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Abstract
In the online variant of the traveling repairperson problem (TRP), requests arrive in time at points
of a metric space X and must be eventually visited by a server. The server starts at a designated
point of X and travels at most at unit speed. Each request has a given weight and once the server
visits its position, the request is considered serviced; we call such time completion time of the request.
The goal is to minimize the weighted sum of completion times of all requests.

In this paper, we give a 5.429-competitive deterministic algorithm for line metrics improving
over 5.829-competitive solution by Krumke et al. (TCS 2003). Our result is obtained by modifying
the schedule by serving requests that are close to the origin first. To compute the competitive ratio
of our approach, we use a charging scheme, and later evaluate its properties using a factor-revealing
linear program which upper-bounds the competitive ratio.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Scheduling algorithms

Keywords and phrases traveling repairperson problem, competitive analysis, minimizing completion
time, factor-revealing LP

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.6

Funding Supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

1 Introduction

The traveling repairperson problem (TRP) is a variant of the traveling salesperson prob-
lem (TSP), where the goal is to minimize the total latency instead of a more standard
objective of minimizing the total length of a route. In the TRP, there are m requested points
of a given metric space X and they must be eventually visited by a server. Request rj is
a triple (pj , aj , wj), where pj ∈ X denotes request position, aj ≥ 0 its release time and wj
its weight.

The server starts at a designated point of X called origin and travels at most at unit
speed. That is, for any two times t < t′ the distance between positions of the server at
times t and t′ is at most t′ − t. Each request rj must be eventually serviced by moving the
server to point pj . The request cannot be serviced before its release time aj ; we call the time
when it is eventually serviced its completion time and we denote it Cj . The goal is to find
a route for the server (a schedule) that minimizes the cost, defined as the weighted sum of
completion times, i.e.,

∑m
j=1 wj · Cj .

The TRP has a natural online variant. There, an online algorithm Alg, at time t, knows
only requests that arrived before or at time t. The number of requests m is also not known by
an algorithm a priori. In the online setting, the goal is to minimize the competitive ratio [11],
defined as the maximum over all inputs of the Alg-to-Opt cost ratio, where Opt denotes
the optimal offline algorithm.
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1.1 Previous work

The online variant has been first investigated by Feuerstein and Stougie [13]. They considered
the case where X is a real line and, adapting an algorithm for the so-called cow-path
problem [7], presented a 9-competitive solution. They also gave a lower bound (that holds
also already for a line) of 1 +

√
2. The result has been subsequently improved by Krumke

et al. [18], who gave a deterministic algorithm Interval attaining competitive ratio of
(1 +

√
2)2 < 5.829 and a randomized 3.874-competitive solution. Their algorithm works for

an arbitrary metric space.

A natural extension to the TRP is a so-called dial-a-ride problem, where each request is
an object with a source and a destination and the goal is to transport the object [9, 13, 18].
There, the server may have a fixed capacity allowing it to store at most k objects, or this
capacity may be infinite. The 5.829-competitive deterministic algorithm by Krumke et al. [18]
extends also to this variant and no better algorithms are known even for specific metric
spaces.

Some papers considered an extension of the TRP to k ≥ 1 servers. Bonifaci and Stougie
showed how to adapt the algorithm Interval by Krumke et al. [18] to this setting without
an increase of the competitive ratio [10]. However, the best known lower bound for multiple
servers is 2 (i.e., smaller than the lower bound for the one-server case) [10]. Furthermore, for
the particular case of line metrics, the ratio converges to 1 with growing k, and is between
1 + 1/(2k − 1) [14] and 1 +O((log k)/k) [10].

Another strand of papers considered different objectives, such as minimizing the total
makespan [3, 4, 5, 6, 8, 9] or maximum flow time [16, 17, 19], with a special focus on line
metrics. Finally, the offline variant (also known as minimum latency problem) has been
extensively studied both from the computational hardness and approximation algorithms
perspectives, see, e.g., [1, 2, 12, 15, 20, 21].

1.2 Our contribution

In this paper, we focus on the TRP on line metrics and give a 5.429-competitive algorithm
Reroute. This improves the long standing record of 5.829 achieved by the algorithm
Interval by Krumke et al. [18].

Similarly to the algorithm Interval, Reroute partitions an input into phases of
geometrically increasing lengths, and in each phase greedily tries to service the set of pending
requests of maximum weight. However, our algorithm Reroute tries to modify the route,
so to ensure that (i) either it services requests only in the initial part of the phase, (ii) or in
the later part of the phase, it services only requests that are far away from the origin. As
such requests cannot be serviced early by any algorithm (also by Opt), this allows us to
charge the cost of Reroute against the cost of Opt in a more efficient way.

For the analysis, we construct a charging scheme that maps the total weight serviced by
Reroute in particular time intervals to the total weight serviced in appropriate intervals by
Opt. This yields a set of linear inequalities that need to hold for any input instance. On
this basis, we create a maximization LP (linear program), whose objective value is an upper
bound on the competitive ratio. Finally, to bound the value of such factor-revealing LP, we
explicitly construct a solution to its dual.
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2 Algorithms Interval and ReturnFirst

As our algorithm is built on the phase-based approach of the algorithm Interval proposed
by Krumke et al. [18], we start with a description of the latter.

Let f = minj{max{pj , aj}} be the earliest time at which Opt may service a request.
(Note that an online algorithm can learn f before or at time f .) Without loss of generality, we
may assume that there are no requests that arrive at time 0 at the origin, and hence f > 0.

We partition time into phases. Phase 0 starts at time 0 and ends at time f . Phase i ≥ 1
starts at time f · αi−1 and ends at time f · αi, where α = 1 +

√
2. At the beginning of any

phase i ≥ 1, Interval computes and executes a schedule that
starts at the final server position from the last phase;
stops at distance at most f · αi−1 from the origin;
has length at most f · (αi − αi−1);
among schedules satisfying the previous three conditions maximizes the total weight of
serviced requests (which are pending when the phase starts).

To simplify the notation, in the rest of the paper, we assume that f = 1.1 We start
with a slight modification of the algorithm Interval, called ReturnFirst (RetF). At the
beginning of any phase i ≥ 1, RetF computes and executes a schedule that

starts at the final server position from the last phase;
in the first part of the schedule (called return part), the server returns to the origin;
the second part of the schedule (called serving part) starts at the origin, is of length at
most αi−1, and among such schedules maximizes the total weight of serviced requests
(which are pending when the phase starts).

I Observation 1. At the beginning of each phase i ≥ 1, RetF has its server at a distance
at most αi−2 from the origin. Furthermore, the total length of both parts of the schedule is at
most the phase length.

Proof. The first property is clearly satisfied at the beginning of phase 1, which is started
with the server at the the origin. In the subsequent phases, this property follows inductively:
as in phase i − 1 the serving part of the schedule starts at the origin and has length at
most αi−2, at be beginning of phase i the server distance to the origin is at most αi−2.

The second property follows as the total length of the planned schedule in phase i is at
most αi−2 + αi−1 = αi − αi−1, which is the length of the phase. Note that this property
holds as long as α ≥ 1 +

√
2. J

While RetF may produce schedules that are worse than those of Interval, using similar
arguments to those of [18], one can show that RetF is α2-competitive. In particular, the
following bound holds both for Interval and RetF; we present its proof for completeness.

In our arguments, we use Algi and Opti to denote the total weight of requests serviced
by an online algorithm and Opt, respectively, in a phase i. Observe that for RetF and
Interval, Alg0 = 0.

I Lemma 2 ([18]). Let L be the index of the last phase in which Opt services any request.
Then, RetF services all requests within the first L + 1 phases, and for any phase j ∈
{1, . . . , L+ 1}, it holds that

∑L+1
i=j Algi ≤

∑L
i=j−1 Opti.

1 All terms occurring in the proof, both related to distances and to time, have a multiplicative factor f ,
which cancels out when the competitive ratio is computed.

MFCS 2019
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Proof. Consider the schedule Sk of Opt in phases 0, 1, . . . , k, where k ∈ {0, . . . , L}. Sched-
ule Sk starts at the origin, its length is equal to αk and the total weight serviced by Sk is
w(Sk) =

∑k−1
i=0 Opti. In phase k+1, when RetF chooses the route for the serving part, Sk is

among feasible options. If RetF chose such route, then each request serviced by schedule Sk
in Opt’s solution is serviced by RetF (in phase k + 1 or already in earlier phases). Thus,
the total weight serviced by RetF in phases 1, . . . , k + 1 would be at least w(Sk). As RetF
chooses the schedule for the serving part which is at least as good as Sk, it holds that∑k+1

i=1 Algi ≥ w(Sk) =
∑k
i=0 Opti . (1)

If we set k = L, then the above inequality implies that RetF services all requests already
in the first L+ 1 phases, i.e.,∑L+1

i=1 Algi =
∑L
i=0 Opti . (2)

The lemma for j = 1 follows by (2), and the lemma for j ≥ 2 follows by subtracting (1)
from (2) and setting k = j − 2. J

3 Modifying the schedule

We now take a closer look at the structure of schedules produced by RetF in particular
phases. We show that the schedule produced in a given phase can be modified, so that it
services the same set of requests as RetF, but either it ends substantially earlier than the
phase end or from some time it services only far requests.

I Lemma 3. Fix any c ∈ [0, 1] and let ` = αi−1 + c · αi−2. Fix a schedule S for phase i
produced by the algorithm RetF. On the basis of S and c, it is possible to construct schedule S̃
that services the same set of requests as S and

Either the length of S̃ is at most `,
or after executing the prefix of S̃ of length `, the server distance from the origin is at
least (1/3) · (α− 1 + 5c) · αi−2, and afterwards the server travels away from the origin
(with unit speed).

Proof. In the following proof, server positions are real numbers, with zero denoting the
origin. Let p denote the server position at the beginning of phase i. Note that we may
assume that p ≥ 0 without loss of generality. As in the proof of Observation 1, it can be
inductively shown that in the produced schedule S̃, the server ends phase i− 1 at most at
distance αi−2 from the origin. Thus, p ≤ αi−2.

Let [b, u] be the interval containing all points visited by the serving part of S. As this
part starts at zero, b ≤ 0 ≤ u. Let x ∈ {b, u} be the interval endpoint closer to the origin
and y be the further one (with ties broken arbitrarily). Observe that the shortest possible
schedule that starts at zero and services all requests from interval [b, u] has length 2 · |x|+ |y|.
As the serving part of S services this interval and its length is at most αi−1, it holds that

2 · |x|+ |y| ≤ αi−1 and thus |x| ≤ αi−1/3 . (3)

We use (3) extensively in our bounds below.
We define two possible schedules Sxy and Syx for phase i; we show that at least one of

them satisfies the requirements of the lemma.
Sxy starts at p, goes to x (possibly going through zero if p and x are on the opposite
sides of the origin), and then proceeds through 0 to y. Its length is |p− x|+ |x|+ |y|.
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Syx starts at p, goes to y (possibly going through zero if p and y are on the opposite
sides of the origin), and then proceeds through 0 to x. Its length is |p− y|+ |y|+ |x|.

We consider four cases depending on values of x, y, p and c. Note that all these values
are known by RetF at the beginning of phase i.

Case 1. If x < 0 and p+ 3 · |x| ≥ (α− c) · αi−2, we set S̃ = Syx.
We show that the length of S̃ is at most `. As x < 0, it holds that y ≥ 0. If y ≤ p, the
length of S̃ is (p− y) + y + |x| = p+ |x| ≤ αi−2 + αi−1/3 < αi−1 ≤ `. Otherwise y > p,
and then the length of S̃ is

(y − p) + y + |x| = 2 · y − p+ |x| ≤ 2 · (αi−1 − 2 · |x|)− p+ |x|
= 2 · αi−1 − (p+ 3 · |x|) ≤ 2 · αi−1 − (α− c) · αi−2 = ` .

Case 2. If x < 0 and p+ 3 · |x| < (α− c) · αi−2, we set S̃ = Sxy.
If the length of S̃ is at most `, then the lemma follows. Otherwise, we analyze the prefix
of S̃ of length `. It contains the server movement from p to x and then to 0: this holds
because the total length of this movement is p+ 2 · |x| < (α− c) · αi−2 ≤ αi−1 ≤ `. Thus,
after having executed the prefix of S̃ of length `, the server is traveling away from the
origin towards y and its position is equal to

`− (p+ 2 · |x|) = αi−1 + c · αi−2 − (2/3) · (p+ 3 · |x|)− p/3
> αi−1 + c · αi−2 − (2/3) · (α− c) · αi−2 − αi−2/3
= (1/3) · (α− 1 + 5c) · αi−2 .

Case 3. If x ≥ p ≥ 0, we set S̃ = Sxy.
The length of S̃ is then (x− p) + x+ |y| = 2 · x+ |y| − p ≤ αi−1 − p ≤ `.

Case 4. If p > x ≥ 0, we set S̃ = Sxy.
The reasoning here is similar to the one from Case 2. If the length of S̃ is at most `, then
the lemma follows. Otherwise, we analyze the prefix of S̃ of length `. It contains the
server movement from p to 0 through x: this holds because the length of this movement is
equal to p ≤ αi−2 < `. Thus, after having executed the prefix of S̃ of length `, the server
is traveling away from the origin towards y and its distance from the origin is equal to

`− p ≥ αi−1 + c · αi−2 − αi−2 = (α+ c− 1) · αi−2 > (1/3) · (α− 1 + 5c) · αi−2 .

The last inequality follows as α > 1 + c. J

4 Algorithm Reroute

Our algorithm Reroute(β) is parameterized with a constant β ∈ [2/α, 1] and follows the
phase framework of RetF. At the beginning of any phase j ≥ 1, Reroute(β) computes
the schedule S in the same way RetF would do, modifies it according to Lemma 3 using
c = β · α2 − 2 · α ∈ [0, 1] obtaining schedule S̃, and then executes S̃ within phase j.

For any real ξ ≥ [β, 1], we define

τβ(ξ) = 5 · β · α2 − 9α− 1
3α + (ξ − β) · α . (4)

The following lemma shows that requests that are serviced late by Reroute(β) in a given
phase are far away from the origin, and hence cannot be serviced too early by Opt.

MFCS 2019
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I Lemma 4. Fix β ∈ [2/α, 1]. For any phase i and any value ξ ≥ β, in time interval (ξ·αi, αi],
Reroute(β) services only requests whose distance to the origin is at least τβ(ξ) · αi−1.

Proof. By the definition of Reroute(β), its schedule S̃ for phase i is constructed as described
in Lemma 3 with c = β ·α2 − 2α ∈ [0, 1]. Let ` = αi−1 + c ·αi−2 = β ·αi −αi−1. Recall that
phase i starts at time αi−1. By Lemma 3, two cases are possible.

If the length of S̃ is at most `, then the execution of S̃ ends at or before time αi−1+` = β·αi.
Then, the lemma follows trivially as Reroute(β) does not service anything in the
remaining part of phase i, i.e., in the time interval (β · αi, αi].
Otherwise, the length of S̃ is larger than `. Then, at time αi−1 + ` = β · αi, the server
still executes S̃, is at distance at least (1/3) · (α− 1 + 5c) · αi−2 from the origin and it
travels away from the origin with unit speed. Within time interval [β · αi, ξ · αi], the
server either finishes executing S̃ or it increases its distance to the origin by ξ ·αi − β ·αi.
In the former case, the lemma follows trivially, and in the latter case, the server distance
to the origin at time ξ · αi is at least

α− 1 + 5c
3 · αi−2 + (ξ − β) · αi = 5 · β · α2 − 9α− 1

3 · αi−2 + (ξ − β) · αi

= τβ(ξ) · αi−1 .

From time ξ · αi, the server continues to travel away from the origin, and thus the lemma
follows. J

4.1 Relating Reroute to Opt
We analyze the performance of algorithm Reroute(β) for a fixed parameter β, such that
2/α ≤ β ≤ 1. Moreover, we choose β, so that τβ(β) ≥ 1/α. In our analysis we use a
parameter ξ, such that β ≤ ξ ≤ 1 and τβ(β) ≤ τβ(ξ) ≤ 1. Concrete values of β and ξ will be
fixed later.

Let L be the index of the last phase in which Opt services a request. On the basis of β
and ξ, we partition both Algi (the total weight of requests serviced in phase i ∈ {1, . . . , L+1}
by Reroute) and Opti (the total weight of requests serviced in phase i ∈ {0, . . . , L} by
Opt) into three parts:

Aa
i : the weight serviced by Reroute(β) in time interval (αi−1, β · αi],

Ab
i : the weight serviced by Reroute(β) in time interval (β · αi, ξ · αi],

Ac
i : the weight serviced by Reroute(β) in time interval (ξ · αi, αi],

Oa
i : the weight serviced by Opt in time interval [αi−1, τβ(β) · αi),

Ob
i : the weight serviced by Opt in time interval [τβ(β) · αi, τβ(ξ) · αi),

Oc
i : the weight serviced by Opt in time interval [τβ(ξ) · αi, αi).

Note that the validity of this partitioning requires that 1/α ≤ β ≤ ξ ≤ 1 and 1/α ≤
τβ(β) ≤ τβ(ξ) ≤ 1. We slightly modify the definition of Aa

0 and Oc
L to include also the initial

and final time points, i.e., to be the weight serviced by Reroute(β) in [α0, β · α1] and the
weight serviced by Opt in [τβ(ξ) · αL, αL], respectively. Clearly, Algi = Aa

i + Ab
i + Ac

i and
Opti = Oa

i + Ob
i + Oc

i .
As Reroute services the same set of requests as RetF, the guarantee of Lemma 2

applies to the schedule produced by Reroute(β) as well. In particular, Reroute(β)
finishes servicing all requests till the end of phase L + 1 (it does not service anything in
phase 0) and for any phase j ∈ {1, . . . , L+ 1}, it holds that

L+1∑
i=j

(
Aa
i + Ab

i + Ac
i

)
≤

L∑
i=j−1

(
Oa
i + Ob

i + Oc
i

)
. (5)
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Fix any phase j ∈ {1, . . . , L + 1} and consider all requests contributing to the sum∑L+1
i=j (Ab

i + Ac
i ). By Lemma 4, each such request has to be serviced by Opt at time

τβ(β) · αj−1 or later (because its distance to the origin is at least τβ(β) · αj−1). Thus,

L+1∑
i=j

(
Ab
i + Ac

i

)
≤ Ob

j−1 + Oc
j−1 +

L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
. (6)

Similarly, consider all requests contributing to the sum Ac
j +

∑L+1
i=j+1(Ab

i + Ac
i ). Again, by

Lemma 4, each such request has to be serviced by Opt at time τβ(ξ) ·αj−1 or later (because
its distance to the origin is at least τβ(ξ) · αj−1). Hence,

Ac
j +

L+1∑
i=j+1

(
Ab
i + Ac

i

)
≤ Oc

j−1 +
L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
. (7)

Finally, observe that the total cost of Reroute(β) can be upper-bounded by
∑L+1
i=1 (β ·

αi ·Aa
i + ξ · αi ·Ab

i + αi ·Ac
i ) and the cost of Opt can be lower-bounded by

∑L
i=0(αi−1 ·

Oa
i + τβ(β) · αi ·Ob

i + τβ(ξ) · αi ·Oc
i ).

4.2 Factor-revealing LP

Let us now consider what happens when an adversary constructs an instance I for the
algorithm Reroute. When Opt is run on I, this defines L as the index of the last
phase when Opt services a request and this also defines non-negative values of variables
Oa
i ,Ob

i ,Oc
i for i ∈ {0, . . . , L}. When Reroute(β) is run on I, this defines non-negative

values of variables Aa
i ,Ab

i ,Ac
i for i ∈ {1, . . . , L+ 1}. As shown above, these variables satisfy

inequalities (5), (6) and (7). Moreover, the goal of the adversary is to maximize the ratio
between the cost of Reroute(β) and the cost of Opt.

This maximization problem may become only easier for the adversary if instead of creating
an actual input sequence, the adversary simply chooses L and the non-negative values of
variables Aa

i ,Ab
i ,Ac

i , Oa
i ,Ob

i ,Oc
i for i ∈ {0, . . . , L}, satisfying inequalities (5), (6) and (7),

so to maximize the objective value of Reroute-to-Opt cost ratio.

The values of all variables can be multiplied by a fixed value without changing the
objective value. Thus, instead of maximizing the cost ratio, the adversary may maximize
total cost of Reroute(β) with an additional constraint ensuring that the total cost of Opt
is at most 1.

This leads to the following factor-revealing linear program P(L, β, ξ), whose optimal value
P ∗(L, β, ξ) is an upper bound on the competitive ratio of Reroute(β) for a given L. This
relation holds for any choice of parameter ξ ∈ [β, 1]. The goal of P(L, β, ξ) is to maximize

L+1∑
i=1

(
β · αi ·Aa

i + ξ · αi ·Ab
i + αi ·Ac

i

)

MFCS 2019
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subject to the following constraints
L+1∑
i=j

(
Aa
i + Ab

i + Ac
i

)
≤

L∑
i=j−1

(
Oa
i + Ob

i + Oc
i

)
for all j ∈ {1, . . . , L+ 1}

L+1∑
i=j

(
Ab
i + Ac

i

)
≤ Ob

j−1 + Oc
j−1 +

L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
for all j ∈ {1, . . . , L+ 1}

Ac
j +

L+1∑
i=j+1

(
Ab
i + Ac

i

)
≤ Oc

j−1 +
L∑
i=j

(
Oa
i + Ob

i + Oc
i

)
for all j ∈ {1, . . . , L+ 1}

L∑
i=0

(
αi−1 ·Oa

i + τβ(β) · αi ·Ob
i + τβ(ξ) · αi ·Oc

i

)
≤ 1

and non-negativity of the variables. Note that the left hand side of the last inequality is
a lower bound on the cost of Opt

It remains to upper-bound the value of P ∗(L, β, ξ). Such upper bound is given by the
value of any feasible solution to the dual program D(L, β, ξ). The goal of D(L, β, ξ) is to
minimize R subject to the following constraints

j∑
i=1

qai ≥ β · αj for all j ∈ {1, . . . , L+ 1} (8)

j−1∑
i=1

(
qai + qbi + qci

)
+ qaj + qbj ≥ ξ · αj for all j ∈ {1, . . . , L+ 1} (9)

j∑
i=1

(
qai + qbi + qci

)
≥ αj for all j ∈ {1, . . . , L+ 1} (10)

αj−1 · R ≥
j∑
i=1

(
qai + qbi + qci

)
+ qaj+1 for all j ∈ {0, . . . , L} (11)

τβ(β) · αj · R ≥
j∑
i=1

(
qai + qbi + qci

)
+ qaj+1 + qbj+1 for all j ∈ {0, . . . , L} (12)

τβ(ξ) · αj · R ≥
j+1∑
i=1

(
qai + qbi + qci

)
for all j ∈ {0, . . . , L} (13)

and non-negativity of the variables. Note that sets of inequalities (8), (9), (10), (11), (12)
and (13) correspond to sets of variables Aa

i , Ab
i , Ac

i , Oa
i , Ob

i and Oc
i , respectively, in the

primal program P(L, β, ξ).

I Lemma 5. There exist values β and ξ, such that for any L, there exists a feasible solution
to D(L, β, ξ) whose value is at most 2

√
2 + 13/5 < 5.429.

Proof. We choose

β = (9α+ 4)/(5α2) = (3 +
√

2)/5 ≈ 0.883 and

ξ = β + (1− β)/α = (4
√

2− 1)/5 ≈ 0.931 .

For these values of β and ξ, it holds that

τβ(β) = 1/α =
√

2− 1 ≈ 0.414 and

τβ(ξ) = τβ(β) + (ξ − β) · α = 1/α+ (2−
√

2)/5 = (5 +
√

2)/(5 + 5
√

2) ≈ 0.531 .
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We set the dual variables as follows:

qa1 = β · α ,
qb1 = (ξ − β) · α ,
qc1 = (1− ξ) · α ,
qaj = β · (α− 1) · αj−1 for j ∈ {2, . . . , L+ 1} ,
qbj = 0 for j ∈ {2, . . . , L+ 1} ,
qcj = (1− β) · (α− 1) · αj−1 for j ∈ {2, . . . , L+ 1} .

Our choice of β, ξ and dual variables satisfy (8), (9) and (10) conditions of D(L, β, ξ)
with equality. Actually, (8), (10) and (9) for j = 1 hold with equality for any choice of β
and ξ. For j ∈ {2, . . . , L+ 1}, the left hand side of (9) is equal to αj−1 + β · (α− 1) · αj−1 =
(β · α + 1 − β) · αj−1, and the right hand side is equal to ξ · αj ; these values coincide for
ξ = β + (1− β)/α.

Given the fixed values of the dual variables, we choose R as the minimum value satisfying
inequalities (11), (12) and (13). Substituting the chosen values of the dual variables in these
inequalities and using τβ(β) = 1/α, yields

R ≥ (β · α)/α−1 = β · α2 by (11) for j = 0 ,
R ≥ (αj + β · (α− 1) · αj)/αj−1 = β · α2 + α− β · α by (11) for j ≥ 1 ,
R ≥ (β · α+ (ξ − β) · α)/τβ(β) = ξ · α2 by (12) for j = 0 ,
R ≥ (1 + β · (α− 1)) · αj/(τβ(β) · αj) = β · α2 + α− β · α by (12) for j ≥ 1 ,
R ≥ αj+1/(τβ(ξ) · αj) = α/τβ(ξ) by (13) for j ≥ 0 .

Thus, using β ≤ ξ and ξ = β + (1− β)/α, we obtain

R = max
{
β · α2, β · α2 + α− β · α, ξ · α2,

α

τβ(ξ)

}
= max

{
ξ · α2,

α

τβ(ξ)

}
= max

{
2
√

2 + 13/5, (15 + 10
√

2)/(5 +
√

2)
}

= 2
√

2 + 13/5 < 5.429 ,

which concludes the proof. J

I Theorem 6. For β = (3 +
√

2)/5 ≈ 0.883, the competitive ratio of Reroute(β) for the
traveling repairperson problem is at most 2

√
2 + 13/5 < 5.429.

Proof. Fix any input sequence I, run Opt on I, and partition its execution into phases.
Let L be the index of the last phase in which Opt services a request.

Let ξ = β+(1−β)/α. As discussed above, the competitive ratio of Reroute(β) is upper-
bounded by the optimal value P ∗(L, β, ξ) of the maximization program P(L, β, ξ). By weak
duality, the feasible solution to the dual minimization program D(L, β, ξ) of value 2

√
2+13/5

proposed in Lemma 5 is an upper bound on the optimal primal solution P ∗(L, β, ξ). Hence,
2
√

2 + 13/5 is an upper bound on the competitive ratio of Reroute(β). J

MFCS 2019
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5 Final remarks

Our computer-based experiments show that further partitioning of phases into more than
three intervals does not lead to an improvement of the competitive ratio.

Furthermore, it is possible to show that our solution to the dual program is asymptotically
best possible and the ratio cannot be improved by simply choosing better parameters β
and ξ. That is, with growing L, the optimal value of the dual D(L, β, ξ) converges to the
value 2

√
2 + 13/5 given by Lemma 5, as demonstrated in the lemma below.

I Lemma 7. Fix any L. For any values of β and ξ, satisfying 1/α ≤ β ≤ ξ ≤ 1 and
1/α ≤ τβ(β) ≤ τβ(ξ) ≤ 1, the value of any feasible solution to the dual program D(L, β, ξ) is
at least (2

√
2 + 13/5)/(1 + α−L).

Proof. Fix any j ∈ {1, . . . , L}. By combining requirement (11) with (10), we obtain

(R− α) · αj−1 = R · αj−1 − αj

≥
j∑
i=1

(
qai + qbi + qci

)
+ qaj+1 −

j∑
i=1

(
qai + qbi + qci

)
= qaj+1 .

Summing this relation over all j ∈ {1, . . . , L} and using (8) yields

(R− α) · α
L − 1
α− 1 ≥

L∑
j=1

qaj+1 = −qa1 +
L+1∑
j=1

qaj ≥ β · αL+1 − qa1 .

Now we observe that (11) for j = 1 implies qa1 ≤ R/α < R/(α− 1). By substituting this in
the inequality above and multiplying both sides by α− 1, we get

(R− α) · (αL − 1) ≥ β · (α− 1) · αL+1 −R .

Finally, we divide both sides by αL, obtaining

R− α ≥ (R− α) · (αL − 1)/αL ≥ β · (α− 1) · α−R/αL ,

and therefore,

R · (1 + α−L) ≥ β · α2 + α− β · α .

As in our construction we require τβ(β) ≥ 1/α, it holds that β ≥ (9α+4)/(5α2) = (3+
√

2)/5.
Combining this bound with the value of α = 1 +

√
2 yields

R ≥ (β · α2 + α− β · α)/(1 + α−L) ≥ (2
√

2 + 13/5)/(1 + α−L) . J
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