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Abstract

We note that the coalgebra of formal power series in commutative variables is final in a certain

subclass of coalgebras. Moreover, a system Σ of polynomial PDEs, under a coherence condition,

naturally induces such a coalgebra over differential polynomial expressions. As a result, we obtain a

clean coinductive proof of existence and uniqueness of solutions of initial value problems for PDEs.

Based on this characterization, we give complete algorithms for checking equivalence of differential

polynomial expressions, given Σ.
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1 Introduction

The last two decades have seen an impressive growth of formal methods and tools for con-

tinuous and hybrid systems, centered around techniques for reasoning on ordinary differential

equations (ODEs), see e.g. [29, 28, 21, 11, 15, 6] and references therein. On the other

hand, formal methods for systems defined by partial differential equations (PDEs) have not

undergone a comparable development. The present paper is meant as an initial contribution

towards this development.

Like in our previous works on ODEs [5, 7], our starting point is a simple operational

view of differential equations as programs for calculating the Taylor coefficients of a function.

Taking a transition in such a program corresponds to taking a function’s derivative. An

output is returned as the result of evaluating the current state (function) at a fixed expansion

point, for example the origin. This idea is certainly not new: it is for example at the root of

classical methods to numerically solve ODEs.

We focus here on polynomial PDEs, which are expressive enough for the vast majority

of problems arising in applications, and systematically pursue the above operational view

in the framework of coalgebras. We first introduce a subclass of coalgebras that enjoy a

commutativity property of transitions, then note that formal power series in commutative

variables (CFPSs) are final for this subclass (Section 2). A system Σ of PDEs and a

specification of initial data together form an initial value problem. Under a coherence

condition (Section 3), an initial value problem induces a coalgebra structure over the set of

differential polynomials. The solution of the initial value problem is therefore obtained as

the unique coalgebra morphism from the set of such polynomials to the final coalgebra of

CFPSs. This way, we obtain an elementary and clean proof of existence and uniqueness of

solutions as CFPSs (Section 4). We also show that coherence is an essential requirement for

this result. From a pragmatical point of view, we note that as solutions of PDEs, CFPSs

may be viewed as a conservative extension of analytic functions: if an analytic solution of Σ
exists, then its Taylor expansion from 0, seen as a formal power series, coincides with the

unique solution in our sense.
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24:2 On the Coalgebra of Partial Differential Equations

This characterization is the basis of an algorithm to automatically check polynomial

equalities – e.g. conservation laws – valid among the functions defined by given system Σ
and a specification of initial data (Section 5). Just like in certain on-the-fly algorithms for

bisimulation checking, the underlying idea is, based on the introduced transition structure, to

incrementally build a relation until it “closes up”, but working here modulo sum and product

of polynomials. Concepts from algebraic geometry, notably Gröbner bases, are used to prove

the termination and correctness of this algorithm. In fact, we are more general than this, and

also give a method to automatically compute the weakest precondition (= set of initial data

specifications) under which a given equality is valid in Σ. These algorithms are complete,

under a certain finite-parameter condition. This way one can, for example, automatically

check conservation laws of a given physical system. Relationship with our previous work on

ODEs [5, 7], as well as with related work by other authors, is discussed in the concluding

section (Section 6). Proofs omitted from the present version will appear in a forthcoming

online version of the paper.

2 Commutative coalgebras

Let X be a finite nonempty set of actions (or variables), ranged over by x, y, ... and O a

nonempty set. We recall that a (Moore) coalgebra1 with actions in X and outputs in O is a

triple C = (S, δ, o) where: S is a set of states, δ : S ×X → S is a transition function, and

o : S → O is an output function (see e.g. [27]). A bisimulation in C is a binary relation

R ⊆ S ×S such that whenever sR t then: (a) o(s) = o(t), and (b) for each x, δ(s, x)Rδ(t, x).
It is an (easy) consequence of the general theory of bisimulation that a largest bisimulation

over C, called bisimilarity and denoted by ∼C , exists, is the union of all bisimulation relations,

and is an equivalence relation over S. Given two coalgebras with actions in X and outputs

in O, C1 and C2, a morphism from C1 to C2 is a function µ : S1 → S2 that: (1) preserves

outputs (o1(s) = o2(µ(s)), and (2) preserves transitions (µ(δ1(s, x)) = δ2(µ(s), x)), for each

state s and action x). It is an easy consequence of this definition that a morphism preserves

bisimulation in both directions, that is: s ∼C1 t if and only if µ(s) ∼C2 µ(t).
We introduce now the subclass of Moore coalgebras we will focus on. We say a coalgebra

C has commutative actions (or just that is commutative) if for each state s and actions x, y, it

holds that δ(δ(s, x), y) ∼C δ(δ(s, y), x). We will introduce below an example of commutative

coalgebra. In what follows, we let σ range over X∗, and, for any state s, let s(σ) be defined

inductively as: s(ε) 4= s and s(xσ) 4= δ(s, x)(σ).

I Lemma 2.1. Let C be a commutative coalgebra. If σ, σ′ ∈ X∗ are permutations of one

another then for any state s ∈ S, s(σ) ∼C s(σ′).

We now introduce the coalgebra of formal power series in commutative variables with

outputs in O = R. Let X⊗, ranged over by τ, τ ′, ..., be the set of monomials2 that can be

formed from X = {x1, ..., xn}, in other words, the commutative monoid freely generated by

X.

I Definition 2.2 (commutative formal power series). Let X be a finite nonempty alphabet. A

commutative formal power series (CFPS) with indeterminates in X and coefficients in R is

a total function f : X⊗ → R. The set of these CFPSs will be denoted by F(X), or simply F
if X is understood from the context.

1 In the paper, we only consider Moore coalgebras. For brevity, we shall omit the qualification “Moore”.
2 In general, we shall adopt for monomials the same notation we use for strings, as the context is

sufficient to disambiguate. In particular, we overload the symbol ε to denote both the empty string
and the empty monomial.
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In the rest of the section, we fix an arbitrary X. We will sometimes use the suggestive

notation∑
τ

f(τ) · τ

to denote a CFPS f = λτ.f(τ). By slight abuse of notation, for each r ∈ R, we will denote

the CFPS that maps ε to r and anything else to 0 simply as r; while xi will denote the i-th

identity, the CFPS that maps xi to 1 and anything else to 0. In the sequel, δ(f, x) 4= ∂f
∂x

denotes the CFPS obtained by the usual (formal) partial derivative of f along x. For a more

workable formulation of this definition, let us introduce the following notation. Let us fix

any total order x = (x1, ..., xn) of the variables in X. Given a vector α = (α1, ..., αn) of

nonnegative integers (a multi-index ), we let xα denote the monomial xα1
1 · · ·xαnn . Then ∂f

∂xi

is defined by the following, for each τ = x(α1,...,αn)

∂f

∂xi
(τ) 4= (αi + 1)f(xiτ) . (1)

Finally, we define the coalgebra of CFPSs, CF

CF
4= (F , δF , oF )

where δF (f, x) = ∂f
∂x and oF (f) = f(ε) (the constant term of f). Bisimilarity in CF , denoted

by ∼F , coincides with equality. It is easily seen that for each x, y, ∂
∂y

∂f
∂x = ∂

∂x
∂f
∂y , so that CF

is a commutative coalgebra. Now fix any commutative coalgebra C = (S, δ, o). We define

the function µ : S → F as follows. For each τ = xα

µ(s)(τ) 4= o(s(τ))
α! (2)

where α! 4= α1! · · ·αn!. Here, abusing slightly notation, we let o(s(τ)) denote o(s(σ)), for

some string σ obtained by arbitrarily ordering the elements in τ : the specific order does not

matter, in view of Lemma 2.1 and of condition (a) in the definition of bisimulation.

I Lemma 2.3. Let C be a commutative coalgebra and f = µ(s). For each x, ∂f
∂x = µ(δ(s, x)).

Based on the above lemma and the fact that ∼F is equality, we can prove the following

corollary, saying that CF is final in the class of commutative coalgebras.

I Corollary 2.4 (coinduction and finality of CF ). Let C be a commutative coalgebra. The

function µ in (2) is the unique coalgebra morphism from C to CF . Moreover, the following

coinduction principle is valid: s ∼C t if and only if µ(s) = µ(t) in F .

Proof. We have: (1) o(s) = µ(s)(ε) by the definition of µ, and (2) µ(δ(s, x)) = δF (µ(s), x),
by Lemma 2.3. This proves that µ is a coalgebra morphism. Next, we prove that ∼F
coincides with equality in F . More precisely, we prove that for each τ and for each f, g:

f ∼F g implies f(τ) = g(τ). Proceeding by induction on the length of τ , we see that

the base case is trivial, while for the induction step τ = xiτ
′ we have: f ∼F g implies

∂f
∂xi
∼F ∂g

∂xi
(bisimilarity), which in turn implies ∂f

∂xi
(τ ′) = ∂g

∂xi
(τ ′) (induction hypothesis);

but by (1), f(xiτ ′) = ( ∂f∂xi (τ
′))/(αi + 1) and g(xiτ ′) = ( ∂g∂xi (τ

′))/(αi + 1), and this completes

the induction step. From the coincidence of ∼F with equality in F , and the fact that any

morphism preserves bisimilarity in both directions, the last part of the statement (coinduction)

follows immediately. Finally, let ν be any morphism from C to CF . From the definitions

of bisimulation and morphism it is easy to see that for each s, µ(s) ∼F ν(s): this implies

µ(s) = ν(s) by coinduction, and proves uniqueness of µ. J

M FC S 2 0 1 9
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We end this section by recalling the sum and product operations on F . For any ξ = xα

and τ = xβ, let ξ ≤ τ if for each i = 1, ..., n, αi ≤ βi; in this case τ/ξ denotes the monomial

x(β1−α1,...,βn−αn). We have the following definitions of sum and product. For each τ ∈ X⊗:

(f + g)(τ) 4= f(τ) + g(τ) (f · g)(τ) 4=
∑
ξ≤τ

f(ξ) · g(τ/ξ) . (3)

These operations correspond to the usual sum and product of functions, when (convergent)

CFPS are interpreted as analytic functions. These operations enjoy associativity, commut-

ativity and distributivity. Moreover, if f(ε) 6= 0 there exists a unique CFPS f−1 ∈ F that

is a multiplicative inverse of f , that is f · f−1 = 1. Finally, the following familiar rules of

differentiation are satisfied:

∂(f + g)
∂x

4= ∂f

∂x
+ ∂g

∂x

∂(f · g)
∂x

4= ∂f

∂x
· g + f · ∂g

∂x
. (4)

If the support of f , supp(f) 4= {τ : f(τ) 6= 0}, is finite, we will call f a polynomial. The

set of polynomials, denoted by R[X], is closed under the above defined operations of partial

derivative, sum and product (but in general not inverse). Moreover, note that, when confining

to polynomials, these operations are well defined even in case the cardinality of the set X of

indeterminates is infinite.

3 Coherent systems of PDEs

We first review some notation and terminology from the formal theory of PDEs; these are

standard notions, see e.g. [23, 18]. Like in the previous section, assume we are given a finite

nonempty set X, which we will call here the independent variables. Another nonempty,

finite set U of dependent variables, disjoint from X, is given; U is ranged over by u, v, ....

D 4= {uτ : u ∈ U, τ ∈ X⊗} is the set of the derivatives; here uε will be identified with u.

E,F, ... range over P 4= R[X ∪ D], the set of (differential, multivariate) polynomials with

coefficients in R and indeterminates in X ∪ D. Considered as formal objects, polynomials

are just finite-support CFPSs in F(X ∪ D) (see Section 2). As such, they inherit from

CFPSs the operations of sum, product and partial derivative, along with the corresponding

properties. Syntactically, we shall write polynomials as expressions of the form
∑
α∈M λα · α,

for 0 6= λα ∈ R and M ⊆fin (X∪D)⊗. For example, E = vzuxy+v2
y+u+5x is a polynomial3.

For an independent variable x ∈ X, the total derivative of E ∈ P along x is just the derivative

of E along x, taking into account that ∂uτ
∂x = uxτ . Formally, we have the following.

I Definition 3.1 (total derivative). The operator Dx : P → P is defined by (note
∑

below

has only finitely many nonzero terms)

DxE
4= ∂E

∂x
+
∑
u,τ

uxτ ·
∂E

∂uτ

where ∂E
∂a denotes the partial derivative of polynomial E along a ∈ X ∪ D.

Dx inherits from partial derivatives rules for sum and product that are the analog of (4).

As an example, for the polynomial E above, we have DxE = vxzuxy+vzuxxy+2vyvxy+ux+5.

3 Real arithmetic expressions will be used as a meta-notation for polynomials: e.g. (u+ux+1) ·(x+uy)
denotes the polynomial xu+ uuy + xux + uxuy + x+ uy.
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In particular, Dxuτ = uxτ and Dxx
k = kxk−1. Just as partial derivatives, total derivatives

commute with each other, that is DxDyF = DyDxF . This suggests to extend the notation

to monomials: for any monomial τ = x1 · · ·xm, we let DτF be Dx1 · · ·DxmF , where the

order of the variables is irrelevant.

I Definition 3.2 (system of PDEs). A system of PDEs is a nonempty set Σ of equations

(pairs) of the form uτ = E, with E ∈ P. The set of derivatives uτ that appear as left-hand

sides of equations in Σ is denoted dom(Σ). Based on Σ, the set D can be partitioned into

two sets as follows:

Pr(Σ) 4= {uξ : τ ≤ ξ for some τ s.t. uτ ∈ dom(Σ)} is the set of principal derivatives of

Σ;

Pa(Σ) 4= D \ Pr(Σ) is the set of parametric derivatives of Σ.

We let P0(Σ) 4= R[X ∪ Pa(Σ)].

The intuition of Pa(Σ) is that, once we fix the corresponding values, the rest of the solution,

hence Pr(Σ), will be uniquely determined (see Example 3.4 below). Note that we do

not require that each derivative occurs at most once as left-hand side in Σ. The infinite

prolongation of a system Σ, denoted Σ∞, is the system of PDEs of the form uξτ = DξF ,

where uτ = F is in Σ and ξ ∈ X⊗. Of course, Σ∞ ⊇ Σ. Moreover, Σ and Σ∞ induce the

same sets of principal and parametric derivatives.

A ranking is a total order ≺ of D such that: (a) uτ ≺ uxτ , and (b) uτ ≺ vξ implies

uxτ ≺ vxξ, for each x ∈ X, τ, ξ ∈ X⊗ and u, v ∈ U . Dickson’s lemma [10] implies that D
with ≺ is a well-order, and in particular that there is no infinite descending chain in it. The

system Σ is ≺-normal if, for each equation uτ = E in Σ, uτ � vξ, for each vξ appearing in

E. An easy but important consequence of condition (b) above is that if Σ is normal then

also its prolongation Σ∞ is normal.

Now, consider the equational theory over P induced by the equations in Σ∞. More

precisely, write E →Σ F if F is the polynomial that is obtained from E by replacing one

occurrence of uτ with G, for some equation uτ = G ∈ Σ∞. Note, in particular, that E ∈ P
cannot be rewritten if and only if E ∈ P0(Σ). We let =Σ denote the reflexive, symmetric and

transitive closure of →Σ. The following definition formalizes the key concepts of consistency

and coherence of Σ. Basically, as we will show, under the syntactic requirement of normality,

which is natural from an algorithmic point of view, consistency is a necessary and sufficient

condition for Σ to admit a unique solution under all initial data specifications.

I Definition 3.3 (consistency and coherence). Let Σ be a system of PDEs.

We say Σ is consistent if for each E ∈ P there is a unique F ∈ P0(Σ) such that E =Σ F .

Let ≺ be a ranking. A system Σ is ≺-coherent if it is ≺-normal and consistent.

For a consistent system, we can define a normal form function

SΣ : P → P0(Σ)

by letting SΣE = F , for the unique F ∈ P0(Σ) such that E =Σ F . The term SΣE will be

often abbreviated as SE, if Σ is understood from the context. Deciding if a (finite) system Σ
is coherent, for a suitable ranking ≺, is of course a nontrivial problem. In a normal system,

since ≺ is a well-order, there are no infinite sequences of rewrites E1 →Σ E2 →Σ E3 →Σ · · · :
therefore it is possible to rewrite any E into some F ∈ P0(Σ) in a finite number of steps.

Proving coherence in this case reduces basically to ensure that Σ contains “enough equations”

to make →Σ confluent. In fact, an even more general problem than checking coherence is

completing a normal, non coherent system by new equations so as to make it coherent; or

M FC S 2 0 1 9
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Figure 1 Lattices of u-derivatives, partially ordered by uξ ≤ uτ if and only if ξ ≤ τ . With

reference to Example 3.4, black circles correspond to left-hand sides of equations, shaded regions to

principal derivatives, and non-shaded regions to parametric derivatives.

deciding if this is impossible at all, because the system is intrinsically inconsistent. There is

a rich literature on these problems, which we briefly review in the concluding section. The

following simple example is enough to demonstrate these concepts for our purposes.

I Example 3.4 (coherence). Consider the heat equation in one spatial dimension, where

X = {x, t}, U = {u} and Σ is given by the single equation (for a real parameter a 6= 0)

uxx = aut . (5)

Here, the principal derivatives are Pr(Σ) = {uxxτ : τ ∈ X⊗}, and the parametric ones are

Pa(Σ) = {utj : j ≥ 0} ∪ {uxtj : j ≥ 0} (see Figure 1, left). Since the system has just one

equation, it is clearly consistent: indeed, its prolongation Σ∞ has precisely one equation

uxxτ = Dτ (aut) for each principal derivative uxxτ . Concerning coherence, we consider the

following ranking. Ordering the independent variables as t < x induces a graded lexicographic

order ≺grlex over X⊗: that is, monomials are compared first by their total degree, and then

lexicographically. We lift ≺grlex to D as expected: explicitly, uξ ≺ uτ if, for ξ = tixj and

τ = ti
′
xj

′
, it holds that either i + j < i′ + j′ or (i + j = i′ + j′ and j′ > j). Σ is clearly

≺-normal.

Next, suppose we build a new system Σ1 by adding the new equation (with no physical

significance)

utx = u .

Now the parametric derivatives are utj for j ≥ 0 and ux, while the remaining derivatives are

principal (see Figure 1, center). The prolongation of the new system, Σ∞1 , has both utxx = ux
and utxx = autt as equations, which implies ux =Σ1 autt. As ux, utt ∈ Pa(Σ1) ⊆ P0(Σ1),
we conclude that Σ1 is not consistent, hence not coherent: indeed, there are two distinct

but equivalent normal forms. This suggests that we can complete Σ1 by inserting a third

equation, a so-called integrability condition

utt = ux
a
.

In the resulting system Σ2 the set of parametric derivatives has changed to {u, ut, ux} (see

Figure 1, right), and utxx has the (only) normal form ux. The system Σ2 can be indeed

checked to be consistent, hence coherent. Finally, consider adding to the original system Σ
the two equations below, thus obtaining Σ3

utx = t utt = 1 .

Together with (5) these two equations imply a =Σ3 0: Σ3 is not consistent, moreover there is

no way of completing it so as to get a consistent system. That is, Σ3 is (informally speaking)

intrinsically inconsistent.
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For our purposes, it is enough to know that completing a given system of equations to

make it coherent, or deciding that this is impossible, can be achieved by one of many existing

computer algebra algorithms. For example, there is a completion procedure by Marvan [18],

for which a Maple implementation is also available. See also Reid et al.’s method of reduction

to reduced involutive form [23], implemented in the Maple rif package. An alternative to

these methods is applying a procedure similar to the Knuth-Bendix completion algorithm

[13] to the given system. Further references are discussed in the concluding section. In

practice, in many cases arising from applications (e.g. mathematical physics), transforming

the system into a coherent form for an appropriate ranking can be accomplished manually,

without much difficulty. We shall not further dwell on algorithms for coherence checking

in the rest of the paper. We end the section with a technical result about normal forms in

coherent systems that will be used in the next section.

I Lemma 3.5. Let Σ be coherent. For each x ∈ X and F ∈ P, SDxSF = SDxF .

4 Coalgebraic semantics of initial value problems

We will provide differential polynomials with a coalgebra structure depending on Σ: from this,

existence and uniqueness of solutions of initial value problems will follow almost immediately

by coinduction (Corollary 2.4). The essential point is that coherence allows for the definition

of a transition function based on total derivatives. In the definition below, it is useful to bear

in mind that, informally, for a parametric derivative uτ , the initial data value ρ(uτ ) specifies

the value of ∂u
∂τ at the origin.

I Definition 4.1 (initial value problem). Let Σ be a system of PDEs. A specification of initial

data for Σ is a mapping ρ : Pa(Σ)→ R. An initial value problem is a pair B = (Σ, ρ).

In what follows, for any function ψ : U → F , we can consider its homomorphic extension

P → F , obtained by interpreting each expression E in the obvious way: replace uτ by ∂ψ(u)
∂τ ,

and sum and product by the corresponding operations in F (see Section 2); an independent

variable xi ∈ X is interpreted as the i-th identity CFPS. By slight abuse of notation, we

will still denote by “ψ” the homomorphic extension of ψ. In part (a) below, recall that for a

CFPS f , f(ε) represents, informally, the value of function f at the origin.

I Definition 4.2 (solution of B). A solution of a initial value problem B = (Σ, ρ) is a mapping

ψ : U → F such that: (a) the initial data specifications are satisfied, that is ψ(uτ )(ε) = ρ(uτ )
for each uτ ∈ Pa(Σ); and (b) all equations are satisfied, that is ψ(uτ ) = ψ(F ) for each

uτ = F in Σ∞.

The following lemma about solutions will be used to prove uniqueness of the solution of

B.

I Lemma 4.3. Let B = (Σ, ρ) and ψ a solution of B. For each E,F ∈ P, E =Σ F implies

ψ(E) = ψ(F ).

With any coherent (w.r.t. some ranking) Σ and initial data specification ρ, B = (Σ, ρ),
we can associate a coalgebra as follows. The initial data specification ρ : Pa(Σ) → R can

be extended homomorphically to P0(Σ)→ R, by interpreting + and · as the usual sum and

product over R, respectively, and by letting ρ(x) 4= 0 for each independent variable x ∈ X.

Now we define a coalgebra depending on B:

CB
4= (P, δΣ, oρ)

M FC S 2 0 1 9
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where δΣ(E, x) 4= SDxE and oρ(E) 4= ρ(SE). We will denote by ∼B bisimilarity in CB. As

an example of transition, for the heat equation Σ = {uxx = aut}, one has δΣ(uxx, t) = autt.

I Remark 4.4. An obvious alternative to the above definition of transition function of CB
would be just letting δΣ(E, x) = DxE: this definition in fact would work as well, but it has

the computational disadvantage of making the order of the derivatives higher at each step,

which would be inconvenient for the algorithms to be developed later on (Section 5).

As expected, CB is a commutative coalgebra. Moreover, each expression is bisimilar to

its normal form. This is the content of the following lemma.

I Lemma 4.5. Let B = (Σ, ρ), with Σ coherent. Then: (1) CB is commutative; and (2) For

each E ∈ P, E ∼B SE.

Note that since δΣ(δΣ(E, x), y) = δΣ(δΣ(E, y), x), for any monomial τ , the notation

δΣ(E, τ) is well defined. As a consequence of the previous lemma, part 1, and of Corollary

2.4, there exists a unique morphism from CB to CF . This morphism is the unique solution

of B we are after. We need a lemma, saying that the unique morphism φ from CB to CF is

compositional.

I Lemma 4.6. Let B = (Σ, ρ), with Σ coherent, and let φB be the unique morphism from

CB to CF . Then φB is a homomorphism over P.

I Theorem 4.7 (coalgebraic semantics of PDEs). Let B = (Σ, ρ), with Σ coherent. Let φB
denote the unique morphism from CB to CF . Then φB (restricted to U) is the unique solution

of B.

Proof. By virtue of Lemma 4.6, φB coincides with the homomorphic extension of (φB)|U .

We first prove that that φB respects the initial data specification. Let uτ be parametric. By

the definition of coalgebra morphism and of output functions in CF and CB, we have

φB(uτ )(ε) = oF (φB(uτ )) = oρ(uτ ) = ρ(Suτ ) = ρ(uτ )

which proves the wanted condition. Next, we have to prove that φB satisfies the equations in

Σ∞. But for each such equation, say uτ = F , we have Suτ =Σ SF by the definition of =Σ,

hence uτ ∼B F by Lemma 4.5(2), hence the thesis by coinduction (Corollary 2.4). We finally

prove uniqueness of the solution. Assume ψ is a solution of B, and consider the homomorphic

extension of ψ to P, still denoted by ψ. We prove that ψ is a coalgebra morphism from CB
to CF , hence ψ = φB will follow by coinduction (Corollary 2.4). Let E ∈ P. There are two

steps in the proof.

ψ(E)(ε) = ρ(SE) = oρ(E). This follows directly from Lemma 4.3, since ψ(E) = ψ(SE).
For each x, ∂ψ(E)

∂x = ψ(δΣ(E, x)). First, we note that ∂ψ(E)
∂x = ψ(DxE). This is proven

by induction on the size of E: in the base case when E = uτ , just use the fact that, by the

definition of solution, ∂ψ(uτ )
∂x = ∂

∂x
∂ψ(u)
∂τ = ∂ψ(u)

∂τx = ψ(uτx) = ψ(Dxuτ ); in the induction

step, use the fact that ψ is an homomorphism over P, and the derivation rules of Dx

and ∂
∂x for sum and product. Now applying Lemma 4.3, we get ψ(DxE) = ψ(SDxE) =

ψ(δΣ(E, x)), which is the wanted equality. J

I Remark 4.8 (analyticity). The previous theorem guarantees that formal power series

solutions of a coherent system of PDEs always exist and are unique. In general, there is

no guarantee of analyticity for such solutions. However, if a solution ψ of Σ in the usual

sense exists that is analytic around the origin, then its Taylor expansion from the origin,

seen as a CFPS, coincides with our solution φB: for each u and f = ψ(u), we have that

f =
∑

α(∂f∂τ )(0) · xα

α! = φB(u). Riquier’s theorem [24] gives sufficient syntactic conditions for

the existence of analytic solutions; see [26, 16, 17] for further discussion of this point.
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The computational content of Theorem 4.7 is twofold. One one hand, we can use

coinduction as a technique to prove semantically valid identities E = F for the initial value

problem at hand, as bisimulations E ∼B F (via Corollary 2.4). On the other hand, we can

calculate mechanically the coefficients of the Taylor expansion of the solution. This will also

be key to the algorithms presented in Section 5.

I Corollary 4.9 (Taylor coefficients). Let Σ be coherent, let ρ be an initial data specification

and let φB be the unique solution of B = (Σ, ρ). Then, for each E ∈ P, φB(E) =
∑
τ=xα cτ ·τ

where

cτ = ρ(δΣ(E, τ))
α! . (6)

Proof. This follows immediately from Theorem 4.7 and from the definitions of unique

morphism (2) and of the coalgebra CB. J

The terms δΣ(E,τ)
α! ∈ P0(Σ) appearing in (6) provide a “symbolic” representation of the

Taylor coefficients of solutions, independent of ρ.

I Example 4.10. Consider U = {f, g, i, j, h, k}, X = {x, y} and Σ = { fx = −g , fy =
−g , gx = f , gy = f , ix = −j , iy = 0 , jx = i , jy = 0 , hx = 0 , hy = −k , kx = 0 , ky = h }.
Note that Pa(Σ) = U . The system is consistent because Σ∞ has just one equation for

each uτ ∈ Pr(Σ). Moreover, it is normal, hence coherent, with respect to any graded

ranking. Consider now the initial value problem B = (Σ, ρ) where ρ is defined by ρ(f) =
ρ(i) = ρ(h) = 1 and ρ(g) = ρ(j) = ρ(k) = 0. Let E

4= ih − jk, F
4= ik + jh and

R ⊆ P × P, R
4= {(f,E), (g, F ), (−f,−E), (−g,−F )}: it is immediate to check that R is a

bisimulation in CB. By coinduction and Theorem 4.7, we have therefore φB(f) = φB(E)
and φB(g) = φB(F ). Note that, in the given B, the variables in U encode cos(x+ y), sin(x+
y), cos(x), sin(x), cos(y), sin(y), respectively. Therefore e.g. φB(f) = φB(E) actually proves

that cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), a well-known trigonometric identity.

Finally, a more refined argument leads to a precise characterization of the systems that

admit (unique) solutions for every initial data specification, under normality.

I Theorem 4.11 (consistency, existence and uniqueness). Let Σ be a normal system. Σ is

coherent if and only if for each ρ, B = (Σ, ρ) has a solution. Moreover, for each such B the

solution is unique.

5 Equivalence checking

In this section, based on Theorem 4.7 and on an algebraic characterization of bisimilarity

we shall discuss below, we will provide a decision algorithm for the equivalence problem

φB(E) = φB(F ), limited to the following subclass of PDE systems.

I Definition 5.1 (finite-parameter systems). A system Σ is finite-parameter if Pa(Σ) is finite.

For instance, with reference to Example 3.4, Σ2 is finite-parameter, while Σ and Σ1
are not. We need to introduce now some additional, mostly standard notation about

polynomials. According to (6), the calculation of the Taylor coefficients of a solution of an

initial value problem B = (Σ, ρ) involves evaluating expressions in P0(Σ) = R[X∪Pa(Σ)]. As

k
4= |X ∪Pa(Σ)| < +∞, elements of P0(Σ) can be treated as usual multivariate polynomials

in a finite number of indeterminates. In particular, we can identify initial data specifications
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ρ with points in Rk that vanish in the x-coordinates (x ∈ X). In this section we will let

ρ range over Rk. Moreover, we let Rk0
4= {ρ ∈ Rk : ρ(x) = 0 for each x ∈ X} and, for

polynomials E ∈ P0(Σ) and initial data specifications ρ ∈ Rk0 , write ρ(E) as E(ρ) – that is

the value in R obtained by evaluating E at point ρ.

In what follows, we shall also make use a few elementary notions from algebraic geometry

[10]. In particular, an ideal J ⊆ P0(Σ) is a nonempty set of polynomials closed under addition,

and under multiplication by polynomials in P0(Σ). For P ⊆ P0(Σ),
〈
P
〉 4= {∑m

i=1Gi · Ei :
m ≥ 0, Gi ∈ P0(Σ), Ei ∈ P} denotes the smallest ideal which includes P , and V (P ) ⊆ Rk

the (affine) variety induced by P : V (P ) 4= {ρ ∈ Rk : E(ρ) = 0 for each E ∈ P} ⊆ Rk. For

W ⊆ Rk, I(W ) 4= {E ∈ P0(Σ) : E(ρ) = 0 for each ρ ∈ V }. We will use a few basic facts

about ideals and varieties: (a) both I(·) and V (·) are inclusion reversing: P1 ⊆ P2 implies

V (P1) ⊇ V (P2) and W1 ⊆ W2 implies I(W1) ⊇ I(W2); (b) any ascending chain of ideals

I0 ⊆ I1 ⊆ · · · stabilizes in a finite number of steps (Hilbert’s basis theorem); (c) for finite

P ⊆ P0(Σ) , the problem of deciding if E ∈
〈
P
〉

is decidable, by computing a Gröbner basis

(a set of generators with special properties) of
〈
P
〉
. See [10] for a comprehensive treatment.

Given a coherent, finite-parameter Σ and an initial data specification ρ ∈ Rk0 , let us

denote by φB the unique solution of the initial value problem B = (Σ, ρ) (Theorem 4.7).

Since by definition φB is a homomorphism, for any given E,F ∈ P, establishing that

φB(E) = φB(F ) is equivalent to establish that φB(E − F ) = 0. In other words, we can

identify polynomial equations with polynomials, and valid polynomial equations under ρ

with polynomials E ∈ ZB ⊆ P, where (below, 0 denotes the zero CFPS in F(X))

ZB
4= φ−1

B (0) .

The equality problem reduces therefore to the membership problem for ZB, for which we will

now give an algorithm. In general terms, given E ∈ P , suppose we want to decide if E ∈ ZB.

Note that, by virtue of Lemma 4.3, we can assume w.l.o.g. that E ∈ P0(Σ). We shall rely

mainly on Corollary 4.9. Consider now the chain of sets A0 ⊆ A1 ⊆ · · · ⊆ P0(Σ) defined as:

A0
4= {E} Ai+1

4= Ai ∪ {δΣ(F, x) : F ∈ Ai, x ∈ X} . (7)

Let m ≥ 0 be the least integer such that either: (a) there exists F ∈ Am s.t. F (ρ) 6= 0; or

(b) no such F ∈ Am exists, but Am+1 ⊆ Im, where, for each i ≥ 0, Ii
4=
〈
Ai
〉

is the ideal in

P0(Σ) generated by Ai. The algorithm returns “No” if (a) occurs, and “Yes” if (b) occurs.

Note that the Ii’s, i ≥ 0, form an ascending chain of ideals in P0(Σ), which must stabilize in

a finite numbers of steps (by Hilbert’s basis theorem). Moreover, the inclusion Am+1 ⊆ Im
is decidable (by Gröbner basis construction). This ensures termination and effectiveness of

the outlined algorithm. Concerning its correctness, we premise the following lemma, which

implies that we can effectively detect stabilization of the sequence of the ideals Ii s.

I Lemma 5.2. Let Σ be coherent and finite-parameter. Suppose Am+1 ⊆ Im. Then Im =
Im+j for each j ≥ 1.

I Corollary 5.3 (membership checking). Let Σ be coherent and finite-parameter, ρ an initial

data specification for Σ and E ∈ P0(Σ). Then φB(E) = 0 if and only if the above algorithm

returns “Yes”.

Proof. “No” is returned in case (a) occurs: as Am consists precisely of all δΣ(E, τ) such that

|τ | ≤ m, this implies that φB(E) 6= 0, by virtue of (6). Assume on the other hand “Yes” is

returned, that is case (b) of the algorithm occurs. Then by Lemma 5.2, I0 ⊆ · · · ⊆ Im =
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Im+1 = Im+2 = · · · : therefore Im contains in effect every δΣ(E, τ) such that τ ∈ X⊗. As ρ

makes all polynomials in Am vanish, by the definition of ideal ρ also makes all polynomials

in Im =
〈
Am

〉
vanish. As a consequence, (δΣ(E, τ))(ρ) = 0 for all τ ∈ X⊗, which, from

Corollary 4.9, implies that φB(E) = 0. J

I Example 5.4 (Burgers’ equation). Consider the following system, which is a special case of

Burgers’ equation [1, 9]

ut = −u · ux ux = 1
t+ 1 .

To code up this system, we fix X = {t, x} and U = {u, v}, where v represents 1/(t+ 1), and

let

Σ = {ut = −u · ux, ux = v, vt = −v2, vx = 0} . (8)

As Pa(Σ) = {u, v}, the system is finite-parameter. Σ can be checked to be consistent – in

particular there is a unique equation in Σ∞ for utx, that is utx = −v2. Moreover, with the

lexicographic order induced by u > v and t > x, Σ is coherent. Now fix ρ(u) = ρ(v) = 1 as an

initial data specification and let E
4= u− (x+ 1)v. We check that E = 0 is a valid equation

for the initial value problem B = (Σ, ρ), that is E ∈ ZB, applying the above algorithm.

We have: A0 = {E} and A1 = {E} ∪ {δΣ(E, t), δΣ(E, x)} = {E} ∪ {−v · E, 0}. As trivially

{0,−v · E} ⊆
〈
{E}

〉
= I0, and E(ρ) = (−v · E)(ρ) = 0, the algorithm returns “Yes”. Note

that the validity of E = 0 implies that u = (x+ 1)v = x+1
t+1 , v = 1

t+1 yield a solution of B.

Finally, relying on the ascending chain (7), we devise a complete algorithm to compute

the set of initial data specifications under which a given equation E is valid in Σ – so to

speak, the weakest precondition of E.

I Corollary 5.5 (weakest precondition). Let Σ be coherent and finite-parameter, E ∈ P0(Σ).

Let Im+1 = Im. Then {ρ ∈ Rk0 : φ(Σ,ρ)(E) = 0} = V (X ∪Am).

I Example 5.6 (Burgers’ equation, continued). Consider again the system Σ in (8) and

E = u− v · (x+ 1). As I1 = I0 =
〈
{E}

〉
, we see that the set of ρ’s under which E is valid

is V (X ∪ {E}); that is, those ρ’s such that ρ(t) = ρ(x) = 0 and ρ(u) = ρ(v).

I Remark 5.7 (complexity). Procedures for computing Gröbner bases, such as Buchberger’s

algorithm, have a very high worst-case time and space complexity – exponential in the

number of variables and the degree of the involved polynomials, see [10]. The number of

steps m before the chain (7) stabilizes can also depend super-exponentially on the number of

variables and their degrees, see [19]. This theoretical complexity is of course inherited by

our algorithms. On the other hand, Gröbner basis algorithms have shown to behave well in

many practical cases: this suggests that an assessment of our algorithms based on concrete

case studies might be more informative than a purely complexity theoretical one. We leave a

systematic exploration of this more pragmatical aspect for future work.

6 Conclusion, further and related work

We have put forward a coalgebraic framework for PDEs, that yields a clean proof of existence

and uniqueness of solutions of initial value problems, and complete algorithms for checking

equivalence of differential polynomial expressions, under a finite-parameters assumption. To

the best of our knowledge, no such characterization and completeness results for PDEs exist
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in the literature. As for future work, we plan to explore extensions of the present results to

postconditions: computing at once the most general, in a precise sense, consequences of a

given algebraic set of initial data specifications. This would also permit to automatically

discover valid equations, rather than just check given ones.

Conceptually, the present development parallels in part our previous work on polynomial

ODEs [5, 7]. Technically, the case of PDEs is by far more challenging, for the following

reasons. (a) Existence of solutions, and of the transition structure itself, depends now on

coherence, which is trivial in ODEs. (b) In PDEs, differential polynomials live in the infinite-

indeterminates space P , which requires reduction to P0(Σ) via S and a finiteness assumption

on parametric derivatives; in ODEs, P = P0(Σ) always has finitely many indeterminates.

An operational view of functions and differential equations similar to ours has been

considered elsewhere in the literature on coalgebras [20, 27]. In particular, it is at the basis

of Rutten’s calculus of behavioural differential equations [27]. In this calculus, neither PDEs

nor equivalence algorithms are considered, though. Algorithms for equivalence checking are

presented in [4, 3], limited to linear weighted automata: in terms of differential equations,

these basically correspond to linear ODEs.

In the field of formal methods, we are aware of the work by Boldo et al. [2], who apply

theorem proving to the formal verification of a numerical PDE integrator written in C.

Platzer, in his work on differential hybrid games [22], relies on certain Hamilton-Jacobi type

PDEs in order to define a solution concept for differential games. These works pursue goals

rather different from ours, though.

Our work is also related to the field of Differential Algebra. In the classical exposition,

coherent systems correspond to Riquier-Janet’s orthonomic passive systems [24, 12], further

developed by Thomas [30]. A modern presentation of orthonomic passive systems is in

Marvan’s [18]. A more geometrical approach is followed by Reid et al. [23, 26]. The work

of Riquier, Janet and Thomas is the root of what is nowadays known as Ritt-Kolchin’s

Differential Algebra (DA) [25, 14]. Recent developments of DA include the work by the

French school, especially Boulier et al., see e.g. [8, 16]. The relationship of our coalgebraic

framework with DA is not yet entirely clear and deserves further investigation.
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[cs.SE]. Université des Sciences et Technologie de Lille - Lille, 2002. URL: https://tel.

archives-ouvertes.fr/tel-00001363/document.

17 F. Lemaire. An Orderly Linear PDE System with Analytic Initial Conditions with a Non-

analytic Solution. J. Symb. Comput., 35(5):487–498, May 2003. doi:10.1016/S0747-7171(03)

00017-8.

18 M. Marvan. Sufficient Set of Integrability Conditions of an Orthonomic System. Foundations

of Computational Mathematics, 9(6):651–674, 2009.

19 D. Novikov and S. Yakovenko. Trajectories of polynomial vector fields and ascending chains of

polynomial ideals. Annales de l’Institut Fourier, 49(2):563–609, 1999. doi:10.5802/aif.1683.
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