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Abstract
The square of a graph H, denoted H2, is obtained from H by adding new edges between two distinct
vertices whenever their distance in H is two. The half-squares of a bipartite graph B = (X, Y, EB)
are the subgraphs of B2 induced by the color classes X and Y , B2[X] and B2[Y ]. For a given graph
G = (V, EG), if G = B2[V ] for some bipartite graph B = (V, W, EB), then B is a representation
of G and W is the set of points in B. If in addition B is planar, then G is also called a map graph
and B is a witness of G [Chen, Grigni, Papadimitriou. Map graphs. J. ACM , 49 (2) (2002) 127-138].

While Chen, Grigni, Papadimitriou proved that any map graph G = (V, EG) has a witness with
at most 3|V | − 6 points, we show that, given a map graph G and an integer k, deciding if G admits
a witness with at most k points is NP-complete. As a by-product, we obtain NP-completeness of
edge clique partition on planar graphs; until this present paper, the complexity status of edge
clique partition for planar graphs was previously unknown.

We also consider half-squares of tree-convex bipartite graphs and prove the following complexity
dichotomy: Given a graph G = (V, EG) and an integer k, deciding if G = B2[V ] for some tree-convex
bipartite graph B = (V, W, EB) with |W | ≤ k points is NP-complete if G is non-chordal dually
chordal and solvable in linear time otherwise. Our proof relies on a characterization of half-squares of
tree-convex bipartite graphs, saying that these are precisely the chordal and dually chordal graphs.
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1 Introduction

Map graphs, introduced and investigated in [5, 6], are intersection graphs of simply-connected
and interior-disjoint regions of the Euclidean plane; each region is homeomorphic to a closed
disc. More precisely, a map of a graph G = (V, EG) is a function M taking each vertex
v ∈ V to a region M(v) in the plane, such that all M(v), v ∈ V , are interior-disjoint,
and two distinct vertices v and v′ of G are adjacent if and only if the boundaries ofM(v)
andM(v′) intersect, even in a point. A map graph is one having a map. Map graphs are
interesting as they generalize planar graphs in a very natural way. Some applications of map
graphs have been addressed in [8]. Papers dealing with hard problems in map graphs include
[4, 9, 10, 11, 13, 14].

In [5, 6], the notion of half-squares of bipartite graphs has been also introduced in order
to give a combinatorial representation of map graphs. The square of a graph H, denoted H2,
is obtained from H by adding new edges between any two vertices at distance two in H.
For a bipartite graph B = (X, Y, EB), the subgraphs of the square B2 induced by the
color classes X and Y , B2[X] and B2[Y ], are called the two half-squares of B. For a given
graph G = (V, EG), if G = B2[V ] for some bipartite graph B = (V, W, EB), then B is a
representation or a half-root of G and W is the set of points in B. While every graph is a
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13:2 Constrained Representations of Map Graphs and Half-Squares

half-square of some bipartite graph, it turns out that map graphs are exactly half-squares
of planar bipartite graphs [5, 6]. If G = (V, EG) is a map graph and B = (V, W, EB) is a
planar representation of G, then B is called a witness of G. See Figure 1 for an example.
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Figure 1 A map graph G, a mapM, and a witness B of G.

It is perhaps important to note at this place that one of the difficulties in recognizing
map graphs is that we do not know the set of points of a witness we are looking for. It is
shown in [5, 6] that an n-vertex graph G = (V, EG) is a map graph if and only if it has a
witness B = (V, W, EB) with |W | ≤ 3n − 6 points, implying that recognizing map graphs
is in NP. Subsequently, Thorup [28] announced that recognizing map graphs is in P by
giving an Ω(n120)-time algorithm for n-vertex input graphs.1 Thorup’s algorithm is very
complex and highly non-combinatorial. Given the very high polynomial degree in Thorup’s
running time, the most discussed problem concerning map graphs is whether there is a faster
recognition algorithm with simpler arguments for map graphs.

One direction in attacking this problem is to consider map graphs with restricted witness.
Structural results and more efficient recognition algorithms for map graphs with restricted
witness will enhance our understanding on map graphs in whole. More generally, let B be a
class of (not necessarily planar) bipartite graphs, the following problem has been discussed
first by Le and Le [18].

B representation
Instance: A graph G = (V, EG).
Question: Does there exist a bipartite graph B = (V, W, EB) in B with G = B2[V ]?

Recall that in case B is the class of all planar bipartite graphs, planar representation
is the problem of recognizing map graphs, which admits an Ω(n120)-time algorithm due to
Thorup. Recall also that every map graph has a witness B = (V, W, EB) with |W | ≤ 3|V |− 6
due to Chen et al. [5, 6]. This motivates considering the following problem.

point minimal B representation
Instance: A graph G = (V, EG) and an integer k.
Question: Does there exist a bipartite graph B = (V, W, EB) in B with G = B2[V ]

and |W | ≤ k?

In case B is the class of all bipartite graphs, we simply denote the problem by point minimal
representation.

This paper considers the cases where B is one of the classes of (planar) bipartite graphs
of a given girth, of tree-convex bipartite graphs, and of tree-biconvex bipartite graphs. All
terms used are given in the next section.

1 Thorup did not give the running time explicitly, but it is estimated to be roughly Ω(n120) with n being
the vertex number of the input graph; cf. [6].
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Our contributions. We first consider map graphs with witness of large girth and, more
generally, half-squares of bipartite graphs of large girth, and prove the following complexity
dichotomy for minimal point (planar) girth-g representation: Given a (map) graph
G = (V, EG) and an integer k, deciding if G = B2[V ] for some (planar) bipartite graph B =
(V, W, EB) of girth at least g with |W | ≤ k points is NP-complete for g ≤ 6 and polynomially
solvable otherwise. The case g ≥ 8 is based on our previous paper [19], and the case g ≤ 6 is
based on a close connection to the well-known NP-complete problems edge clique cover
and edge clique partition. It is perhaps interesting to note that, while recognizing map
graphs is in P due to Thorup, our hardness result in case g = 4 says that the problem
becomes intractable if we ask for a witness with few points. In case g = 6, our result implies
that edge clique partition is NP-complete for planar graphs. (The complexity status
of this problem for planar graphs was previously unknown.) We then consider half-squares
of tree-convex bipartite graphs, and prove the following complexity dichotomy for minimal
point tree-convex representation: Given a graph G = (V, EG) and an integer k,
deciding if G = B2[V ] for some tree-convex bipartite graph B = (V, W, EB) with |W | ≤ k

points is NP-complete for non-chordal dually chordal graphs G and solvable in linear time
otherwise. We obtain this result by proving that half-squares of tree-convex bipartite graphs
are exactly the chordal and dually chordal graphs. We also show that minimal point
tree-biconvex representation can be solved in linear time by proving that half-squares
of tree-biconvex bipartite graphs are precisely the double chordal graphs. Our results on
half-squares of tree-(bi)convex bipartite graphs settle the question left open in [18].

Related work. The first restricted representations of map graphs have been considered
in [5, 6] which lead to the so-called k-map graphs; k-map graphs are map graphs having a
witness in which every point has at most k neighbors. It turns out that, for k ≤ 3, k-map
graphs are precisely the planar graphs. 4-map graphs can be recognized in cubic time [1], and
are related to 1-planar graphs [1, 7], a relevant topic in graph drawing. Recognizing k-map
graphs, k ≥ 5, in polynomial time still remains open. (We remark that Thorup’s algorithm
cannot be used to recognize map graphs having witness with additional properties.)

Mnich et al. [25] considered map graphs with outerplanar witness and tree witness, and
showed that such map graphs can be recognized in linear time. Map graphs with witness of
a given girth and, more generally, half-squares of bipartite graphs of a given girth have been
considered in the recent paper [19]. It is shown in that paper that half-squares of (planar)
bipartite graphs of girth at least 8 admit good characterizations, leading to cubic time
recognition algorithms. In [18], half-squares of classical bipartite graphs, such as biconvex,
convex, and chordal bipartite graphs, have been studied. It turns out that half-squares of
biconvex, convex, and chordal bipartite graphs (all are subclasses of tree-(bi)convex bipartite
graphs) are exactly the proper interval, interval, and strongly chordal graphs, respectively.

The paper is organized as follows. All definitions and notion needed are provided in
the next section. Section 3 first collects known results on half-squares of (planar) bipartite
graphs of large girth, and then provides a dichotomy theorem for point minimal girth-g
(planar) representation. Section 4 deals with half-squares of tree-convex and tree-
biconvex bipartite graphs, and provides a dichotomy theorem for point minimal tree-
convex representation. Section 5 concludes the paper with some open problems for
future work.

MFCS 2019



13:4 Constrained Representations of Map Graphs and Half-Squares

2 Preliminaries

All graphs considered are simple and connected. Let G = (V, EG) be a graph with vertex
set V (G) = V and edge set E(G) = EG. A stable set (a clique) in G is a set of pairwise
non-adjacent (adjacent) vertices. The complete graph on n vertices and the cycle with n

vertices are denoted Kn and Cn, respectively. A K3 is also called a triangle. The diamond,
denoted K4 − e, is the graph obtained from the K4 by deleting an edge.

The neighborhood of a vertex v in G, denoted NG(v), is the set of all vertices in G

adjacent to v; if the context is clear, we simply write N(v). A universal vertex v in G is one
with N(v) = V \ {v}, i.e., v is adjacent to all other vertices in G.

Let F be a graph. F -free graphs are those having no induced subgraphs isomorphic to F .
Chordal graphs are precisely the Ck-free graphs, k ≥ 4. A dually chordal graph G is one in
which every connected component H of G admits a spanning tree T such that every maximal
clique of H induces a subtree in T .2 Graphs that are both chordal and dually chordal are
called double chordal. While chordal graphs are closed under taking induced subgraphs,
dually chordal graphs and double chordal graphs are not. Strongly chordal graphs are those
graphs G such that every induced subgraph of G is double chordal. See [15, 24, 27] for more
information on these graph classes. Additional information on dually chordal graphs can
be found in [2]. We will use the well-known facts that chordal and dually chordal graphs,
hence double chordal graphs, can be recognized in linear time [15, 27, 2], and that any
n-vertex chordal graph has at most n maximal cliques and all of them can be listed in linear
time [15, 27].

For a subset W ⊆ V , G[W ] is the subgraph of G induced by W , and G−W stands for
G[V \W ]. For a vertex v, G − v stands for G − {v}. We will consider map graphs with
large-girth witness and, more generally, half-squares of bipartite graphs of large girth. Here,
the girth of a graph is the minimum length of a cycle in that graph. (Thus, a graph has
girth at least g if and only if it is Ck-free for all k < g.) We will also consider half-squares of
tree-convex bipartite graphs, a problem left open in [18]. A bipartite graph B = (X, Y, EB)
is tree-convex on X if there exists a tree T = (X, ET ) such that, for each y ∈ Y , N(y)
induces a subtree in T . Being tree-convex on Y is defined similarly. B is tree-convex if it is
tree-convex on X or tree-convex on Y . B is tree-biconvex if it is both tree-convex on X and
tree-convex on Y . A well-known subclass of tree-biconvex bipartite graphs consists of the
chordal bipartite graphs, i.e., bipartite graphs containing no induced cycle of length at least
six. Liu [21] discusses relationships between tree-convex bipartite graphs and other classical
classes of bipartite graphs.

point minimal B representation is related to two well-studied problems. An edge
clique cover of a graph G is a family of cliques C in G such that every edge of G is contained
in one or more cliques in C. An edge clique partition of G is an edge clique cover C of G such
that every edge of G is contained in exactly one clique in C. The two well-studied problems
are:

edge clique cover
Instance: A graph G = (V, EG) and an integer k.
Question: Does G have an edge clique cover of size k or less?

2 Dually chordal graphs haven been studied under different names and admit various characterizations.
The chosen definition is dependent on our purpose.
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edge clique partition
Instance: A graph G = (V, EG) and an integer k.
Question: Does G have an edge clique partition of size k or less?

edge clique cover is NP-complete [26, 17], and remains NP-complete on planar graphs [3]
and on complements of bipartite graphs [20]. We will use the fact that edge clique cover is
solvable in linear time on chordal graphs [23]. The monograph [24] provides more information
on edge clique covers.

edge clique partition is NP-complete [26, 16], and remains NP-complete on K4-free
graphs [22]. In contrast to edge clique cover, edge clique partition is NP-complete
on chordal graphs, even on split graphs [30]. edge clique partition on planar graphs has
been considered in [12]; the complexity status of this problem on planar graphs was unknown
until our present work.

Let C be an edge clique cover of a graph G = (V, EG). The vertex-C incidence bipartite
graph of G is BC = (V, C, EB) with EB = {vC | v ∈ V, C ∈ C, v ∈ C}. If C = C(G), the set of
all maximal cliques in G, then BC is called the vertex-clique incidence bipartite graph of G

and usually denoted by BG.

I Fact 1.
(i) For any graph G = (V, EG) and any edge clique cover C of G, G = B2

C[V ]. If C is in
addition an edge clique partition, then BC is C4-free.

(ii) For any graph G = (V, EG) and any bipartite graph B = (V, W, EB) with G = B2[V ],
C = {NB(w) | w ∈W} is an edge clique cover of G. If B is in addition C4-free, then C
is an edge clique partition of G.

Proof. (i): For all vertices x, y ∈ V we have xy ∈ EG ⇔ x, y ∈ C for some C ∈ C ⇔ xC and
yC are edges of BC for some C ∈ C ⇔ xy ∈ E(B2

C [V ]). If C is an edge clique partition, then,
for any two distinct cliques C, C ′ ∈ C, C and C ′ have at most one vertex in common. Hence,
BC is a C4-free.

(ii): If G = B2[V ] for some bipartite graph B = (V, W, EB), then any edge of G is in a
clique NB(w) for some w ∈W , hence {NB(w) | w ∈W} is an edge clique cover of G. If, in
addition, B is C4-free, then |NB(w) ∩NB(w′)| ≤ 1 for any two distinct points w, w′ ∈ W .
Hence {NB(w) | w ∈W} is an edge clique partition of G. J

Thus,
point minimal representation and edge clique cover, and
point minimal C4-free representation and edge clique partition

are computationally equivalent.

3 Girth-constrained representations

This section deals with half-squares of (planar) bipartite graphs of large girth. In [18], the
following useful fact has been observed, and used in [19] in discussing half-squares of bipartite
graphs with girth constraints.

I Lemma 1 ([18]). Let G = B2[V ] for some bipartite graph B = (V, W, EB). If B has no
induced cycle of length six, then every maximal clique Q in G stems from a star in B, i.e.,
there is a point w ∈W such that Q = NB(w).

We will also use this fact when considering point minimal representations of half-squares
and map graphs.

MFCS 2019



13:6 Constrained Representations of Map Graphs and Half-Squares

3.1 Half-squares of girth-constrained bipartite graphs
Recall that every graph is a half-square of a girth-six bipartite graph (take its subdivision).
Half-squares of bipartite graphs of large girth have been fully characterized as follows.

I Theorem 2 ([19]). Let t ≥ 4 be an integer. The following statements are equivalent for
every graph G = (V, EG).
(i) G is a half-square of a bipartite graph with girth at least 2t;
(ii) G is diamond-free and C`-free for every 4 ≤ ` ≤ t− 1;
(iii) The vertex-clique incidence bipartite graph BG of G has girth at least 2t.

Theorem 2 implies that half-squares of bipartite graphs of large girth can be recognized
in cubic time (cf. [19]).

By definition, every map graph is a half-square of a planar bipartite graph. Though map
graphs can be recognized in polynomial time due to Thorup, no good characterization for
map graphs is known so far. Map graphs of planar bipartite graphs of large girth have been
fully characterized as follows.

I Theorem 3 ([19]). Let t ≥ 4 be an integer. The following statements are equivalent for
every graph G = (V, EG).
(i) G is a map graph having a witness of girth at least 2t;
(ii) G is diamond-free and C`-free for every 4 ≤ ` ≤ t− 1, and the vertex-clique incidence

bipartite graph BG of G is planar;
(iii) The vertex-clique incidence bipartite graph BG of G is planar and has girth at least 2t.

Theorem 3 implies that map graphs with witness of large girth can be recognized in time
O(n2m) (cf. [19]). No good characterization of map graphs with girth-six witness is known
so far. It is also not known whether these map graphs can be recognized efficiently. Note
that every planar graph has a girth-six witness, e.g., its subdivision.

3.2 Point minimal girth-constrained representations
This subsection deals with half-squares of (planar) bipartite graphs with girth constraints.
We first consider the non-planar case.

Recall that, by Fact 1, point minimal representation is equivalent to edge clique
cover, and thus is NP-complete. Also by Fact 1, point minimal C4-free representation
is equivalent to edge clique partition, and thus is NP-complete. Notice that C4-free
bipartite graphs and bipartite graphs of girth at least six coincide.

Now, let t ≥ 4 be an integer and assume G = B2[V ] for some bipartite graph B =
(V, W, EB) of girth at least 2t. By Lemma 1, any maximal clique in G is a neighborhood of
some w ∈W , implying |W | ≥ |C(G)|. Thus, by Theorem 2, BG is a minimal point girth-2t

representation for G. Note that, in this case, C(G) can be computed in polynomial time
(cf. [19]), hence we obtain:

I Theorem 4. point minimal girth-at-least-2t representation is NP-complete for
t ≤ 3 and solvable in polynomial time otherwise.

In the remainder of this subsection, we deal with the planar case. We first consider the
girth-four witness case, i.e., no girth condition is made. Recall that any map graph with
n vertices has a witness with at most 3n− 6 points. We are going to show that finding a
witness with minimal number of points is hard. We will use the fact that edge clique
cover remains NP-complete on maximal planar graphs without triangle-separators. More
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precisely, it was shown in [3], that edge clique cover remains NP-complete for plane
triangulations in which every triangle is a face. Observe that such a triangulation does not
contain any 4-clique K4, unless the whole graph is a K4. Thus, we may further assume that
all plane triangulations considered are K4-free.

I Theorem 5. point minimal planar representation is NP-complete, even when
restricted to planar graphs.

Proof. Let G = (V, EG) be a plane triangulation in which every triangle is a face, and let k

be an integer. We will argue that G has an edge clique cover of size k or less if and only if G

has a witness B = (V, W, EB) with |W | ≤ k.
First, assume G has an edge clique cover C with |C| ≤ k. Note that we can assume that

every clique in C is a triangle. Then, as any triangle in G is a face of the plane triangulation G,
the vertex-C incidence bipartite graph BC = (V, C, EB) is planar. Indeed, BC is obtained
from G by

inserting a point wT in the face T , T ∈ C, and
connecting wT with the three vertices of the triangle T , and
deleting all edges of G.

See also Figure 2. By Fact 1, as C is an edge clique cover of G, G = B2
C[V ], and by

construction, BC has |C| ≤ k points.
Next, assume that G = H2[V ] for some (planar) bipartite graph H = (V, W, EH) with

|W | ≤ k. Then, by Fact 1, NH(w), w ∈ W , form an edge clique cover of G with |W | ≤ k

cliques. (Notice that, in this direction, we do not use the fact that H is planar. Any half-root
of G with at most k points works.) J
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Figure 2 A triangulation G with the edge clique cover C consisting of the eight triangles
126, 278, 389, 349, 145, 567, 579, and 123, and the planar bipartite graph BC obtained from G and C.

We next consider the girth-six witness case. Recall that every planar graph has a witness
of girth six. We are going to show that finding a witness of girth six with minimal number of
points is hard. In a graph, a set of pairwise edge-disjoint triangles is called an independent
triangle set. In [29], Uehara considered the following problem:

independent triangle set
Instance: A graph G = (V, EG) and an integer k.
Question: Does G have k or more pairwise edge-disjoint triangles?

Uehara [29] proved that the independent triangle set, restricted to plane triangulations,

MFCS 2019
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is NP-complete. Chang and Müller [3] observed that independent triangle set is NP-
complete even on plane triangulations in which every triangle is a face. (We leave the details
to the full version.) Recall that we may further assume that all such plane triangulations are
K4-free.

I Theorem 6. point minimal planar girth-6 representation is NP-complete, even
when restricted to planar graphs.

Proof. Let G = (V, EG) be a plane triangulation without K4 in which every triangle is a
face, and let k be an integer. We will argue that G has k edge-disjoint triangles if and only if
there is a C4-free planar bipartite graph B = (V, W, EB) with G = B2[V ] and |W | ≤ m− 2k.
(As usual, m denotes the edge number of G.)

First, assume G has k edge-disjoint triangles T1, . . . , Tk. We construct a bipartite graph
B = (V, W, EB) as follows; let F be the set of all edges of G not belonging to any triangle
Ti, 1 ≤ i ≤ k. For each 1 ≤ i ≤ k, wi is a point in W corresponding to Ti, and for each
edge e ∈ F , we is a point in W corresponding to e. Then, B is the V -W incidence bipartite
graph. Thus, W = {w1, . . . , wk} ∪ {we | e ∈ F}, and EB = {vwi | v ∈ V, v ∈ Ti, 1 ≤ i ≤
k} ∪ {vwe | v ∈ V, v ∈ e ∈ F}. Obviously, B is planar. Indeed, B is obtained from the plane
triangulation G by

inserting a point wi in the face Ti, 1 ≤ i ≤ k, and connecting wi with the three vertices
of Ti,
subdividing each edge e ∈ F by a point we, and
deleting all edges in T1 ∪ . . . ∪ Tk.

Now, as each of the triangles Ti is a face of the plane triangulation G, B is clearly planar.
Since {T1, . . . , Tk} ∪ F is an edge clique cover of G, G = B2[V ]. Since the triangles Ti

are edge-disjoint, |NB(wi) ∩ NB(wj)| ≤ 1 for 1 ≤ i, j ≤ k, i 6= j, and by definition of F ,
|NB(we) ∩NB(w)| ≤ 1 for all e ∈ F , w ∈W \ {we}. That is, B is C4-free. Moreover, B has
|W | = k + |F | = m− 2k points.

Next, assume that G = H2[V ] for some (planar) C4-free bipartite graph H = (V, W, EH)
with |W | ≤ m−2k. Among all such bipartite graphs, let H have minimal number of points |W |.
Since G is K4-free, |NH(w)| ≤ 3 for all w ∈W . Since |W | is minimal, |NH(w)| ≥ 2, and every
two points have distinct neighborhoods. Let w1, . . . , wk′ be the degree-3 points in W . Then,
as H is C4-free, NH(wi), 1 ≤ i ≤ k′, are k′ edges-disjoint triangles in G. Since G = H2[V ],
G has m = 3k′ + (|W | − k′) = |W |+ 2k′ ≤ m− 2k + 2k′ edges. Therefore, k′ ≥ k. That is,
G has at least k edges-disjoint triangles. J

Since, by Fact 1, point minimal girth-6 representation and edge clique partition
are equivalent, Theorem 6 implies:

I Corollary 7. edge clique partition is NP-complete on planar graphs.

We remark that the complexity of edge clique partition on planar graphs was
previously unknown until this work (cf. [12]). Actually, the proof of Theorem 6 implies that
edge clique partition is NP-complete even for K4-free maximal plane graphs in which
every triangle is a face.

Now, let t ≥ 4 be an integer, and assume that G = B2[V ] for some planar bipartite
graph B = (V, W, EB) of girth at least 2t. By Lemma 1, any maximal clique in G is a
neighborhood of some point w ∈W , implying |W | ≥ |C(G)|. Thus, by Theorem 3, BG is a
minimal point planar girth-2t representation for G. Note that, in this case, C(G) can be
computed in polynomial time (cf. [19]), hence, by Theorems 5 and 6 we obtain:
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I Theorem 8. point minimal planar girth-at-least-2t representation is NP-comp-
lete for t ≤ 3 and solvable in polynomial time otherwise.

4 Tree-convex representations

Recall that a bipartite graph B = (X, Y, EB) is tree-convex on X (resp. Y ) if there is a
tree T on vertex set X (resp. Y ) such that the neighborhood of any vertex y ∈ Y (resp.
x ∈ X) forms a subtree in T . B is tree-biconvex if it is both tree-convex on X and on Y . In
this section we first characterize and recognize half-squares of tree-convex bipartite graphs
and half-squares of tree-biconvex bipartite graphs. Characterizing and recognizing these
half-squares have been left open in [18]. We then discuss the problem of determining such a
representation with minimal number of points.

4.1 Half-squares of tree-convex bipartite graphs

In this section, we characterize half-squares of tree-convex bipartite graphs and of tree-
biconvex bipartite graphs. It turns out that these are precisely the chordal and dually chordal
graphs, and the double chordal graphs, respectively. We will use the following well known
characterizations of chordal graphs which are classical by now (cf. [15, 24]).

I Theorem 9. The following statements are equivalent for any graph G = (V, E):
(i) G is chordal;
(ii) G is the vertex-intersection graph of subtrees in a tree: There are subtrees Tv, v ∈ V ,

of a tree T such that, for any pair of vertices u, v of G, uv ∈ E if and only if Tu and
Tv have a vertex in common;

(iii) G has a clique tree: There is a tree T on the maximal cliques of G with the property
that, for any vertex v of G, the cliques containing v form a subtree of T .

I Lemma 10. Let B = (X, Y, EB) be a bipartite graph. If B is tree-convex on Y , then
B2[X] is chordal and B2[Y ] is dually chordal.

Proof. Let B be tree-convex with an associated tree T = (Y, ET ) such that, for each v ∈ X,
NB(v) induces a subtree in T .

Then, by Theorem 9 (ii), B2[X] is chordal. We now show that G = B2[Y ] is dually
chordal. Note that we may assume that G is connected. Then T is a spanning tree of G.
Indeed, consider an edge y1y2 of T , and let T1 and T2 be the two subtrees of T − y1y2
containing y1 and y2, respectively. Since G = B2[Y ] is connected, some vertex x ∈ X must
have neighbors, in B, in both T1 and T2. Since NB(x) is a subtree of T , both y1 and y2
must be neighbors of such a vertex x. Therefore, y1y2 is an edge of B2[V ] = G, and hence T

is a spanning tree of G as claimed. Now, consider an arbitrary maximal clique C of G,
and suppose that T [C] is not connected. Let T1, . . . , Tq be the connected components of
T [C]. Let y 6∈ T [C] such that there is a connected component of T − y contains only one of
T1, . . . , Tq, say T1. (As T is a tree, such vertex y exists.) Now, since C is a clique in G, for
each w ∈ T1 and w′ ∈ Ti, 2 ≤ i ≤ q, there is some v ∈ X adjacent in B to both w and w′.
Since T [N(v)] is a subtree, v therefore must be adjacent in B to y. Thus, y is adjacent in G

to every w ∈ T1 and every w′ ∈ Ti, 2 ≤ i ≤ q. This contradicts the fact that C is a maximal
clique in G. Thus, for any maximal clique C of G, T [C] is a subtree in T , hence G is dually
chordal. J
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It follows from Lemma 10 that half-squares of tree-biconvex bipartite graphs are double
chordal. The following lemma characterizes chordal graphs, dually chordal graphs and double
chordal graphs in terms of their vertex-clique bipartite graphs.

I Lemma 11. Let G = (V, EG) be a graph and let BG = (V, C(G), EB) the vertex-clique
incidence bipartite graph of G. Then:
(i) G is chordal if and only if BG is tree-convex on C(G).
(ii) G is dually chordal if and only if BG is tree-convex on V .
(iii) G is double chordal if and only if BG is tree-biconvex.

Proof. (i): Let G be a chordal graph. By Theorem 9 (iii), G has a clique tree T . By definition
of BG and of T , for each v ∈ V , NBG

(v) = {C ∈ C(G) | v ∈ C} induces a subtree in T . That
is, BG is tree-convex on C(G). The conserve follows from Lemma 10 with B = BG, where
X = V and Y = C(G). (Recall that G = B2

G[V ] = B2[X].)
(ii): Let G be a (connected) dually chordal graph, and let T = (V, ET ) be a spanning tree

of G such that, for each maximal clique C of G, T [C] is a subtree of T . Then, by definition
of BG, for each w ∈W , NBG

(w) is a maximal clique in G, hence NBG
(w) induces a subtree

in T . The converse follows from Lemma 10 with B = BG, where X = C(G) and Y = V .
(iii): This part immediately follows from (i) and (ii). J

By Lemmas 10 and 11 we obtain:

I Theorem 12.
(i) A graph is a half-square of a tree-convex bipartite graph if and only if it is chordal or

dually chordal.
(ii) Half-squares of tree-biconvex bipartite graphs are exactly the double chordal graphs.

Since chordal and dually chordal graphs, hence double chordal graphs, can be recognized
in linear time, we obtain from Theorem 12:

I Corollary 13. Deciding if a given graph is a half-square of a tree-(bi)convex bipartite graph
can be done in linear time.

4.2 Point minimal tree-convex representations
In the remainder of this section, we first show that point minimal tree-biconvex rep-
resentation is solvable in linear time and then prove a complexity dichotomy theorem for
point minimal tree-convex representation.

We will show that, in fact, 〈G, k〉 is a yes-instance for point minimal tree-biconvex
representation if and only if G is double chordal and k is at least the number of max-
imal cliques of G, k ≥ |C(G)|. If we ask for a tree-convex (not necessarily tree-biconvex)
representation, k may be much smaller than |C(G)|. See Figure 3 for an example.

The following fact will be useful in later discussions:

I Lemma 14. Let B = (X, Y, EB) be tree-convex on Y . Then, for each maximal clique C

of B2[X], there is some y ∈ Y with C = NB(y).

Proof. Let T = (Y, ET ) be a tree such that, for any x ∈ X, T [NB(x)] is a subtree of T .
Let C be a maximal clique in B2[X]. Let y ∈ T be a vertex with maximum |NB(y) ∩ C|.
Suppose there is some x ∈ C \ NB(y). Let w ∈ T be a neighbor of x in B that is closest
to y in T , and let Tw be the connected component of T − wy′ containing w, where wy′

is the w-edge on the w, y-path in T (possibly y′ = y). Since B is tree-convex on Y with
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Figure 3 A double chordal graph G (top left), a point minimal tree-convex, not tree-biconvex,
half-square root B (top right) and a point minimal tree-biconvex half-square root BG of G (bottom).

tree T , NB(x) ⊆ Tw. By the choice of y, there is some x′ ∈ NB(y) ∩ C \NB(w). As B is
tree-convex on Y with tree T , we have NB(x′) ⊆ Ty with Ty is the connected component
of T − yy′′ containing y, where yy′′ is the y-edge on the y, w-path in T (possibly y′′ = w).
Since Tw ∩ Ty = ∅, we have NB(x)∩NB(x′) = ∅. This contradicts the fact that x and x′ are
adjacent in B2[V ].

Thus, C ⊆ NB(y), and by the maximality of the clique C, C = NB(y). J

Notice that tree-convex bipartite graphs need not be C6-free, and C6-free bipartite graphs
need not be tree-convex. So, Lemma 14 and Lemma 1 are independent to each other.

I Theorem 15. point minimal tree-biconvex representation is solvable in linear
time.

Proof. Let 〈G, k〉 be an instance for point minimal tree-biconvex representation. By
Theorem 12 (ii) we may assume that G = (V, EG) is double chordal. Let B = (V, W, EG) be
an arbitrary tree-biconvex bipartite graph with G = B2[V ]. By Lemma 14, every maximal
clique C of G is the neighborhood NB(w) for some w ∈W , implying |W | ≥ |C(G)|. Therefore,
the vertex-clique incidence bipartite graph BG of G (which is tree-biconvex by Lemma 11
(iii)) is a point optimal tree-biconvex half-root of G. That is, 〈G, k〉 is a yes-instance if and
only if G is double chordal and k ≥ |C(G)|.

Finally, recall that double chordal graphs can be recognized in linear time, and that all
maximal cliques of an n-vertex chordal graph (there are at most n) can be computed in
linear time (and so BG can be constructed in linear time, too). J

We now are providing a dichotomy for point minimal tree-convex representation.
We first begin with the hardness case.

I Lemma 16. point minimal tree-convex representation is NP-complete, when
restricted to non-chordal dually chordal input graphs.

Proof. Given an instance 〈G = (V, EG), k〉 of point minimal representation, construct
an instance 〈G′, k′〉 for point minimal tree-convex representation as follows.

G′ is obtained from G by adding a new vertex u and all edges between u and all vertices
of G, i.e., u is a universal vertex of G′;
k′ := k.
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Suppose that G = B2[V ] for some bipartite graph B = (V, W, EB) with |W | ≤ k. Consider
B′ = (V ′, W ′, EB′) with V ′ = V ∪ {u}, W ′ = W and EB′ = EB ∪ {uw | w ∈W}. Then it is
easy to see that G′ = B′2[V ′]. Notice, moreover, that G′ is dually chordal (as u is a universal
vertex of G′), and B′ is tree-convex (with a star T = (V, {uv | v ∈ V })).

Conversely, if G′ = H2[V ′] for some bipartite graph H = (V ′, W, EH) with |W | ≤ k′,
regardless tree-convex or not, then clearly G = B2[V ], where B = H − u with at most k = k′

points.
Since point minimal representation (viz., clique edge cover) is NP-complete on

non-chordal graphs, point minimal tree-convex representation is NP-complete, when
restricted to non-chordal dually chordal graphs. J

For the efficient solvable cases, we need the following characterization of dually chordal
graphs which is slightly more flexible than the one stated in Lemma 11 (ii), and can be
proved along the same line. (Notice that the characterization of chordal and double chordal
graphs stated in Lemma 11 (i) and (iii), respectively, does not admit this flexibility.)

I Lemma 17. Let G = (V, EG) be a graph and let C be an edge clique cover of G in which
every member is a maximal clique. Let BC = (V, C, EB) be the vertex-C incidence bipartite
graph of G. Then G is dually chordal if and only if BC is tree-convex on V .

Notice that any edge clique cover can be modified in an obvious way to another one of
the same size that consists of maximal cliques only.

I Theorem 18. point minimal tree-convex representation is NP-complete for non-
chordal dually chordal inputs, and solvable in linear time otherwise.

Proof. Let 〈G, k〉 be an instance for point minimal tree-convex representation. By
Theorem 12, we may assume that G = (V, EG) is chordal or dually chordal (otherwise, the
output is ‘no’ as G does not have a tree-convex representation). Recall that chordal, as well
as dually chordal graphs can be recognized in linear time.

By Lemma 16, it remains to consider the case in which G is chordal. The following
procedure decides in linear time if G has a tree-convex representation with at most k points
and, if so, outputs such one.

(1) if G is double chordal then
(2) compute an optimal edge clique cover C of G that consists of
(3) maximal cliques only
(4) if k < |C| then return ‘no’
(5) return the vertex-C incidence bipartite graph BC
(6) else //G is chordal but not dually chordal
(7) if k < |C(G)| then return ‘no’
(8) return the vertex-clique incidence bipartite graph BG

Since G is chordal, an optimal edge clique cover C can be computed in linear time [23]. In
fact, the optimal edge clique cover of a chordal graph computed in [23] consists of maximal
cliques only. Also, recall that for any chordal graph G = (V, EG), C(G) consists of at most |V |
maximal cliques and all maximal cliques can be listed in linear time.

We now argue that the output of the procedure is a tree-convex representation with
at most k points (if exists). Assume first that G is dually chordal (and hence G is double
chordal). Then BC is tree-convex (on V ) by Lemma 17. Thus, by Fact 1, BC is a point
optimal tree-convex representation of G. So, the outputs at lines (4) and (5) are correct.
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In the second case, let us assume that G is not dually chordal. Then, by Lemma 10, for
any tree-convex representation B = (V, W, EB) of G, B must be tree-convex on W . Hence,
by Lemma 14, every maximal clique of G = B2[V ] is the neighborhood NB(w) for some
w ∈W , implying |W | ≥ |C(G)|. Therefore, the vertex-clique incidence bipartite graph BG

of G (which is, by Lemma 11 (i), tree-convex on C(G); recall that G is chordal) is a point
optimal tree-convex half-root of G. Thus, the outputs at lines (7) and (8) are correct. J

5 Conclusion

Though the computational complexity of minimal point planar girth-g representation
is completely determined (Theorem 8), the problem of characterizing and recognizing map
graphs with girth-6 witness is still open. Recall that, by definition, all map graphs have
a witness of girth at least 4, and that all map graphs with witness of girth g ≥ 8 admit
good characterizations which lead to simple cubic time recognition algorithms [19]. Since
any planar graph has a girth-six witness (e.g., its subdivision), it is natural to study map
graphs with girth-six witness. Thus, recognizing and characterizing map graphs with girth-six
witness are two interesting open problems.

In contrast to large-girth witnesses, maximal witnesses (i.e., maximal planar bipartite
graphs) have girth four. Recognizing and characterizing map graphs with maximal witness
are two other interesting open problems for further research.

Perhaps, another way to look for a simpler and more efficient algorithm than the one
of Thorup is to consider restricted input graphs (rather than restricted witnesses). So,
recognizing map graphs is trivial if the input graphs are planar. But it is not obvious for
other restricted graph classes; especially for graphs with arbitrary large cliques. In particular,
it seems that it is not easy to recognize chordal map graphs in polynomial time without
using Thorup’s algorithm.
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