
Better Bounds for Online Line Chasing
Marcin Bienkowski
Institute of Computer Science, University of Wrocław, Poland
marcin.bienkowski@cs.uni.wroc.pl

Jarosław Byrka
Institute of Computer Science, University of Wrocław, Poland
jaroslaw.byrka@cs.uni.wroc.pl

Marek Chrobak
University of California at Riverside, CA, USA
marek@cs.ucr.edu

Christian Coester
University of Oxford, United Kingdom
christian.coester@cs.ox.ac.uk

Łukasz Jeż
Institute of Computer Science, University of Wrocław, Poland
lukasz.jez@cs.uni.wroc.pl

Elias Koutsoupias
University of Oxford, United Kingdom
elias@cs.ox.ac.uk

Abstract
We study online competitive algorithms for the line chasing problem in Euclidean spaces Rd, where
the input consists of an initial point P0 and a sequence of lines X1, X2, ..., Xm, revealed one at
a time. At each step t, when the line Xt is revealed, the algorithm must determine a point Pt ∈ Xt.
An online algorithm is called c-competitive if for any input sequence the path P0, P1, ..., Pm it
computes has length at most c times the optimum path. The line chasing problem is a variant of
a more general convex body chasing problem, where the sets Xt are arbitrary convex sets.

To date, the best competitive ratio for the line chasing problem was 28.1, even in the plane.
We improve this bound by providing a simple 3-competitive algorithm for any dimension d. We
complement this bound by a matching lower bound for algorithms that are memoryless in the sense
of our algorithm, and a lower bound of 1.5358 for arbitrary algorithms. The latter bound also
improves upon the previous lower bound of

√
2 ≈ 1.412 for convex body chasing in 2 dimensions.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases convex body chasing, line chasing, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.8

Funding Research supported by NSF grant CCF-1536026, by Polish National Science Centre grants
2016/22/E/ST6/00499 and 2015/18/E/ST6/0045, and by ERC Advanced Grant 321171 (ALGAME).

1 Introduction

Convex body chasing is a fundamental problem in online computation. It asks for an
incrementally-computed path that traverses a given sequence of convex sets provided one
at a time in an online fashion and is as short as possible. Formally, the input consists of
an initial point P0 ∈ Rd and a sequence X1, X2, ..., Xm ⊆ Rd of convex sets. The objective
is to find a path P = (P0, P1, ..., Pm) with Pt ∈ Xt for each t = 1, 2, ...,m and minimum
total length `(P) =

∑m
t=1 `Pt−1Pt . (Throughout the paper, by `(P,Q) or `PQ we denote the

Euclidean distance between points P and Q in Rd.) This path P must be computed online,
© Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Christian Coester, Łukasz Jeż, and Elias
Koutsoupias;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 8; pp. 8:1–8:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2453-7772
mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-3387-0913
mailto:jaroslaw.byrka@cs.uni.wroc.pl
https://orcid.org/0000-0002-8673-2709
mailto:marek@cs.ucr.edu
https://orcid.org/0000-0003-3744-0977
mailto:christian.coester@cs.ox.ac.uk
https://orcid.org/0000-0002-7375-0641
mailto:lukasz.jez@cs.uni.wroc.pl
https://orcid.org/0000-0002-2226-6737
mailto:elias@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.MFCS.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Better Bounds for Online Line Chasing

in the following sense: the sets Xt are revealed over time, one per time step. At step t, when
set Xt is revealed, we need to immediately and irrevocably identify its visit point Pt ∈ Xt.
Thus the choice of Pt does not depend on the future sets Xt+1, ..., Xm.

As can be easily seen, in this online scenario computing an optimal solution is not possible,
and thus all we can hope for is to find a path whose length only approximates the optimum
value. A widely accepted measure for the quality of this approximation is the competitive
ratio. For a constant c ≥ 1, we will say that an online algorithm A is c-competitive if it
computes a path whose length is at most c times the optimum solution (computed offline).
This constant c is called the competitive ratio of A. Our objective is then to design an online
algorithm whose competitive ratio is as close to 1 as possible.

The convex body chasing problem was originally introduced in 1993 by Friedman and
Linial [11], who gave a constant-competitive algorithm for chasing convex bodies in R2

(the plane) and conjectured that it is possible to achieve constant competitiveness in any
d-dimensional space Rd. As shown in [11], this constant would have to depend on d; in fact
it needs to be at least

√
d.

The Friedman-Linial conjecture has remained open for over two decades. In the last
several years this topic has experienced a sudden increase in research activity, partly moti-
vated by connections to machine learning (see [3, 7]), resulting in rapid progress. In 2016,
Antoniadis et al. [1] gave a 2O(d)-competitive algorithm for chasing affine spaces of any dimen-
sion. In 2018, Bansal et al. [3] gave an algorithm with competitive ratio 2O(d log d) for nested
families of convex sets, where the input set sequence satisfies X1 ⊇ X2 ⊇ ... ⊇ Xm. Soon
later their bound was improved to O(d log d) by Argue et al. [2], and then to O(

√
d log d)

by Bubeck et al. [6]. Finally, Bubeck et al. [7] just recently announced a proof of the
Friedman-Linial conjecture, providing an algorithm with competitive ratio 2O(d) for arbitrary
convex sets.

One other natural variant of convex body chasing that also attracted attention in the
literature is line chasing, where all sets Xt are lines. Friedman and Linial [11] gave an
online algorithm for line chasing in R2 with ratio 28.53. Their algorithm was simplified by
Antoniadis et al. [1], who also slightly improved the ratio, to 28.1. Earlier, in 2014, Sitters [16]
showed that a generalized work function algorithm has constant competitive ratio for line
chasing, but he did not determine the value of the constant.

1.1 Our results

We study the line chasing problem discussed above. We give a 3-competitive algorithm for
line chasing in Rd, for any dimension d ≥ 2, significantly improving the competitive ratios
from [11, 1, 16]. Our algorithm is very simple and essentially memoryless, as it only needs to
keep track of the last line in the request sequence. We start by providing the algorithm for
line chasing in the plane, in Section 2, and later in Section 3 we extend it to an arbitrary
dimension. In Section 4, we provide a matching lower bound of 3 for algorithms that are
memoryless in the sense stated above and oblivious with respect to rotation, translation and
uniform scaling of the metric space. We also provide a lower bound for arbitrary algorithms
(see Section 5), showing that no online algorithm can achieve competitive ratio better than
1.5358. This improves the lower bound of

√
2 ≈ 1.412 for line chasing established in [11],

which was previously also the best known lower bound for the more general problem of
convex body chasing in the plane.

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:3

r

S

L

L’

h

P

P’

s
x

P

Figure 1 Algorithm Drift moves from P to P ′.

1.2 Other related work
Set chasing problems are also known as Metrical Service Systems (see below) and belong
to a very general class of problems for online optimization and competitive analysis called
Metrical Task Systems (MTS) [5]. An instance of MTS specifies a metric space M , an initial
point P0 ∈ M , and a sequence of non-negative functions τ1, τ2, ..., τm over M called tasks.
These tasks arrive online, one at a time. At each step t, the algorithm needs to choose a
point Pt ∈M where it moves to “process” the current task τt. The goal is to minimize the
total cost defined by

∑m
t=1(µ(Pt−1, Pt) + τt(Pt)), where µ() is the metric in M . Thus in

MTS, in addition to movement cost, at each step we also pay the cost of “processing” τt.
For any metric space M with n points, if we allow arbitrary non-negative task functions
then a competitive ratio of 2n− 1 can be achieved and is optimal. This general bound is not
particularly useful, because in many online optimization problems that can be modeled as
an MTS, the metric space M has additional structure and only tasks of some special form
are allowed, which makes it possible to design online algorithms with constant competitive
ratios, independent of the size of M .

An MTS where M = Rd and all functions τt are convex is referred to as convex function
chasing, and was studied in [1, 4, 13]. For the special case of convex functions on the real
line, a 2-competitive algorithm was given in [4].

An MTS where each task function τt takes value 0 on a subset Xt ⊆M and ∞ elsewhere
is called a Metrical Service System (MSS) [9]. In other words, in an MSS, in each step t the
algorithm needs to move to a point in Xt. To achieve a competitive ratio independent of the
size of M , it is generally required to restrict the sets Xt to be in some subset X (P(M).
For instance, finite competitive ratios can be achieved when X is the set of sets of size
at most k [10, 8, 15]. If M = Rd and X is the set of convex subsets, this is precisely the
convex body chasing problem, and if X is the set of lines, it is the line chasing problem. One
variant of MSS that has been particularly well studied is the famous k-server problem (see,
for example, [14, 12]), in which one needs to schedule movement of k servers in response to
requests arriving online in a metric space, where each request must be covered by one server.
(In the MSS representation of the k-server problem, each set Xt consists of all k-tuples of
points that include the request point at step t.)

2 A 3-Competitive Algorithm in the Plane

In this section, we present our online algorithm for line chasing in R2 with competitive
ratio 3. The intuition is this: suppose that the last requested line is L and that the algorithm
moved to point P ∈ L. Let L′ be the new request line, S the intersection point of L and L′,
and r = `SP . A naïve greedy algorithm would move to the point P̄ on L′ nearest to P (see

MFCS 2019

8:4 Better Bounds for Online Line Chasing

Figure 1) at cost h = `PP̄ . If h is small, then r − `SP̄ = o(h), that is the distance between
the greedy algorithm’s point and S decreases only by a negligible amount. But the adversary
can move to S, paying cost r, and then alternate requests on L and L′. On this sequence the
overall cost of this algorithm would be ω(r), so it would not be constant-competitive. This
example shows that if the angle between L and L′ is small then the drift distance towards S
needs to be roughly proportional to h. Our algorithm is designed so that this distance is
roughly h/

√
2 if h is small (with the coefficient chosen to optimize the competitive ratio),

and that it becomes 0 when L′ is perpendicular to L.

Algorithm 1 Algorithm Drift.

Suppose that the last request is line L and that the algorithm is on point P ∈ L. Let the
new request be L′ and for any point X ∈ L, let X̄ be the orthogonal projection of X onto L′.
If L′ does not intersect L, move to P ′ = P̄ . Otherwise, let S = L ∩ L′ be the intersection
point of L and L′. Let also r = `SP , h = `PP̄ , and s = `SP̄ (see Figure 1). Move to point
P ′ ∈ L′ such that `SP ′ = s− x, where x = 1√

2 (h+ s− r).

I Theorem 1. Algorithm Drift is 3-competitive for the line chasing problem in R2.

Proof. We establish an upper bound on the competitive ratio via amortized analysis, based
on a potential function. The (always non-negative) value of this potential function, Φ(P,A),
depends on locations P,A ∈ L of the algorithm’s and the adversary’s point on the current
line L. If L′ is the new request line, and P ′, A′ ∈ L′ are the new locations of the algorithm’s
and adversary’s points, we want this function to satisfy

`PP ′ + Φ(P ′, A′)− Φ(P,A) ≤ 3 `AA′ . (1)

Since initially the potential is 0 and is always non-negative, adding inequality (1) for all
moves will establish 3-competitiveness of Algorithm Drift.

The potential function we use in our proof is Φ(P,A) =
√

3 `AP . Substituting this formula,
inequality (1) reduces to

`PP ′ +
√

3 (`A′P ′ − `AP) ≤ 3 `AA′ . (2)

It thus remains to prove inequality (2). Let g = `AĀ, z = `A′Ā, and v = `ĀP̄ .
We first discuss the trivial case of non-intersecting L and L′. Keeping with the general

notation, here we have x = 0 and thus `PP ′ = h. Moreover, g = `AĀ = h as well. For fixed
z, we have `AA′ =

√
h2 + z2, i.e., the right hand side of (2) is fixed, whereas the left hand

side is maximized if A′ is on the other side of Ā than P̄ . The left hand side is thus at most

h+
√

3 z ≤
√

2
√
h2 + 3z2 ≤

√
2
√

3 (h2 + z2) =
√

6 `AA′ < 3 `AA′ ,

where the first inequality follows from the power mean inequality (for powers 1 and 2),
proving this easy case.

The situation when L′ and L do intersect is illustrated in Figure 2. (The figure shows
only the case when Ā is between S and P ′.) Orient L′ from left to right (with P̄ being to the
right of S), as shown in this figure. We want to express the distances in the above inequality
in terms of s, h, v, and z (keeping in mind that x and r are functions of h and s):

`PP ′ =
√
x2 + h2

`AP = vr/s = (v
√
s2 + h2)/s

`AA′ =
√
z2 + g2

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:5

S

L

L’

h

P

P’ x

A

A’

z

g
PA

v

r

s

Figure 2 Notation for the analysis of Algorithm Drift.

The values of g and `A′P ′ depend on some cases, that we consider below.

Case 1. Ā is between S and P ′, as in Figure 2. Then g = h(s− v)/s. Our goal is first to
find A′ for which the bound in (2) is tightest. For a given z, among the two locations
of A′ at distance z from Ā, the one on the left gives a larger value of the left-hand side
of (2), while the right-hand side is the same for both. Thus we can assume that A′ is to
the left of Ā, so `A′P ′ = z + v − x. Then we can rewrite (2) as follows:

1√
3 `PP

′ − `AP + v − x ≤
√

3
√
z2 + g2 − z (3)

By elementary calculus, the right-hand side is minimized for z = 1√
2 g, so we can assume

that z has this value. Then inequality (3) reduces to

1√
3 `PP

′ − `AP + v − x ≤
√

2 g. (4)

After substituting g = h(s− v)/s and `AP = vr/s, inequality (4) reduces further to

s (1√
3 `PP

′ − x−
√

2h) ≤ v (r − s−
√

2h). (5)

The expression in the parenthesis on the right-hand side of (5) is non-positive by triangle
inequality, so the right-hand side is minimized when v is maximized, that is v = s, and
then it reduces to

x2 + h2 ≤ 3(r − s+ x)2. (6)

Recall that x = 1√
2 (h+ s− r). Since r − h ≤ s ≤ r, we have

x2 + h2 = 1
2 (h+ s− r)2 + h2

≤ 1
2h

2 + h2

= 3
2h

2 ≤ 3
2 [h+ (

√
2− 1)(r − s)]2 = 3(r − s+ x)2,

proving (6).
Case 2. Ā is before S. In this case we have g = h(v− s)/s. Just as in Case 1, we can assume

that A′ is to the left of Ā, so that `A′P ′ = z + v − x, and (2) reduces to

1√
3 `PP

′ − `AP + v − x ≤
√

2 g. (7)

After substituting g = h(v − s)/s and `AP = vr/s, inequality (4) reduces further to

s (1√
3 `PP

′ − x+
√

2h) ≤ v (r − s+
√

2h). (8)

MFCS 2019

8:6 Better Bounds for Online Line Chasing

The expression in the parenthesis on the right-hand side of (8) is non-negative, so the
right-hand side is minimized when v = s (because in this case v ≥ s), so (8) reduces to
the same inequality (6) as in Case 1, completing the argument for Case 2.

Case 3. Ā is after P̄ . In this case we have g = h(v + s)/s. Symmetrically to Case 1, we can
now assume that A′ is to the right of Ā, so that `A′P ′ = z + v + x, and that z = 1√

2 g.
Then, analogously to (4), we can rewrite (2) as follows:

1√
3 `PP

′ − `AP + v + x ≤
√

2 g (9)

After substituting g = h(v + s)/s and `AP = vr/s, inequality (9) reduces further to

s (1√
3 `PP

′ + x−
√

2h) ≤ v (r − s+
√

2h). (10)

The expression in the parenthesis on the right-hand side of (10) is non-negative, so the
right-hand side is minimized when v = 0, and then it reduces to

x2 + h2 ≤ 3(
√

2h− x)2. (11)

To prove this, we proceed similarly as in Case 1:

x2 + h2 ≤ 3
2h

2 ≤ 3
2 (h+ r − s)2 = 3(

√
2h− x)2,

proving (11).
Case 4. Ā is between P ′ and P̄ . Then g = h(s− v)/s (as in Case 1). Similar to Case 3, we

can assume that A′ is to the right of Ā, so that now `A′P ′ = z− v+ x, and that z = 1√
2 g.

Then, analogously to (4), we can rewrite (2) for this case as follows:

1√
3 `PP

′ − `AP − v + x ≤
√

2 g (12)

After substituting g = h(s− v)/s and `AP = vr/s, inequality (12) reduces further to

s (1√
3 `PP

′ + x−
√

2h) ≤ v (r + s−
√

2h). (13)

We now have two sub-cases. If the expression in the parenthesis on the right-hand
side of (13) is non-negative then the right-hand side is minimized when v = 0, so
inequality (13) reduces to inequality (11) from Case 3. If this expression is negative (that
is when r + s <

√
2h), then it is sufficient to prove (13) with v on the right-hand side

replaced by s (because v ≤ s). This reduces it to 1√
3 `PP

′ +x ≤ r+s. This last inequality
follows from `PP ′ ≤ r and x ≤ s. J

3 An Algorithm for Arbitrary Dimension

In this section, we show how to extend Algorithm Drift to Euclidean spaces Rd for arbitrary
dimension d ≥ 2. This extension, that we call ExtDrift, is quite simple, and consists of
projecting the whole space onto an appropriately chosen plane that contains the new request
line. While such approach was suggested already by Friedman and Linial [11], their choice of
plane may lose a constant factor in the competitive ratio. We project onto a different plane,
which allows ExtDrift to also be 3-competitive.

Let P be the current ExtDrift position and L′ the new request line. If P ∈ L′,
ExtDrift makes no move. Otherwise, let U be the uniquely determined plane which
contains both L′ and P . ExtDrift makes the move prescribed by Drift in the plane U for
P , L′ and the projection of L onto U .

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:7

I Theorem 2. Algorithm ExtDrift is 3-competitive for the line chasing problem in Rd,
for arbitrary dimension d ≥ 2.

Proof. We prove that (1) holds in arbitrary dimension. If P ∈ L′ then L and L′ are co-planar,
so the analysis from the previous section works directly.

So assume that P /∈ L′. We first allow the adversary to perform a free move from its
current position A to point Ä defined as the orthogonal projection of A onto U , and then we
analyze the move within U (that is, in a two-dimensional setting), as if the adversary started
from point Ä.

We note that `ÄX ≤ `AX for any point X ∈ U , as (`AX)2 = (`ÄX)2 +(`AÄ)2 by definition
of Ä. It follows that:

In the free adversary move from A to Ä the potential function decreases (by taking X = P

in the above inequality) and both costs are 0. Further, in the move within U , with the
adversary starting from Ä, Algorithm ExtDrift makes the same move as Drift, which
implies that (1) is satisfied. Thus the complete move (combining the free adversary move
and the move inside U) satisfies inequality (1) as well.
The free move is only beneficial for the adversary: taking X = A′ shows that the cost of
moving to A′ from Ä is no more costly for the adversary than moving to A′ from A. J

4 Lower Bound for Memoryless Algorithms

We show that our algorithm achieves the optimal competitive ratio among a certain class of
“memoryless” algorithms. For a metric spaceM , let X ⊆ P(M) be the set of possible requests
(i.e., lines in our case). In general, we can view an algorithm as a function A : M ×X ∗ → X
with A(P0) = P0 and A(P0, X1, . . . , Xt) ∈ Xt for each initial point P0 ∈ M and requests
X1, . . . , Xt ∈ X . We call an algorithm memoryless if A(P0, X1, . . . , Xt) is a function of only
the last position A(P0, X1, . . . , Xt−1), the last request Xt−1 and the new request Xt.

However, memorylessness alone would not impose any limit on the power of line-chasing
algorithms: By perturbing its positions very slightly, an algorithm could always encode the
entire history in low significant bits of its current position. To get a meaningful notion of mem-
orylessness, we therefore require an additional property, namely that the algorithm is oblivious
with respect to rotation, translation or scaling of the metric space. More precisely, a direct sim-
ilarity of Rd is a bijection f : Rd → Rd that is a composition of rotation, translation and scaling
by some factor rf > 0. In particular, for any P,Q ∈ Rd, we have `(f(P), f(Q)) = rf `(P,Q).
We call an algorithm A rts-oblivious if A(f(P0), f(X1), . . . , f(Xt)) = f(A(P0, X1, . . . , Xt))
for any P0 ∈M , Xi ∈ X and any direct similarity f . In general (when algorithms are allowed
to use memory) there is no reason to behave differently when the input is transformed by
such f , since it is just a renaming of points and scaling of distances by a uniform constant.
For completeness, we provide a proof of this intuition via the following proposition:

I Proposition 3. If there is a c-competitive algorithm for line-chasing, then there is a
c-competitive rts-oblivious algorithm.

Proof. For an initial position P0 and request sequence X1, . . . , Xt, we assume without loss
of generality that P0 /∈ X1. For any such P0 and X1, there exists a unique direct similarity
g = gP0X1 such that g(P0) = (0, 1) and g(X1) = R× {0}. Given a c-competitive algorithm
A, we claim that the algorithm Ã given by

Ã(P0, X1, . . . , Xt) = g−1(A(g(P0), g(X1), . . . , g(Xt)))

is rts-oblivious and c-competitive.

MFCS 2019

8:8 Better Bounds for Online Line Chasing

To see that Ã is rts-oblivious, consider an arbitrary direct similarity f . Notice that
gf(P0)f(X1) = g ◦ f−1. Thus,

Ã(f(P0), f(X1), . . . , f(Xt)) = (f ◦ g−1)(A(g(P0), g(X1), . . . , g(Xt)))
= f(Ã(P0, X1, . . . , Xt)),

as required. To see that Ã is c-competitive, consider an initial position P0 and request
sequence X1, . . . , Xm along with an adversary’s solution A0 = P0, A1 ∈ X1, . . . , Am ∈ Xm.
The cost of Ã can be bounded via

m∑
t=1

`(Ã(P0, X1, . . . , Xt−1), Ã(P0, X1, . . . , Xt))

= 1
rg

m∑
t=1

`(A(g(P0), g(X1), . . . , g(Xt−1)),A(g(P0), g(X1), . . . , g(Xt)))

≤ c

rg

m∑
t=1

`(g(At−1), g(At))

= c

m∑
t=1

`(At−1, At),

where the inequality uses that A is c-competitive against the solution g(A0), . . . , g(Am) for
the transformed input g(P0), g(X1), . . . , g(Xm). J

Intuitively, an rts-oblivious algorithm does not know the absolute coordinates of its
positions and requests, but only relative to each other and up to scaling. If it is memoryless,
in the plane this boils down to only knowing the angle between the new and the old request
line. We show now that our algorithms Drift and ExtDrift achieve the optimal competitive
ratio among rts-oblivious memoryless algorithms.

I Theorem 4. Any rts-oblivious memoryless algorithm for line-chasing has competitive ratio
at least 3.

Proof. We will construct an initial point P0 and lines L0, . . . , Lm in R2 with the property
that P0 ∈ L0 and Lt can be obtained by rotating Lt−1 around some point St ∈ Lt−1 in
clockwise direction by less than 90 degrees.

Let P0, . . . , Pm be the sequence of points visited by a given algorithm. We use notation
similar to that in Figure 1: Write P̄t−1 for the orthogonal projection of Pt−1 onto Lt and
let ht = `(Pt−1, P̄t−1) and st = `(P̄t−1, St). The movement from Pt−1 to Pt can always
be viewed as first moving to P̄t−1 and then moving some distance xt ∈ R in the direction
towards intersection St, for a total cost

√
h2
t + x2

t . Here, xt < 0 would constitute movement
away from St and xt > st would constitute movement beyond St.

Observe that for rts-oblivious memoryless algorithms, xt

ht
is a function of only ht

st
, i.e.

β(ht

st
) = xt

ht
for some function β : (0,∞)→ R. Any rts-oblivious memoryless algorithm for

line-chasing in the plane is uniquely determined by its associated function β as well as similar
functions for the cases of counter-clockwise rotations of at most 90 degrees and parallel
lines.1 Let β(0) := lim supa→0 β(a) ∈ R ∪ {−∞,∞}. Let us first show that algorithms with
β(0) =∞ or β(0) ≤ 0 have unbounded competitive ratio.

1 If we require algorithms to be oblivious also with respect to reflection (which would still satisfy
Proposition 3), they would be uniquely determined by β alone. Drift is the algorithm corresponding

to β(a) = a+1−
√

a2+1√
2a

.

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:9

If β(0) =∞, we choose P0 = (1, h), L0 = {(x, y) : y = hx}, L1 = R× {0} for some small
h > 0. The algorithm’s cost is h

√
1 + β(h)2, whereas the optimal cost is h. Choosing h

arbitrarily small shows that the competitive ratio is unbounded.
If β(0) ≤ 0, fix some ε ∈ (0, 1

2] and choose a ∈ (0, ε] with β(a) ≤ ε. Let P0 = (1, 0),
L0 = R× {0} and define Lt as the clockwise rotation of Lt−1 around the origin O := (0, 0)
by angle arctan(a). Thus, we have ht

st
= a for each t. Notice that st

√
1 + a2 = `(O,Pt−1) =

st−1(1− aβ(a)), and therefore

st
st−1

= 1− aβ(a)√
1 + a2

≥ 1− a2 + aβ(a)
1 + a2 ≥ 1− 2εa,

where the first inequality uses
√

1 + a2 ≤ 1 + a2 and the second inequality uses 0 < a ≤ ε

and β(a) ≤ ε. Hence,

st ≥ (1− 2εa)t−1

Since `(Pt−1, Pt) ≥ ht = ast, the total cost of the algorithm is

m∑
t=1

`(Pt−1, Pt) ≥ a
m−1∑
t=0

(1− 2εa)t m→∞−−−−→ 1
2ε .

Meanwhile, an optimal algorithm pays total cost 1 by moving to O immediately. Letting
ε→ 0, we find again that the competitive ratio is unbounded.

It remains to consider the case 0 < β(0) < ∞. Then we can choose arbitrarily small
a > 0 such that 0 < aβ(a) < 1. We choose the initial point P0 = (1

a , 1), and the request
sequence starts with L0 = {(x, y) : y = ax} and L1 = R×{0}. For t ≥ 2, we define Lt as the
clockwise rotation of Lt−1 around St = S2 =

(
1
a − β(a) +

√
1 + a2

(
β(a) + 1

2β(a)

)
, 0
)
by

angle arctan(a). The idea is that in response to L1, the algorithm drifts to the left (towards
intersection S1 = (0, 0)), but the subsequent requests are such that it would have been
cheaper to drift to the right (away from S1) instead.

We have s1 = 1
a and s2 = `(P1,S2)√

1+a2 = β(a) + 1
2β(a) . For t ≥ 3, similarly to the previous

case we get

st
st−1

≥ 1− a2 + aβ(a)
1 + a2 ≥ 1− a2 − aβ(a)

and therefore

st ≥
(
β(a) + 1

2β(a)

)(
1− a2 − aβ(a)

)t−2 if t ≥ 2.

As m→∞, the cost of the algorithm is
∞∑
t=1

`(Pt−1, Pt) =
∞∑
t=1

ht
√

1 + β(a)2 =
√

1 + β(a)2a

∞∑
t=1

st

≥
√

1 + β(a)2
(

1 +
(
β(a) + 1

2β(a)

)
1

a+ β(a)

)
a→0−−−→

√
1 + β(0)2

(
2 + 1

2β(0)2

)
,

where the limit a→ 0 is taken along a sequence where β(a)→ β(0). In contrast, an offline
algorithm can move immediately from P0 to S2, paying cost

√
1 + 1

4β(0)2 as a → 0 and

MFCS 2019

8:10 Better Bounds for Online Line Chasing

c1

c2

A3 L1

L2

P0 = A0

P1

c3

C2

A1

C3

L3
p2

A2

P2
P3

p3

a2

a1

P’2

Figure 3 Visual description of our lower bound for arbitrary algorithms. Lines L1, L2 and L3 are
presented to an online algorithm. Blue arrows describe possible movements of Opt, while gray thick
arrows describe a path of an algorithm that minimizes the competitive ratio for this adversarial
construction. Red thick half-line denotes the forbidden region.

β(a)→ β(0). By dividing, we see that the competitive ratio is at least√
(1 + β(0)2)

(
4 + 1

β(0)2

)
=

√
4β(0)2 + 1

β(0)2 + 5,

which is minimized for β(0) = 1√
2 , taking value 3. J

5 Lower Bound for Arbitrary Algorithms

Finally, in this section, we show how to improve an existing lower bound of
√

2 ≈ 1.41 for
arbitrary algorithms to 1.5358. Our bound holds even in two dimensions, and improves also
the lower bound for the more general convex body chasing in two dimensions.

I Theorem 5. The competitive ratio of any deterministic online algorithm A for the line
chasing problem is at least 1.5358.

Proof. We describe our adversarial strategy below. On the created input, we will compare
the cost of A to the cost of an offline optimum Opt. We assume that both A and Opt start
at origin point P0 = A0 = (0, 0).

Our construction is parameterized with real positive numbers c1 = 0.5535, c2 = 0.4965,
c3 = 0.8743, a1 = 1.3012, a2 = 0.6663, p2 = 0.5612, and p3 = 0.1696.

We fix points P1 = (0, c1), C2 = (0, c1 + c2), C3 = (0, c1 + c2 + c3) and A3 = (1, c1), see
Figure 3 for illustration. For succinctness, we use notation M(x, y) =

√
x2 + y2.

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:11

Initial part: Line L1

The first request line is the line P1A3, denoted L1. Without loss of generality, we can
assume that A moves to point P1. This is because the adversary can either play the strategy
described below or its mirror image (flipped against the line P0P1), so any deviation from
P1, either to the left or right, can only increase the cost of A.

From now on, for any point Q we denote its projection on line L1 by Qx.

Middle part: Line L2

Next, the adversary issues the request line C2A3, denoted L2. Let P2 ∈ L2 and A1 ∈ L2 be
the points to the left of A3, such that `Px

2 A3 = p2 and `Ax
1A3 = a1.

Let P̄2 be the point on L2 chosen by A. If P̄2 lies to the right of point P2, then the
adversary forces A to move to A1 (by giving sufficiently many different lines that go through
A1 at different angles). Opt may then serve the whole sequence by going from A0 to A1 at
cost

`A0A1 = M(c1 + c2 · a1, a1 − 1) ≤ 1.23679

while the cost of A is then at least

`P0P1 + `P1P2 + `P2A1 = `P0P1 + `P1P2 + `A3A1 − `A3P2

= c1 + M(1− p2, c2 · p2) + M(a1, c2 · a1) − M(p2, c2 · p2)
≥ 1.89948

Hence, the competitive ratio in this case is at least 1.5358.
We call the half-line of L2 to the right of point P2 forbidden region. From now on, we

assume that the point chosen by A in L2 does not lie in this region.

Final part: Line L3

Finally, the adversary issues the request line C3A3, denoted L3. Let P ′2 be the intersection
of line P1P2 with line L3. Next, let A2 and P3 be the points on the line L3 to the left of A3,
such that `Ax

2A3 = a2 and `Px
3 A3 = p3. Note that P3 belongs to the interval P ′2A3.

Let P̄3 be the point on L3 chosen by A. We consider two cases.

Case 1. P̄3 lies at point P3 or to its left. In this case, the adversary forces A to move to A3.
Opt may serve the whole sequence by going from A0 to A3 paying

`A0A3 = M(1, c1) ≤ 1.142963.

We may now argue that the cost of A is minimized if P̄3 is equal to P3: If P̄3 is to the left
of point P ′2, then the cost of A is at least `P0P1 + `P1P̄3

+ `P̄3A3
. Both the second and the

third summand decrease when we move P̄3 towards P ′2. Hence, now we may assume that
P̄3 belongs to the interval P ′2P3. As the path of A must avoid forbidden region, its cost
is at least `P0P1 + `P1P2 + `P2P̄3

+ `P̄3A3
. The sum of the last two summands decreases

when we move P̄3 towards P3. Therefore, we obtain that the cost of A is at least

`P0P1+`P1P2 + `P2P3 + `P3A3

= c1 + M(1− p2, c2 · p2) + M((c2 + c3) · p3 − c2 · p2, p2 − p3)
+ M(p3, (c2 + c3) · p3) ≥ 1.75537.

Thus, in this case the competitive ratio is at least 1.5358.

MFCS 2019

8:12 Better Bounds for Online Line Chasing

Case 2. If P̄3 lies to the right of point P3, then the adversary forces A to move to A2. Opt
may serve the whole sequence by going from A0 to A2 at cost

`A0A2 = M(c1 + (c2 + c3) · a2, 1− a2) ≤ 1.50435.

To go from P1 to P̄3 and avoid the forbidden region, A has to pay at least `P1P2 + `P2P̄3
.

Therefore, its cost is at least

`P0P1+`P1P2 + `P2P̄3
+ `P̄3A2

≥ `P0P1 + `P1P2 + `P2P3 + `P3A2

≥ `P0P1 + `P1P2 + `P2P3 + `A2A3 − `P3A3

= c1 + M(1− p2, c2 · p2) + M((c2 + c3) · p3 − c2 · p2, p2 − p3)
+ M(a2, (c2 + c3) · a2) − M(p3, (c2 + c3) · p3) ≥ 2.31039.

Thus, in this case the ratio is also at least 1.5358. J

6 Final Comments

Establishing the optimal competitive ratio for line chasing with memory remains an open
problem. We believe that with memory, a competitive ratio better than 3 is achievable.

The intuition is that in the first move, if L and P are the initial line and position and
L′ is the new request line, then the algorithm should move to the nearest point P̄ on L′.
More generally, if the requests on L and L′ alternate (and their angle is small), the algorithm
should initially drift slowly towards S = L ∩ L′ and only gradually accelerate as it becomes
more credible that the adversary is located at S. To gauge this credibility for general request
sequences, an algorithm might store the current work function at each step.

It appears also that our lower bound of 1.5358 can be improved by introducing additional
steps, although this gives only very small improvements and leads to a very involved analysis.
It is possible that an approach fundamentally different from ours may give a better bound
with simpler analysis.

References
1 Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior, and Michele

Scquizzato. Chasing Convex Bodies and Functions. In Proc. 12th Latin American Theoretical
Informatics Symposium (LATIN), pages 68–81, 2016. doi:10.1007/978-3-662-49529-2_6.

2 C. J. Argue, Sébastien Bubeck, Michael B. Cohen, Anupam Gupta, and Yin Tat Lee. A Nearly-
Linear Bound for Chasing Nested Convex Bodies. In Proc. 30th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 117–122, 2019.

3 Nikhil Bansal, Martin Böhm, Marek Eliás, Grigorios Koumoutsos, and Seeun William Umboh.
Nested Convex Bodies are Chaseable. In Proc. 29th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 1253–1260, 2018. doi:10.1137/1.9781611975031.81.

4 Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior,
and Clifford Stein. A 2-Competitive Algorithm For Online Convex Optimization With
Switching Costs. In Proc. Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), pages 96–109, 2015. doi:10.4230/LIPIcs.
APPROX-RANDOM.2015.96.

5 Allan Borodin, Nathan Linial, and Michael E. Saks. An Optimal On-Line Algorithm for
Metrical Task System. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

6 Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing Nested Convex Bodies
Nearly Optimally. CoRR, abs/1811.00999, 2018. URL: http://arxiv.org/abs/1811.00999.

https://doi.org/10.1007/978-3-662-49529-2_6
https://doi.org/10.1137/1.9781611975031.81
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.96
https://doi.org/10.1145/146585.146588
http://arxiv.org/abs/1811.00999

M. Bienkowski, J. Byrka, M. Chrobak, C. Coester, Ł. Jeż, and E. Koutsoupias 8:13

7 Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Competitively chasing convex
bodies. In Proc. 51st ACM Symp. on Theory of Computing (STOC), pages 861–868, 2019.
doi:10.1145/3313276.3316314.

8 William R. Burley. Traversing Layered Graphs Using the Work Function Algorithm. J.
Algorithms, 20(3):479–511, 1996. doi:10.1006/jagm.1996.0024.

9 Marek Chrobak and Lawrence L. Larmore. Metrical Task Systems, the Server Problem and
the Work Function Algorithm. In Online Algorithms, The State of the Art (Proc. Dagstuhl
Seminar, June 1996), pages 74–96, 1996. doi:10.1007/BFb0029565.

10 Amos Fiat, Dean P. Foster, Howard J. Karloff, Yuval Rabani, Yiftach Ravid, and Sundar
Vishwanathan. Competitive Algorithms for Layered Graph Traversal. SIAM J. Comput.,
28(2):447–462, 1998. doi:10.1137/S0097539795279943.

11 Joel Friedman and Nathan Linial. On Convex Body Chasing. Discrete & Computational
Geometry, 9:293–321, 1993. doi:10.1007/BF02189324.

12 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

13 Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. Dynamic Right-
Sizing for Power-Proportional Data Centers. IEEE/ACM Trans. Netw., 21(5):1378–1391, 2013.
doi:10.1109/TNET.2012.2226216.

14 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive Algorithms for
Server Problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

15 H. Ramesh. On Traversing Layered Graphs On-Line. J. Algorithms, 18(3):480–512, 1995.
doi:10.1006/jagm.1995.1019.

16 René Sitters. The Generalized Work Function Algorithm Is Competitive for the Generalized
2-Server Problem. SIAM J. Comput., 43(1):96–125, 2014. doi:10.1137/120885309.

MFCS 2019

https://doi.org/10.1145/3313276.3316314
https://doi.org/10.1006/jagm.1996.0024
https://doi.org/10.1007/BFb0029565
https://doi.org/10.1137/S0097539795279943
https://doi.org/10.1007/BF02189324
https://doi.org/10.1145/210118.210128
https://doi.org/10.1109/TNET.2012.2226216
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1006/jagm.1995.1019
https://doi.org/10.1137/120885309

	Introduction
	Our results
	Other related work

	A 3-Competitive Algorithm in the Plane
	An Algorithm for Arbitrary Dimension
	Lower Bound for Memoryless Algorithms
	Lower Bound for Arbitrary Algorithms
	Final Comments

