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Abstract
We provide syntactic derivative-like operations, defined by recursion on regular expressions, in
the styles of both Brzozowski and Antimirov, for trace closures of regular languages. Just as the
Brzozowski and Antimirov derivative operations for regular languages, these syntactic reordering
derivative operations yield deterministic and nondeterministic automata respectively. But trace
closures of regular languages are in general not regular, hence these automata cannot generally be
finite. Still, as we show, for star-connected expressions, the Antimirov and Brzozowski automata,
suitably quotiented, are finite. We also define a refined version of the Antimirov reordering
derivative operation where parts-of-derivatives (states of the automaton) are nonempty lists of
regular expressions rather than single regular expressions. We define the uniform scattering rank
of a language and show that, for a regexp whose language has finite uniform scattering rank, the
truncation of the (generally infinite) refined Antimirov automaton, obtained by removing long states,
is finite without any quotienting, but still accepts the trace closure. We also show that star-connected
languages have finite uniform scattering rank.
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1 Introduction

Traces were introduced to concurrency theory by Mazurkiewicz [13, 14] as an alternative to
words. A word can be seen as a linear order that is labelled with letters of the alphabet.
Intuitively, the main idea of traces is that the linear order, corresponding to sequentiality, is
replaced with a partial order. Sets of words (or word languages) can be used to describe the
behaviour of concurrent systems. Similarly, sets of traces (or trace languages) can also be
used for this purpose. The difference is that descriptions in terms of traces do not distinguish
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40:2 Reordering Derivatives of Trace Closures of Regular Languages

between different linear extensions (words) of the same partial order (trace) – they are
considered equivalent. Different linear extensions of the same partial order can be seen as
different observations of the same behaviour.

Given a word language L and a letter a, the derivative of L along a is the language
consisting of all the words v such that av belongs to L. An essential difference between words
and traces is that a nonempty word (a linear order) has its first letter as the unique minimal
element, but a nonempty trace (a partial order) may have several minimal elements. A trace
from a trace language can be derived along any of its minimal letters. Clearly, a minimal
letter of a trace need not be the first letter of a word representing this trace.

It is well-known that the derivative of a regular word language along a letter is again
regular. Brzozowski [5] showed that a regexp for it can be computed from a regexp for the
given language, and Antimirov [2] then further optimized this result. We show that these
syntactic derivative operations generalize to trace closures (i.e., closures under equivalence)
of regular word languages in the form of syntactic reordering derivative operations.

The syntactic derivative operations for regular word languages provide ways to construct
automata from a regexp. The Brzozowski derivative operation is a function on regexps
while the Antimirov derivative operation is a relation. Accordingly, they yield deterministic
and nondeterministic automata. The set of Brzozowski derivatives of a regexp (modulo
appropriate equations) and the set of Antimirov parts-of-derivatives are finite, hence so are
the resulting automata. Our generalizations to trace closures of regular languages similarly
give deterministic and nondeterministic automata, but these cannot be finite in general.
Still, as we show, for a star-connected expression, the Antimirov and Brzozowski automata,
suitably quotiented, are finite. We also develop a finer version of the Antimirov reordering
derivative, where parts-of-derivatives are nonempty lists of regexps rather than single regexps,
and we show that the set of expressions that can appear in these lists for a given initial
regexp is finite. We introduce a new notion of uniform scattering rank of a language (a
variant of Hashiguchi’s scattering rank [7]) and show that, for a regexp whose language has
finite uniform rank, a truncation of the refined reordering Antimirov automaton accepts its
trace closure despite the removed states, and is finite, without any quotienting.

A full version of this article, with proofs and background material on classical language
derivatives and trace closures of regular languages is available as a preprint [12].

2 Preliminaries on Word Languages

An alphabet Σ is a finite set (of letters). A word over Σ is a finite sequence of letters. The
set Σ∗ of all words over Σ is the free monoid on Σ with the empty word ε as the unit and
concatenation of words (denoted by · that can be omitted) as the multiplication. We write
|u| for the length of a word u and also |X| for the size of a subalphabet X. By |u|a we mean
the number of occurrences of a in u. By Σ(u) we denote the set of letters that appear in u.

A (word) language is a subset of Σ∗. The empty word and concatenation of words lift to
word languages via 1 =df {ε} and L · L′ =df {uv | u ∈ L ∧ v ∈ L′}.

2.1 Derivatives of a Language
A word language L is said to be nullable L↓, if ε ∈ L. The derivative (or left quotient)1 of L
along a word u is defined by DuL =df {v | uv ∈ L}. For any L, we have DεL = L as well
as DuvL = Dv(DuL) for any u, v ∈ Σ∗, i.e., the operation D : PΣ∗ × Σ∗ → PΣ∗ is a right
action of Σ∗ on PΣ∗. We also have L = {ε | L↓}∪

⋃
{{a} ·DaL | a ∈ Σ}, and for any u ∈ Σ∗,

we have u ∈ L iff (DuL)↓.

1 We use the word “derivative” both for languages and expressions, reserving the word “quotient” for
quotients of sets by equivalence relations.
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2.2 Regular Languages
The set RE of regular expressions (in short, regexps) over Σ is given by the grammar
E,F ::= a | 0 | E + F | 1 | EF | E∗ where a ranges over Σ.

The word-language semantics of regular expressions is given by a function J_K : RE→ PΣ∗
defined recursively by

JaK =df {a} J1K =df 1
J0K =df ∅ JEF K =df JEK · JF K

JE + F K =df JEK ∪ JF K JE∗K =df µX.1 ∪ JEK ·X

A word language L is said to be regular (or rational) if L = JEK for some regexp E.
Kleene algebras are defined by an equational theory. It was shown by Kozen [11] that the
set {JEK | E ∈ RE} of all regular languages together with the language operations ∅, ∪, 1,
·, (_)∗ is the free Kleene algebra on Σ. An important property for us is that E .= F iff
JEK = JF K where .= refers to valid equations in the Kleene algebra theory.

Kleene’s theorem [9] says that a word language is rational iff it is recognizable, i.e., accepted
by a finite deterministic automaton (acceptance by a finite nondeterministic automaton is
an equivalent condition because of determinizability [17]).

2.3 Brzozowski and Antimirov Derivatives
Derivatives of regular languages are regular. A remarkable fact is that they can be computed
syntactically, on the level of regular expressions. There are two constructions for this, due to
Brzozowski [5] and Antimirov [2]. The Brzozowski and Antimirov derivative operations yield
deterministic resp. nondeterministic automata accepting the language of a regular expression
E. The Antimirov automaton is finite. The Brzozowski automaton becomes finite when
quotiented by associativity, commutativity and idempotence for +. Identified up to the
Kleene algebra theory, the states of the Brzozowski automaton correspond to the derivatives
of the language JEK. Regular languages can be characterized as languages with finitely
many derivatives.

3 Trace Closures of Regular Languages

3.1 Trace Closure of a Word Language
An independence alphabet is an alphabet Σ together with an irreflexive and symmetric relation
I ⊆ Σ× Σ called the independence relation. The complement D of I, which is reflexive and
symmetric, is called dependence. We extend independence to words by saying that two words
u and v are independent, uIv, if aIb for all a, b such that a ∈ Σ(u) and b ∈ Σ(v).

Let ∼I⊆ Σ∗ × Σ∗ be the least congruence relation on the free monoid Σ∗ such that aIb
implies ab ∼I ba for all a, b ∈ Σ. If uIv, then uv ∼I vu.

A (Mazurkiewicz) trace is an equivalence class of words wrt. ∼I . The equivalence class of
a word w is denoted by [w]I .

A word a1 . . . an where ai ∈ Σ yields a directed node-labelled acyclic graph as follows.
Take the vertex set to be V =df {1, . . . , n} and label vertex i with ai. Take the edge set to
be E =df {(i, j) | i < j ∧ aiDaj}. This graph (V,E) for a word w is called the dependence
graph of w and is denoted by 〈w〉D. If w ∼I z, then the dependence graphs of w and z are
isomorphic, i.e., traces can be identified with dependence graphs up to isomorphism.

The set Σ∗/∼I of all traces is the free partially commutative monoid on (Σ, I). If I = ∅,
then Σ∗/∼I ∼= Σ∗, the set of words, i.e., we recover the free monoid. If I = {(a, b) | a 6= b},
then Σ∗/∼I ∼=Mf(Σ), the set of finite multisets over Σ, i.e., the free commutative monoid.

CONCUR 2019
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A trace language is a subset of Σ∗/∼I . Trace languages are in bijection with word
languages that are (trace) closed in the sense that, if z ∈ L and w ∼I z, then also w ∈ L. If
T is a trace language, then its flattening L =df

⋃
T is a closed word language. On the other

hand, the trace language corresponding to a closed word language L is T =df {t ∈ Σ∗/∼I |
∃z ∈ t. z ∈ L} = {t ∈ Σ∗/∼I | ∀z ∈ t. z ∈ L}.

Given a general (not necessarily closed) word language L, we define its (trace) closure [L]I
as the least closed word language that contains L. Clearly [L]I = {w ∈ Σ∗ | ∃z ∈ L.w ∼I z}
and also [L]I =

⋃
{t ∈ Σ∗/∼I | ∃z ∈ t. z ∈ L}. For any L, we have [[L]I ]I = [L]I , so [_]I is a

closure operator. Note also that L is closed iff [L]I = L.
As seen in Section 2.1, the derivative of a word language is the set of all suffixes for a

prefix. We now look at what the prefixes and suffixes of a word as a representative of a trace
should be. For a word vuv′ such that vIu, we can consider u to be its prefix, up to reordering,
and vv′ to be the suffix. This is because an equivalent word uvv′ strictly has u as a prefix
and vv′ as the suffix. Similarly, we may also want to consider u′ to be a prefix of vuv′ when
u′ ∼I u since u′vv′ ∼I uvv′ ∼I vuv′. Note that if a is such a prefix of z, then, by irreflexivity
of I, this a is the first a of z. In general, when u is a prefix of z, then the letter occurrences
in u uniquely map to letter occurrences in z. We scale these ideas to allow u to be scattered
in z as z = v0u1v1 . . . unvn in either the sense that u = u1 . . . un or u ∼I u1 . . . un. We also
define bounded versions of scattering that become relevant in Section 5.

I Definition 1. For all u1, . . . , un ∈ Σ+, v0 ∈ Σ∗, v1 . . . , vn−1 ∈ Σ+, vn ∈ Σ∗, z ∈ Σ∗,
u1, . . . , un C z B v0, . . . , vn =df z = v0u1v1 . . . unvn ∧ ∀i.∀j < i. vjIui.

I Definition 2. For all u, v, z ∈ Σ∗,
1. uC z B v =df ∃n ∈ N, u1, . . . , un, v0, . . . , vn. u = u1 . . . un ∧ v = v0 . . . vn ∧

u1, . . . , un C z B v0, . . . , vn;
2. u ∼C z B v =df ∃u′. u ∼I u′ ∧ u′ C z B v;
3. u ∼C z B∼ v =df ∃u′, v′. u ∼I u′ ∧ u′ C z B v′ ∧ v′ ∼I v.

I Lemma 3. For any u, v, z ∈ Σ∗,
uC z B v ⇐⇒ ∃!n ∈ N, u1, . . . , un, v0, . . . , vn. u = u1 . . . un ∧ v = v0 . . . vn ∧

u1, . . . , un C z B v0, . . . , vn.

I Definition 4. For all u, v, z ∈ Σ∗ and N ∈ N,
1. uCN z B v =df ∃n ≤ N, u1, . . . , un, v0, . . . , vn. u1, . . . , un C z B v0, . . . , vn;
2. (and u ∼CN z B v and u ∼CN z B∼ v are defined analogously).

I Example 5. Let Σ =df {a, b, c} and aIb and aIc. Take z =df aabcba. We have abCzBacba
since a, bC z B ε, a, cba. We can visualize this by underlining the subwords of u =df ab in
z = εaabcba. This scattering is valid because εIa, εIb and aIb: recall that Def. 1 requires
all underlined subwords ui to be independent with all non-underlined subwords vi to their
left in z. Similarly we have aa, aC z B ε, bcb, ε because z = εaabcbaε, εIaa, εIa and bcbIa.
Note that neither aabcbaε nor aabcbaε satisfies the conditions about independence and thus
there is no v such that baC z B v. We do have ba ∼C z B acba though, since ba ∼I ab and
a, bC z B ε, a, cba.

I Proposition 6. For all u, v, z ∈ Σ∗, uv ∼I z ⇐⇒ u ∼C z B∼ v.

3.2 Trace-Closing Semantics of Regular Expressions
We now define a nonstandard word-language semantics of regexps that directly interprets E
as the trace closure [JEK]I of its standard regular word-language denotation JEK.
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We have [{a}]I = {a}, [∅]I = ∅, [L ∪ L′]I = [L]I ∪ [L′]I and [1]I = 1. But for general
I, we do not have [L · L′]I = [L]I · [L′]I . For example, for Σ =df {a, b} and aIb, we have
[{a}]I = {a}, [{b}]I = {b} whereas [{ab}]I = {ab, ba} 6= {ab} = [{a}]I · [{b}]I . Hence we
need a different concatenation operation.

I Definition 7.
1. The I-reordering concatenation of words ·I : Σ∗ × Σ∗ → PΣ∗ is defined by

ε ·I v =df {v}
u ·I ε =df {u}

au ·I bv =df {a} · (u ·I bv) ∪ {b | auIb} · (au ·I v)

2. The lifting of I-reordering concatenation to languages is defined by

L ·I L′ =df
⋃
{u ·I v | u ∈ L ∧ v ∈ L′}

Note that {b | auIb} acts as a test: it is either ∅ or {b}.

I Example 8. Let Σ =df {a, b} and aIb. Then a ·I b = {ab, ba}, aa ·I b = {aab, aba, baa},
a ·I bb = {abb, bab, bba} and ab ·I ba = {abba}. The last example shows that although
I-reordering concatenation is defined quite similarly to shuffle, it is different.

I Proposition 9. For any u, v, z ∈ Σ∗, z ∈ u ·I v ⇐⇒ uC z B v.

I Proposition 10. For any languages L and L′, [L · L′]I = [L]I ·I [L′]I .

Evidently, if I = ∅, then reordering concatenation is just ordinary concatenation: u ·∅ v =
{uv}. For I = Σ × Σ, which is forbidden in independence alphabets, as I is required to
be irreflexive, it is shuffle: u ·Σ×Σ v = u tt v. For general I, it has properties similar to
concatenation. In particular, we have

1 ·I L = L ∅ ·I L = ∅
L ·I 1 = L (L1 ∪ L2) ·I L = L1 ·I L ∪ L2 ·I L

(L ·I L′) ·I L′′ = L ·I (L′ ·I L′′) (L1 tt L2) ·I (L′1 tt L′2) ⊆ (L1 ·I L′1) tt (L2 ·I L′2)

but also other equations of the concurrent Kleene algebra theory introduced in [8].
We are ready to introduce the closing semantics of regular expressions.

I Definition 11. The trace-closing semantics J_KI : RE → PΣ∗ of regular expressions is
defined recursively by

JaKI =df {a} J1KI =df 1
J0KI =df ∅ JEF KI =df JEKI ·I JF KI

JE + F KI =df JEKI ∪ JF KI JE∗KI =df µX.1 ∪ JEKI ·I X

Compared to the standard semantics of regular expressions, the difference is in the
handling of the EF case (and consequently also the E∗ case) due to the cross-commutation
that happens in concatenation of traces and must be accounted for by ·I .

With I = ∅, we fall back to the standard interpretation of regular expressions: JEK∅ = JEK.
For I a general independence relation, we obtain the desired property that the semantics
delivers the trace closure of the language of the regexp.

I Proposition 12. For any E, JEKI is trace closed; moreover, JEKI = [JEK]I .

CONCUR 2019



40:6 Reordering Derivatives of Trace Closures of Regular Languages

3.3 Properties of Trace Closures of Regular Languages
Trace closures of regular languages are theoretically interesting, as they have intricate
properties. For a thorough survey, see Ochmański’s handbook chapter [16].

The most important property for us is that the trace closure of a regular language is
not necessarily regular. Consider Σ =df {a, b}, aIb. Let L =df J(ab)∗K. The language
[L]I = {u | |u|a = |u|b} is not regular.

The class of trace closures of regular languages over an independence alphabet behaves
quite differently from the class of regular languages over an alphabet. For example, the
class of trace closures of regular languages over (Σ, I) is closed under complement iff I is
quasi-transitive (i.e., its reflexive closure is transitive) [3, 1, 18] (cf. [16, Thm. 6.2.5]); the
question of whether the trace closure of the language of a regexp over (Σ, I) is regular is
decidable iff I is quasi-transitive [19] (cf. [16, Thm. 6.2.7]).

A closed language is regular iff the corresponding trace language is accepted by a finite
asynchronous (a.k.a. Zielonka) automaton [21, 22]. In Section 4.4, we will see further
characterizations of regular closed languages based on star-connected expressions.

4 Reordering Derivatives

We are now ready to generalize the Brzozowski and Antimirov constructions for trace closures
of regular languages. To this end, we switch to what we call reordering derivatives.

4.1 Reordering Derivative of a Language
Let (Σ, I) be a fixed independence alphabet. We generalize the concepts of (semantic) nullab-
ility and derivative of a language to concepts of reorderable part and reordering derivative.

I Definition 13. We define the I-reorderable part of a language L wrt. a word u by RI
uL =df

{v ∈ L | vIu} and the I-reordering derivative along u by DI
uL =df {v | ∃z ∈ L. u ∼C z B v}.

By Prop. 9, we can equivalently say that DI
uL = {v | ∃z ∈ L. z ∈ [u]I ·I v}. For a single-letter

word a, we get DI
aL = {vlvr | vlavr ∈ L ∧ vlIa} = {v | ∃z ∈ L. z ∈ a ·I v}. That is, we

require some reordering of u (resp. a) to be a prefix, up to reordering, of some word z in
L with v as the corresponding strict suffix. (In other words, for the sake of precision and
emphasis, we allow reordering of letters within u and across u and v, but not within v.)

I Example 14. Let Σ =df {a, b, c} and aIb. Take L =df {ε, a, b, ca, aa, bbb, babca, abbaba}.
We have RI

aL = RI
aaL = {ε, b, bbb}, DI

aL = {ε, a, bbca, bbaba} and DI
aaL = {ε, bbba}.

In the special case I = ∅, we have R∅εL = L, R∅uL = {ε | L↓} for any u 6= ε, and
D∅uL = DuL. In the general case, the reorderable part and reordering derivative enjoy the
following properties.

I Lemma 15. For every L,
1. RI

εL = L; for every u, v ∈ Σ∗, RI
v(RI

uL) = RI
uvL;

2. for every u, u′ ∈ Σ∗, RI
Σ(u)L = RI

Σ(u′)L.

We extend RI to subsets of Σ: by RI
XL, we mean RI

uL where u is any enumeration of X.

I Lemma 16. For every L,
1. DI

εL = L; for any u, v ∈ Σ∗, DI
v(DI

uL) = DI
uvL;

2. for any u, u′ ∈ Σ∗ such that u ∼I u′, we have DI
uL = DI

u′L.
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I Proposition 17. For every L,
1. for any u ∈ Σ∗, Du([L]I) = [DI

uL]I ;
if L is closed (i.e., [L]I = L), then, for any u ∈ Σ∗, DI

uL is closed and DuL = DI
uL;

2. for any u, v ∈ Σ∗, uv ∈ [L]I iff v ∈ [DI
uL]I ;

3. for any u ∈ Σ∗, u ∈ [L]I iff (DI
uL)↓;

4. [L]I = {ε | L↓} ∪
⋃

a∈Σ{a} · [DI
aL]I .

I Example 18. Let Σ =df {a, b} and aIb. Take L to be the regular language J(ab)∗K. We
have already noted that the language [L]I = {u | |u|a = |u|b} is not regular. For any n ∈ N,
DI

bnL = {an} · L = Jan(ab)∗K whereas Dbn([L]I) = {an} ·I [L]I = {u | |u|a = |u|b + n}.
We can see that [L]I has infinitely many derivatives, none of which are regular, and L has
infinitely many reordering derivatives, all regular.

4.2 Brzozowski Reordering Derivative

The reorderable parts and reordering derivatives of regular languages turn out to be regular.
We now show that they can be computed syntactically, generalizing the classical syntactic
nullability and Brzozowski derivative operations [5].

I Definition 19. The I-reorderable part and the Brzozowski I-reordering derivative of a
regexp are given by functions RI , DI : RE × Σ → RE and RI , DI : RE × Σ∗ → RE defined
recursively by

RI
ab =df if aIb then b else 0 DI

ab =df if a = b then 1 else 0
RI

a0 =df 0 DI
a0 =df 0

RI
a(E + F ) =df RI

aE +RI
aF DI

a(E + F ) =df DI
aE +DI

aF

RI
a1 =df 1 DI

a1 =df 0
RI

a(EF ) =df (RI
aE)(RI

aF ) DI
a(EF ) =df (DI

aE)F + (RI
aE)(DI

aF )
RI

a(E∗) =df (RI
aE)∗ DI

a(E∗) =df (RI
aE)∗(DI

aE)E∗

RI
εE =df E DI

εE =df E

RI
uaE =df RI

a(RI
uE) DI

uaE =df DI
a(DI

uE)

The regexp RuE is nothing but E with all occurrences of letters dependent with u replaced
with 0. The definition of D is more interesting. Compared to the classical Brzozowski
derivative, the nullability condition E↓ in the EF case has been replaced with concatenation
with the reorderable part RI

aE, and the E∗ case has also been adjusted.
The functions R and D on regexps compute their semantic counterparts on the corres-

ponding regular languages.

I Proposition 20. For any E,
1. for any a ∈ Σ, RI

aJEK = JRI
aEK and DI

aJEK = JDI
aEK;

2. for any u ∈ Σ∗, RI
uJEK = JRI

uEK and DI
uJEK = JDI

uEK.

I Proposition 21. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, av ∈ JEKI ⇐⇒ v ∈ JDI

aEKI ;
2. for any u, v ∈ Σ∗, uv ∈ JEKI ⇐⇒ v ∈ JDI

uEKI ;
3. for any u ∈ Σ∗, u ∈ JEKI ⇐⇒ (DI

uE)↓.

CONCUR 2019
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I Example 22. Let Σ =df {a, b}, aIb and E =df aa+ ab+ b.

DI
bE = DI

baa+DI
bab+DI

b b

= ((DI
ba)a+ (RI

ba)(DI
ba)) + ((DI

ba)b+ (RI
ba)(DI

b b)) +DI
b b

= (0a+ a0) + (0b+ a1) + 1 .= a+ 1

DI
b (E∗) = (RI

bE)∗(DI
bE)E∗

= (aa+ a0 + 0)∗((0a+ a0) + (0b+ a1) + 1)E∗ .= (aa)∗(a+ 1)E∗

DI
bb(E∗) .= DI

b ((aa)∗(a+ 1)E∗) .= (aa)∗(a+ 1)(aa)∗(a+ 1)E∗

As with the classical Brzozowski derivative, we can use the reordering Brzozowski
derivative to construct deterministic automata. For a regexp E, take QE =df {DI

uE | u ∈ Σ∗},
qE
0 =df E, FE =df {E′ ∈ QE | E′↓}, δE

a E
′ =df D

I
aE
′ for E′ ∈ QE . By Prop. 21, this

automaton accepts the closure JEKI . But even quotiented by the full Kleene algebra theory,
the quotient of QE is not necessarily finite, i.e., we may be able to construct infinitely many
different languages by taking reordering derivatives. For the regexp from Example 18, we
have DI

bn((ab)∗) .= an(ab)∗, so it has infinitely many Brzozowski reordering derivatives even
up to the Kleene algebra theory. This is only to be expected, as the closure J(ab)∗KI is not
regular and cannot possibly have an accepting finite automaton.

4.3 Antimirov Reordering Derivative
Like the classical Brzozowski derivative that was optimized by Antimirov [2], the Brzozowski
reordering derivative construction can be optimized by switching from functions on regexps
to multivalued functions or relations.

I Definition 23. The Antimirov I-reordering parts-of-derivatives of a regexp along a letter
and a word are relations →I ⊆ RE×Σ×RE and →I∗ ⊆ RE×Σ∗ ×RE defined inductively by

a→I (a, 1)
E →I (a,E′)

E + F →I (a,E′)
F →I (a, F ′)

E + F →I (a, F ′)

E →I (a,E′)
EF →I (a,E′F )

F →I (a, F ′)
EF →I (a, (RI

aE)F ′)
E →I (a,E′)

E∗ →I (a, (RI
aE)∗E′E∗)

E →I∗ (ε, E)
E →I∗ (u,E′) E′ →I (a,E′′)

E →I∗ (ua,E′′)

Here RI is defined as before. Similarly to the Brzozowski reordering derivative from the
previous subsection, the condition E↓ in the second EF rule has has been replaced with
concatenation with RI

aE, and the E∗ rule has been adjusted.
Collectively, the Antimirov reordering parts-of-derivatives of a regexp E compute the

semantic reordering derivative of the language JEK.

I Proposition 24. For any E,
1. for any a ∈ Σ, DI

aJEK =
⋃
{JE′K | E →I (a,E′)};

2. for any u ∈ Σ∗, DI
uJEK =

⋃
{JE′K | E →I∗ (u,E′)}.

I Proposition 25. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, av ∈ JEKI ⇐⇒ ∃E′. E →I (a,E′) ∧ v ∈ JE′KI ;
2. for any u, v ∈ Σ∗, uv ∈ JEKI ⇐⇒ ∃E′. E →I∗ (u,E′) ∧ v ∈ JE′KI ;
3. for any u ∈ Σ∗, u ∈ JEKI ⇐⇒ ∃E′. E →I∗ (u,E′) ∧ E′↓.
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I Example 26. Let us revisit Example 22. The Antimirov reordering parts-of-derivatives of
E along b are a1 and 1:

b→I (b, 1)
ab→I (b, a1)

ab+ b→I (b, a1)
aa+ ab+ b→I (b, a1)

b→I (b, 1)
ab+ b→I (b, 1)

aa+ ab+ b→I (b, 1)

The Antimirov reordering parts-of-derivatives of E∗ along b are therefore E∗b (a1)E∗ and
E∗b 1E∗ where Eb =df R

I
bE = aa+a0+0. Recall that, for the Brzozowski reordering derivative,

we computed DI
bE = (0a+ a0) + (0b+ a1) + 1 and DI

bE
∗ = E∗b ((0a+ a0) + (0b+ a1) + 1)E∗.

Like the classical Antimirov construction, the Antimirov reordering parts-of-derivatives
of a regexp E give a nondeterministic automaton by QE =df {E′ | ∃u ∈ Σ∗. E →I∗ (u,E′)},
IE =df {E}, FE =df {E′ ∈ QE | E′↓}, E′ →E (a,E′′) =df E

′ →I (a,E′′) for E′, E′′ ∈ QE .
This automaton accepts JEKI by Prop. 25, but is generally infinite, also if quotiented by
the full Kleene algebra theory. Revisiting Example 18 again, (ab)∗ must have infinitely
many Antimirov reordering parts-of-derivatives modulo the Kleene algebra theory since
J(ab)∗KI is not regular and cannot have a finite accepting nondeterministic automaton.
Specifically, it has (a0)∗((a1) . . . ((a0)∗((a1)(ab)∗)) . . .) .= an(ab)∗ as its single reordering
part-of-derivative along bn.

However, if quotienting the Antimirov automaton for E by some sound theory (a theory
weaker than the Kleene algebra theory) makes it finite, then the Brzozowski automaton can
also be quotiented to become finite.

I Proposition 27. For any E,
1. for any a ∈ Σ, DI

aE
.=

∑
{E′ | E →I (a,E′)};

2. for any u ∈ Σ∗, DI
uE

.=
∑
{E′ | E →I∗ (u,E′)}

(using the semilattice equations for 0,+, that 0 is zero, and distributivity of · over +).

I Corollary 28. If some quotient of the Antimirov automaton for E (accepting JEKI) is
finite, then also some quotient of the Brzozowski automaton is finite.

4.4 Star-Connected Expressions
Star-connected expressions are important as they characterize regular closed languages. A
corollary of that is a further characterization of such languages in terms of a “concurrent”
semantics of regexps that interprets Kleene star nonstandardly as “concurrent star”.

I Definition 29. A word w ∈ Σ∗ is connected if its dependence graph 〈w〉D is connected. A
language L ⊆ Σ∗ is connected if every word w ∈ L is connected.

I Definition 30.
1. Star-connected expressions are a subset of the set of all regexps defined inductively by: 0,

1 and a ∈ Σ are star-connected. If E and F are star-connected, then so are E + F and
EF . If E is star-connected and JEK is connected, then E∗ is star-connected.

2. A language L is said to be star-connected if L = JEK for some star-connected regexp.

Ochmański [15] proved that a closed language is regular iff it is the closure of a star-
connected language (cf. [16, Thm. 6.3.13]). This means that, for any regexp E, the language
JEKI is regular iff there exists a (generally different!) star-connected expression E′ such
that JEKI = JE′KI . As a corollary, a closed language is regular iff it is the closure of the
concurrent denotation of some regexp (cf. [16, Thm. 6.3.16]).
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4.5 Automaton Finiteness for Star-Connected Expressions
We now show that the set of Antimirov reordering parts-of-derivatives of a star-connected
expression is finite modulo suitable equations.

I Lemma 31. If JEK is connected, then, for every u ∈ Σ+ and E′ such that E →I∗ (u,E′),
either RI

uE
′ .= 0 or RI

uE
′ .= 1 (using the equations involving 0 and 1 only and that 0 is zero).

I Lemma 32. If JEK is connected and E∗ →I∗ (u,E′), then there exists E′′ such that
E′

.= E′′ (using, additionally, the monoid equations for 1, · and the equation F ∗ · F ∗ .= F ∗)
and E′′ contains at most |Σ| subexpressions of the form (RI

XE)∗ where ∅ ⊂ X ⊆ Σ.

I Proposition 33. If E is star-connected, then a suitable sound quotient of the state set
{E′ | ∃u ∈ Σ∗. E →I∗ (u,E′)} of the Antimirov automaton for E (accepting JEKI) is finite.

5 Uniform Scattering Rank of a Language

We proceed to defining the notion of uniform scattering rank of a language and show that
star-connected expressions define languages with uniform scattering rank.

5.1 Scattering Rank vs. Uniform Scattering Rank
The notion of scattering rank of a language (a.k.a. distribution rank, k-block testability) was
introduced by Hashiguchi [7].

I Definition 34. A language L has (I-scattering) rank at most N if
∀u, v. uv ∈ [L]I =⇒ ∃z ∈ L. u ∼CN z B∼ v.

Hashiguchi [7] showed that having rank is a sufficient condition for regularity of the trace
closure of a regular language (cf. [16, Prop. 6.3.2]). But it is not a necessary condition: for
Σ =df {a, b}, aIb, the language L =df J(aa+ab+ba+bb)∗K has rank 1 (as does any nontrivial
closed language), but it is not star-connected.

We wanted to show that a truncation of the refined Antimirov automaton (which we
define in Section 6) is finite for regexps whose language has rank (i.e., the language has rank
at most N for some N ∈ N). But it turns out, as we shall see, that rank does not quite work
for this. For this reason, we introduce a stronger notion that we call uniform scattering rank.

I Definition 35. A language L has uniform (I-scattering) rank at most N if
∀w ∈ [L]I . ∃z ∈ L. ∀u, v. w = uv =⇒ u ∼CN z B∼ v.

The difference between the two definitions is that, in the uniform case, the choice of z
depends only on w whereas, in the non-uniform case, it depends on the particular split of w
as w = uv, i.e., for every such split of w we may choose a different z.

I Lemma 36. If L has uniform rank at most N , then L has rank at most N .

The converse of the above lemma does not hold – there are languages with uniform rank
greater than rank. Furthermore, there are languages that have rank but no uniform rank.

I Proposition 37. Let Σ =df {a, b, c}, aIb and E =df a
∗b∗c(ab)∗(a∗+b∗)+(ab)∗(a∗+b∗)ca∗b∗.

The language JEK has rank 2, but no uniform rank.
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5.2 Star-Connected Languages Have Uniform Rank
Klunder et al. [10] established that star-connected languages have rank. We will now show
that star-connected languages also have uniform rank, by strengthening their proof.

It can be seen that if L1 and L2 have uniform rank at most N1 and N2, then L1 ∪ L2
has uniform rank at most max(N1, N2) and L1 · L2 has uniform rank at most N1 +N2. If a
general L has uniform rank at most N , then L∗ need not have uniform rank. For example,
for Σ =df {a, b}, aIb, the language {ab} has uniform rank 1, but {ab}∗ is without rank,
so also without uniform rank. But if L is also connected, then L∗ has uniform rank at
most (N + 1) · |Σ|.

I Proposition 38. If E is star-connected, then the language JEK has uniform rank.

6 Antimirov Reordering Derivative and Uniform Rank

We have seen that the reordering language derivative DI
uL allows u to be scattered in a word

z ∈ L as u1, . . . , un C z B v0, . . . , vn where u ∼I u1 . . . un. We will now consider a version of
the Antimirov reordering derivative operation that delivers lists of regexps for the possible
v0, . . . , vn rather than just single regexps for their concatenations v0 . . . vn.

6.1 Refined Antimirov Reordering Derivative
The refined reordering parts-of-derivative of a regexp E along a letter a are pairs of regexps
El, Er. For any word w = av ∈ JEKI , there must be an equivalent word z = vlavr ∈ JEK.
Instead of describing the words vlvr obtainable by removing a minimal occurrence of a
in a word z ∈ JEK, the refined parts-of-derivative describe the subwords vl, vr that were
to the left and right of this a in z: it must be the case that vl ∈ JElK and vr ∈ JErK for
one of the pairs El, Er. For a longer word u, the refined reordering derivative operation
gives lists of regexps E0, . . . , En fixing what the lists of subwords v0, . . . , vn can be in words
z = v0u1v1 . . . unvn ∈ JEK equivalent to a given word w = uv ∈ JEKI .

I Definition 39. The (unbounded and bounded) refined Antimirov I-reordering parts-of-
derivatives of a regexp along a letter and a word are given by relations→I ⊆ RE×Σ×RE×RE,
⇒I ⊆ RE+ × Σ × RE+, →I∗ ⊆ RE × Σ∗ × RE+, ⇒I

N ⊆ RE+≤N+1 × Σ × RE+≤N+1, and
→I∗

N ⊆ RE× Σ∗ × RE+≤N+1 defined inductively by

a→I (a; 1, 1)
E →I (a;El, Er)

E + F →I (a;El, Er)
F →I (a;Fl, Fr)

E + F →I (a;Fl, Fr)

E →I (a;El, Er)
EF →I (a;El, ErF )

F →I (a;Fl, Fr)
EF →I (a; (RI

aE)Fl, Fr)
E →I (a;El, Er)

E∗ →I (a; (RI
aE)∗El, ErE

∗)

E →I (a;El, Er) |Γ,∆| < N

Γ, E,∆⇒I
N (a;RI

aΓ, El, Er,∆)
E →I (a;El, Er) El↓ |Γ| > 0

Γ, E,∆⇒I
N (a;RI

aΓ, Er,∆)

E →I (a;El, Er) Er↓ |∆| > 0
Γ, E,∆⇒I

N (a;RI
aΓ, El,∆)

E →I (a;El, Er) El↓ Er↓ |Γ| > 0 |∆| > 0
Γ, E,∆⇒I

N (a;RI
aΓ,∆)

E →I∗
N (ε;E)

E →I∗
N (u; Γ) Γ⇒I

N (a; Γ′)
E →I∗

N (ua; Γ′)

By RE+≤N+1 we mean nonempty lists of regexps of length at most N + 1. The relations ⇒I

and →I∗ are defined exactly as ⇒I
N and →I∗

N but with the condition |Γ,∆| < N of the first
rule of ⇒I

N dropped. The operation RI
a is extended to lists of regexps in the obvious way.
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We have several rules for deriving a list of regexps along a. If E is split into El, Er and
neither of them is nullable, then, in the N -bounded case, we require that the given list is
shorter than N + 1 since the new list will be longer by 1. If one of El, Er is nullable, not
the first resp. last in the list and we choose to drop it, then the new list will be of the same
length. If both are nullable, not the first resp. last and we opt to drop both, then the new list
will be shorter by 1. They must be droppable under these conditions to handle the situation
when a word z has been split as v0u1v1 . . . ukvkuk+1 . . . unvn and vk is further being split as
vlavr while vl or vr is empty. If k 6= 0 and vl is empty, we must join uk and a into uka. If
k 6= n and vr is empty, we must join a and uk+1 into auk+1. If k is neither 0 nor n and both
vl and vr are empty, we must join all three of uk, a and uk+1 into ukauk+1. The length of
the new list of regexps is always at least 2.

I Proposition 40. For any E,
1. for any a ∈ Σ, vl, vr ∈ Σ∗,

vlIa ∧ vlavr ∈ JEK ⇐⇒ ∃El, Er. E →I (a;El, Er) ∧ vl ∈ JElK ∧ vr ∈ JErK;

2. for any u ∈ Σ∗, n ∈ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗,

∃z ∈ Σ∗, u1, . . . , un ∈ Σ+. z ∈ JEK ∧ u ∼I u1 . . . un ∧ u1, . . . , un C z B v0, . . . , vn

⇐⇒
∃E0, . . . , En. E →I∗ (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjK.

I Proposition 41. For any E,
1. for any a ∈ Σ, v ∈ Σ∗, the following are equivalent:

a. av ∈ JEKI ;
b. ∃vl, vr ∈ Σ∗. v ∼I vlvr ∧ vlIa ∧ vlavr ∈ JEK;
c. ∃vl, vr ∈ Σ∗.

v ∼I vlvr ∧ ∃El, Er. E →I (a;El, Er) ∧ vl ∈ JElK ∧ vr ∈ JErK;
d. ∃vl, vr ∈ Σ∗.

v ∈ vl ·I vr ∧ ∃El, Er. E →I (a;El, Er) ∧ vl ∈ JElKI ∧ vr ∈ JErKI .
2. for any u, v ∈ Σ∗, the following are equivalent:

a. uv ∈ JEKI ;
b. ∃z ∈ JEK. u ∼C z B∼ v;
c. ∃n ∈ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∼I v0v1 . . . vn ∧

∃E0, . . . , En. E →I∗ (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjK;
d. ∃n ∈ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∈ v0 ·I v1 ·I . . . ·I vn ∧

∃E0, . . . , En. E →I∗ (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjKI .
3. for any u ∈ Σ∗,

u ∈ JEKI ⇐⇒ (u = ε ∧ E↓) ∨ (u 6= ε ∧ ∃E0, E1. E →I∗ (u;E0, E1) ∧ E0↓ ∧ E1↓).

I Corollary 42. For any E such that JEK has uniform rank at most N ,
1. for any u, v ∈ Σ∗, the following are equivalent:

a. uv ∈ JEKI ;
b. ∃z ∈ JEK. ∀u′, u′′. u = u′u′′ =⇒ u′ ∼CN z B∼ u′′v;
c. ∃n ≤ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∼I v0v1 . . . vn ∧

∃E0, . . . , En. E →I∗
N (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjK;

d. ∃n ≤ N, v0 ∈ Σ∗, v1, . . . , vn−1 ∈ Σ+, vn ∈ Σ∗. v ∈ v0 ·I v1 ·I . . . ·I vn ∧
∃E0, . . . , En. E →I∗

N (u;E0, . . . , En) ∧ ∀j. vj ∈ JEjKI .
2. for any u ∈ Σ∗,

u ∈ JEKI ⇐⇒ (u = ε ∧ E↓) ∨ (u 6= ε ∧ ∃E0, E1. E →I∗
N (u;E0, E1) ∧ E0↓ ∧ E1↓).
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I Example 43. We go back to Example 22. Recall that E =df aa + ab + b and Eb =df
RI

bE = aa+ a0 + 0. Here is one of the refined reordering parts-of-derivatives of E∗ along bb.

E∗ →I∗
2 (ε;E∗)

b→I (b; 1, 1)
ab→I (b; a1, 1)

ab+ b→I (b; a1, 1)
aa+ ab+ b→I (b; a1, 1)
E∗ →I (b;E∗b (a1), 1E∗) 0 < 2

E∗ ⇒I
2 (b;E∗b (a1), 1E∗)

E∗ →I∗
2 (b;E∗b (a1), 1E∗)

b→I (b; 1, 1)
ab→I (b; a1, 1)

ab+ b→I (b; a1, 1)
aa+ ab+ b→I (b; a1, 1)
E∗ →I (b;E∗b (a1), 1E∗)

1E∗ →I (b; 1(E∗b (a1)), 1E∗) 1 < 2
E∗b (a1), 1E∗ ⇒I

2 (b;E∗b (a1), 1(E∗b (a1)), 1E∗)
E∗ →I∗

2 (bb;E∗b (a1), 1(E∗b (a1)), 1E∗)

In this example, we chose N =df 2. The regexp 1(E∗b (a1)) .= (aa)∗a is not nullable, so we
could not have dropped it. From here we cannot continue by deriving along a third b by again
taking it from the summand ab of E in 1E∗, as this would produce another nondroppable
1(E∗b (a1)) and make the list too long (longer than 3). For example, we are not allowed to
establish w =df bbbaaa ∈ JE∗KI (by deriving E∗ along w and checking if we can arrive at
E0, E1 with both E0, E1 nullable), mandated by z =df ababab ∈ JE∗K, but we are allowed
to do so because of z′ =df bbabaa ∈ JE∗K. The word z is not useful since among the splits
of w as w = uv there is u =df bbb, v =df aaa, which splits z as u ∼C z B∼ v scattering
u into 3 blocks as z = ababab (we underline the letters from u); the full sequence of these
corresponding splits of z is ababab, ababab, ababab, ababab, ababab, ababab, ababab. The word
z′, on the contrary, is fine because, for every split of w as w = uv, there are at most two
blocks of letters from u in z′: bbabaa, bbabaa, bbabaa, bbabaa, bbabaa, bbabaa, bbabaa. The
choice N = 2 suffices for accepting all of JE∗KI , since JE∗K happens to have uniform rank 2.

The refined Antimirov reordering parts-of-derivatives of a regexp E give a nondeterministic
automaton by QE =df {Γ | ∃u ∈ Σ∗. E →I∗ (u; Γ)}, IE =df {E}, FE =df {E | E↓} ∪
{E0, E1 ∈ QE | E0↓ ∧E1↓}, Γ→E (a; Γ′) =df Γ⇒I (a; Γ′) for Γ,Γ′ ∈ QE . By Prop. 41, this
automaton accepts JEKI . It is generally not finite as QE can contain states Γ of any length.

Given N ∈ N, another automaton is obtained by restricting QE , FE and →E to QE
N =df

{Γ | ∃u ∈ Σ∗. E →I∗
N (u; Γ)}, FE

N =df {E | E↓} ∪ {E0, E1 ∈ QE
N | E0↓ ∧ E1↓}, Γ →E

N

(a; Γ′) =df Γ⇒I
N (a; Γ′) for Γ,Γ′ ∈ QE

N . By Cor. 42, if JEK has uniform rank at most N , then
this smaller automaton accepts JEKI despite the truncation. If JEK does not have uniform
rank or we choose N smaller than the uniform rank, then the N -truncated automaton
recognizes a proper subset of JEKI . Prop. 37 gives an example of this: however we choose N ,
the N -truncated automaton fails to accept the word anbncanbn for n > N . This happens
because JEK does not have uniform rank (and that it has rank 2 does not help).

6.2 Automaton Finiteness for Regular Expressions with Uniform Rank

Is the N -truncated Antimirov automaton finite? The states Γ of QE
N are all of length at most

N + 1, so there is hope. The automaton will be finite if we can find a finite set containing all
the individual regexps E′ appearing in the states Γ. We now define such a set E→∗.
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I Definition 44. We define functions (_) +,R, (_)→+, (_)→∗ : RE→ PRE by

a + =df {1} (E + F ) + =df E + ∪ F +

0 + =df ∅ 1 + =df ∅

(EF ) + =df E + ∪ F + ∪ E + · {F} ∪ {E} · F + ∪ E + · F +

(E∗) + =df E + ∪ {E∗} · E + ∪ E + · {E∗} ∪ E + · ({E∗} · E +) ∪ (E + · {E∗}) · E +

RE =df {RI
XE | X ⊆ Σ}

E→+ =df R(E +)
E→∗ =df {E} ∪ E→+

I Proposition 45.
1. For any E, the set E→∗ is finite.
2. For any E and X, we have (RI

XE)→∗ ⊆ RI
X(E→∗).

3. For any E, a and El, Er, if E →I (a;El, Er), then El ∈ RI
a(E +) and Er ∈ E +.

4. For any E,E′, X, a, E′l , E′r, if E′ ∈ RI
X(E +) and E′ →I (a;E′l , E′r),

then E′l ∈ RI
Xa(E +) and E′r ∈ RI

X(E +).
5. For any E, u and E0, . . . , En, if E →I∗ (u;E0, . . . , En), then ∀j. Ej ∈ E→∗.

I Proposition 46. For every E and N , the state set {Γ | ∃u ∈ Σ∗. E →I∗
N (u; Γ)} of the

N -truncated refined Antimirov automaton for E (accepting JEKI if JEK has uniform rank at
most N) is finite.

7 Related Work

Syntactic derivative constructions for regular expressions extended with constructors for
(versions of) the shuffle operation have been considered, for example, by Sulzmann and
Thiemann [20] for the Brzozowski derivative and by Broda et al. [4] for the Antimirov
derivative. This is relevant to our derivatives since L ·I L′ is by definition a language between
L · L′ and L tt L′. Thus our Brzozowski and Antimirov reordering derivatives of EF must
be between the classical Brzozowski and Antimirov derivatives of EF and E tt F .

8 Conclusion and Future Work

We have shown that the Brzozowski and Antimirov derivative operations generalize to trace
closures of regular languages in the form of reordering derivative operations. The sets of
Brzozowski resp. Antimirov reordering (parts-of-)derivatives of a regexp are generally infinite,
so the deterministic and nondeterministic automata that they give, accepting the trace closure,
are generally infinite. Still, if the regexp is star-connected, their appropriate quotients are
finite. Also, the set of N -bounded refined Antimirov reordering parts-of-derivatives is finite
without quotienting, and we showed that, if the language of the regexp has uniform rank at
most N , the N -truncated refined Antimirov automaton accepts the trace closure. We also
proved that star-connected expressions define languages with finite uniform rank.

Our intended application for this is operational semantics in the context of relaxed
memory (where, e.g., shadow writes, i.e., writes from local buffers to shared memory, can
be reorderable with other actions). For sequential composition EF it is usually required
that, to execute any action from F , execution of E must have completed. In the jargon of
derivatives, this is to say that for an action from F to become executable, what is left of E
has to have become nullable (i.e., one can consider the execution of E completed). With
reordering derivatives, we can execute an action from F successfully even when what is left
of E is not nullable. It suffices that some sequence of actions to complete the residual of E
is reorderable with the selected action of F .
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In the definitions of the derivative operations we only use I in one direction, i.e., we do
not make use of its symmetry. It would be interesting to see if our results can be generalized
to the setting of semi-commutations [6] and which changes are required for that.
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