2) (R12.2) (R12.2) (R12.2) (R12.2)
{l1, l′1} (R12.3a) (R12.3c) (R12.3d) (R12.3b) (R12.3c) (R12.3d)
{s, s′} (R11.1a) (R11.2a) (R11.3) (R11.1a) (R11.2a) (R11.3)
{s, l′1} (R12.2) (R12.2) (R12.2) (R12.2) (R12.2) (R12.2)
{s′, l′1} (R12.1) (R12.1) (R12.1) (R12.1) (R12.1) (R12.1)
{l1, s, s′} (R11.1b) (R11.2b) (R11.3) (R11.1b) (R11.2b) (R11.3)
{l1, s, l′1} (R13.1) (R13.3) (R13.3) (R13.2) (R13.3) (R13.3)
{l1, s′, l′1} (R13.1) (R13.4) (R13.3) (R13.2) (R13.4) (R13.3)
{s, s′, l′1} (R11.1b) (R11.2c) (R11.3) (R11.1b) (R11.2c) (R11.3)
{l1, s, s′, l′1} (R11.1c) (R11.2d) (R11.3) (R11.1d) (R11.2d) (R11.3)

3.11 Final remarks

From Lemma 21 we know that there is always at least one rule applicable. It remains to
analyze the running time of the disjoint compression routine disjoint_r.

I Theorem 22. The disjoint_r procedure solves the 5-PVCwB problem in O∗(3k) time.

By standard arguments (see Cygan et al. [3, pages 80–81]) we get the following corollary.

I Corollary 23. The iterative compression algorithm solves the 5-PVC problem and runs in
O∗(4k) time.

4 Conclusion

We conclude this paper with a few open questions.
Firstly, we see the trend of solving 3-PVC, 4-PVC and now 5-PVC with the iterative

compression technique, so it is natural to ask whether this approach can be further used for
6-PVC or even to d-PVC in general. However, given the complexity (number of rules) of
the algorithm presented in this paper, it seems more reasonable to first try to find a simpler
algorithm for 5-PVC.

Secondly, motivated by the work of Orenstein et al. [13], we ask whether known algorithms
for 3-PVC, 4-PVC, 5-PVC can be generalized to work with directed graphs.

Finally, due to Fafianie and Kratsch [5] we know that d-PVC problem has a kernel with
O(kd) vertices and edges. Dell and van Melkebeek [4] showed that there is no O(kd−ε) kernel
for any ε > 0 for general d-Hitting Set unless coNP is in NP/poly, which would imply a
collapse of the polynomial-time hierarchy. However, for 3-PVC problem, Xiao and Kou [19]
presented a kernel with 5k vertices. To our knowledge, it is not known whether there exists
a linear kernel for 4-PVC or any d-PVC with d ≥ 5.
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