
Game-Based Local Model Checking for the
Coalgebraic µ-Calculus
Daniel Hausmann
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
daniel.hausmann@fau.de

Lutz Schröder
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
lutz.schroeder@fau.de

Abstract
The coalgebraic µ-calculus is a generic framework for fixpoint logics with varying branching types
that subsumes, besides the standard relational µ-calculus, such diverse logics as the graded µ-calculus,
the monotone µ-calculus, the probabilistic µ-calculus, and the alternating-time µ-calculus. In the
present work, we give a local model checking algorithm for the coalgebraic µ-calculus using a
coalgebraic variant of parity games that runs, under mild assumptions on the complexity of the
so-called one-step satisfaction problem, in time pk where p is a polynomial in the formula and
model size and where k is the alternation depth of the formula. We show moreover that under the
same assumptions, the model checking problem is in NP ∩ coNP, improving the complexity in all
mentioned non-relational cases. If one-step satisfaction can be solved by means of small finite games,
we moreover obtain standard parity games, ensuring quasi-polynomial run time. This applies in
particular to the monotone µ-calculus, the alternating-time µ-calculus, and the graded µ-calculus
with grades coded in unary.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Verification by model checking

Keywords and phrases Model checking, µ-calculus, coalgebraic logic, graded µ-calculus, probabilistic
µ-calculus, parity games

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.35

Funding Work forms part of the DFG project Generic Algorithmic Methods for Modal and Hybrid
Logics (SCHR 1118/5-3).

1 Introduction

One of the most central and established computation tasks in the verification of concurrent
software is model checking, i.e. to determine whether a given system state satisfies a temporal
specification (e.g. [2]). The complexity of model checking is generally fairly sensitive to
variations in the logic, more so than satisfiability checking, which for fairly wide ranges
of branching time temporal logics (such as PDL, CTL and the µ-calculus) tends to be
ExpTime-complete. For instance, CTL allows model checking in polynomial time, while
LTL (and more generally CTL∗) model checking is PSpace-complete (e.g. [27]). In fact, the
input of model checking is naturally split into two parts, the model and the formula, and the
complexity analysis is typically phrased in terms of model size and formula size separately.

Model checking for µ-calculus formulae typically proceeds by a reduction to computing
winning regions in parity games, and in fact the two problems are linear-time equivalent [11].
In consequence, the current best upper bound for the time complexity of µ-calculus model
checking has recently dropped when Calude et al. [4] showed that parity games can be solved
in quasi-polynomial time; in fact, further improvement seems possible as the exact complexity
of parity game solving remains open.

© Daniel Hausmann and Lutz Schröder;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:daniel.hausmann@fau.de
mailto:lutz.schroeder@fau.de
https://doi.org/10.4230/LIPIcs.CONCUR.2019.35
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

Besides model checking relational systems, there is a long-standing and growing interest
in systems with additional structure, e.g. probabilities, weights, multi-player games, or
neighbourhoods. To name just a few concrete examples, the alternating-time µ-calculus [1] is
interpreted over concurrent game structures; the (two-valued) probabilistic µ-calculus [6, 21]
over Markov chains, and the monotone µ-calculus [12] (the ambient fixpoint logic of concurrent
dynamic logic (CPDL) [25] and Parikh’s game logic [23]) over (monotone) neighbourhood
structures. The graded µ-calculus [20], standardly interpreted over relational structures, has
an equivalent and more natural semantics over integer-weighted structures [10]. As a unifying
framework for such fixpoint logics beyond relational semantics, the coalgebraic µ-calculus [6]
has emerged. It works within the paradigm of universal coalgebra [26], i.e. encapsulates the
system type as a set functor and systems as coalgebras for this functor; the interpretation of
modalities is based on predicate liftings as used in the broader field of coalgebraic logic [8].

Our present contribution is a generic local model checking algorithm for the coalgebraic
µ-calculus, which can be instantiated easily to concrete µ-calculi including all the ones
mentioned above, where by local we mean that the algorithm allows establishing satisfaction
of a formula in a given state without calculating full extensions of all subformulae across
all states. Under mild assumptions on the concrete functor and predicate liftings defining
the logic, our algorithm runs in time pk where p is a polynomial in the size of the formula
and the model and k is the alternation depth of the formula; in particular, the algorithm
runs in polynomial time on alternation-free coalgebraic µ-calculi, or more generally on
formulae of bounded alternation depth. Further analysis shows moreover that under the
same assumptions, the model checking problem is in fact in NP ∩ coNP. The algorithm is
based on a coalgebraic generalization of parity games, in which some steps consist in calls to
a one-step satisfaction checker that essentially just implements the modalities. In some cases,
notably the monotone µ-calculus, the alternating-time µ-calculus, and the graded µ-calculus,
we can replace one-step satisfaction checking with suitable finite one-step satisfaction games,
obtaining a standard (rather than coalgebraic) parity game. Exploiting the mentioned recent
results on parity game solving, we obtain quasi-polynomial runtime in cases where these
one-step satisfaction games are sufficiently small; in particular, we show that the monotone
µ-calculus, the alternating-time µ-calculus, and the graded µ-calculus with unary coding of
grades all admit model checking in quasi-polynomial time, to our knowledge new results.

Related Work. Model checking games for the monotone µ-calculus have been studied by
Hansen et al. [15], without complexity analysis. For the alternating-time µ-calculus, Alur
et al. [1] describe a model checking procedure that works essentially by fixpoint iteration,
and runs in time O((m · l)k+1) where m is the number of transitions, l the length of the
formula, and k its alternation depth. An upper bound UP ∩ coUP for model checking
the probabilistic µ-calculus is stated in [21]. The complexity of model checking the graded
µ-calculus is mentioned by Ferrante et al. [13] in work otherwise concerned with the more
complex problem of module checking, giving an upper bound ExpTime for numbers in both
systems and formulae coded in binary. We improve this bound to NP ∩ coNP under binary
coding, and to quasi-polynomial time under unary coding, and moreover give a deterministic
algorithm that is exponential only in the alternation depth.

Cîrstea et al. [9] provide an automata-based model checking procedure for quantitative
linear time logics over systems with weights in a partial commutative semiring, using
coalgebraic methods. Satisfiability checking in the coalgebraic µ-calculus has been shown to
be in ExpTime [6, 17]. For purposes of the present paper, the most relevant piece of related
work is Hasuo et al.’s [16] model checking algorithm for the coalgebraic µ-calculus, which

D. Hausmann and L. Schröder 35:3

is based on fixpoint computation using progress measures in a highly general setting. The
bound on the run time stated in [16] has roughly the form pr where p is a polynomial in
the number of states of the model and the size of the formula understood as the number of
nodes in its parse tree, and r is the number of least fixpoint operators. The bound is thus
independent of the size of the transition structure of models and the actual representation
size of the formula (which may in general contain, e.g., integer or rational numbers); this
can clearly hold only under strong assumptions on both the system type and the syntax of
formulae, mentioned implicitly in [16] on p. 728. In particular, the overall representation
size of models must be polynomially bounded in the number of states. The analyis in [16]
therefore does not apply to our main examples; e.g. a concurrent game structure with just one
state can have an unbounded number of transitions; integer-weighted transition systems can
involve unboundedly large integer numbers; and a monotone neighbourhood frame can have
exponentially more (even minimal) neighbourhoods than states. Another important difference
is that we make the intermediate game theoretic constructions in the algorithm explicit, while
game constructions are eliminated in favour of a direct implementation of progress measures
in [16]. Immediate benefits include exponential dependence only on alternation depth instead
of number of least fixpoint operators, materializing an improvement conjectured by Hasuo et
al.; the local nature of our model checking algorithm; and quasi-polynomial runtime for the
above-mentioned cases admitting small one-step satisfaction games. As a long-term benefit,
we expect algorithmic improvements paralleling the development in standard parity games
also for our coalgebraic parity games, and hence for the complexity of coalgebraic µ-calculus
model checking in general.

2 The Coalgebraic µ-Calculus

We proceed to recall basic definitions and examples in universal coalgebra [26] and the
coalgebraic µ-calculus [6].

The abstraction principle underlying universal coalgebra is to encapsulate system types
as functors, for our present purposes on the category of sets. Such a functor T : Set→ Set
maps every set X to a set T (X), and every map f : X → Y to a map Tf : T (X)→ T (Y),
preserving identities and composition. We think of T (X) as a type of structured collections
over X; a basic example is the covariant powerset functor P, which assigns to each set its
powerset and acts on maps by taking forward image. Systems of the intended type are
then cast as T -coalgebras (C, ξ) (or just ξ) consisting of a set C of states and a transition
map ξ : C → T (C), thought of as assigning to each state x ∈ C a structured collection
ξ(x) ∈ T (C) of successors. E.g. a P-coalgebra ξ : C → P(C) assigns to each state a set of
successors; that is, P-coalgebras are transition systems. We will see additional examples
later. A coalgebra is finite if its state set is finite.

Following the paradigm of coalgebraic logic [8], we fix a set Λ of modal operators (in
principle of any finite arity but restricted to unary modalities in the technical development for
the sake of readability; our proofs generalize by essentially writing more indices), which we
interpret over T -coalgebras for a functor T as predicate liftings, i.e. natural transformations

[[♥]]X : 2X → 2T (X) for ♥ ∈ Λ.

Here, the index X, omitted when clear from the context, ranges over all sets; 2X denotes the
set of maps X → 2 into the two-element set 2 = {⊥,>}, isomorphic to the powerset of X
(i.e. 2− is the contravariant powerset functor); and naturality means that [[♥]]X(f−1[A]) =

CONCUR 2019

35:4 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

(Tf)−1[[[♥]]Y (A)] for f : X → Y and A ∈ 2Y . Thus, the predicate lifing [[♥]] indeed lifts
predicates on a base set X to predicates on the set T (X). Two standard examples for T = P
are the predicate liftings for the standard � and ♦ modalities, given by

[[�]]X(A) = {B ∈ P(X) | B ⊆ A} and [[♦]]X(A) = {B ∈ P(X) | A ∩B 6= ∅}.

Since we mean to form fixpoint logics, we need to require that every [[♥]] is monotone,
that is, A ⊆ B ⊆ X implies J♥KX(A) ⊆ J♥KX(B). To support negation, we assume
moreover that Λ is closed under duals, i.e. for each ♥ ∈ Λ we have ♥ ∈ Λ such that
[[♥]]X(A) = T (X) \ [[♥]]X(X \A), chosen so that ♥ = ♥ (e.g. � = ♦, ♦ = �).

To introduce the syntax of the coalgebraic µ-calculus, we fix a set Var of fixpoint variables.
We let the meta-variable η range over the standard fixpoint operators µ (least fixpoint), ν
(greatest fixpoint). The set of formulae φ, ψ is then defined by the grammar

ψ, φ := > | ⊥ | ψ ∨ φ | ψ ∧ φ | ♥ψ | X | ηX.ψ (♥ ∈ Λ, X ∈ Var).

Note that the grammar does not include propositional atoms; these can, if desired, be treated
as nullary modalities (Example 1). Negation is not included explicitly but can be defined,
as usual, by taking negation normal forms. Fixpoint operators bind their variables, giving
rise to the usual notions of bound and free variables; we denote the set of free variables of a
formula ψ by FV(ψ). A formula ψ is closed if FV(ψ) = ∅. Given a T -coalgebra ξ : C → T (C)
and a valuation σ : Var→ P(C), the extension

[[φ]]σ ⊆ C

of a formula φ is defined recursively by the expected clauses for the propositional operators
([[>]]σ = C; [[⊥]]σ = ∅; [[φ ∧ ψ]]σ = [[φ]]σ∩ [[ψ]]σ; [[φ ∨ ψ]]σ = [[φ]]σ∪ [[ψ]]σ); by JXKσ = σ(X) and

J♥ψKσ = ξ−1[J♥K(JψKσ)];

and by JµX.ψKσ = LFPJψKXσ , JνX.ψKσ = GFPJψKXσ where the map JψKXσ : P(C) → P(C)
is defined by JψKXσ (A) = JψKσ[X 7→A] for A ⊆ C, with (σ[X 7→ A])(X) = A and (σ[X 7→
A])(Y) = σ(Y) for X 6= Y , and LFP and GFP take least and greatest fixpoints of mono-
tone functions on P(C), respectively; monotonicity of JψKXσ is clearly an invariant of the
recursive definition.

The alternation depth ad(ηX.ψ) of a fixpoint ηX.ψ is the depth of alternating nesting of
such fixpoints in ψ that depend on X; we assign odd numbers to least fixpoints and even
numbers to greatest fixpoints. E.g. for ψ = νX.φ and φ = µY.(p ∧ ♥X) ∨ ♥Y , we have
ad(ψ) = 2, ad(φ) = 1. For a detailed definition of alternation depth, see e.g. [22].

I Example 1. We proceed to see some standard examples of coalgebraic semantics, see [28,
6, 29] for more details.
1. Relational µ-calculus: As indicated above, we obtain a version of the standard relational µ-

calculus [19] without propositional atoms by taking T = P and Λ = {�,♦} with predicate
liftings as described previously. We can add a set At of propositional atoms p, q, . . . by
regarding them as nullary modalities, and interpret p ∈ At over the extended functor
T = P(At)× P by the nullary predicate lifting [[p]]X = {(P,B) ∈ P(At)× P(X) | p ∈ P}.
E.g. the formula νX. µY. ((p∧�X)∨ (q ∧�Y)) says that on every path from the current
state, p holds everywhere except possibly on finite segments where q holds. Similarly,
we can introduce a set Act of actions, and index modalites over actions a ∈ Act. We
interpret the indexed modalities �a,♦a over the functor T = PAct, e.g. the box by
[[�a]]X(A) = {f ∈ P(X)Act | f(a) ⊆ A}. We can similarly add propositional atoms and
actions to all examples that follow.

D. Hausmann and L. Schröder 35:5

2. Graded µ-calculus: The graded µ-calculus [20] has modalities 〈b〉, [b], indexed over b ∈ N,
read “in more than b successors” and “in all but at most b successors”, respectively. These
can be interpreted over relational structures but it is technically more convenient to
use multigraphs, i.e. transition systems with edge weights (multiplicities) in N ∪ {∞},
which are coalgebras for the multiset functor B. The latter maps a set X to the
set B(X) = (N ∪ {∞})X of maps X → (N ∪ {∞}); we treat elements β ∈ B(X) as
(N ∪ {∞})-valued discrete measures on X, and in particular write β(A) =

∑
x∈A β(x)

for A ⊆ X. For a map f : X → Y , the map B(f) : B(X) → B(Y) is then given by
B(f)(β)(y) = β(f−1[{y}]). Over B-coalgebras, we interpret 〈b〉 and [b] by the mutually
dual predicate liftings

[[〈b〉]]X(A) = {β ∈ B(X) | β(A) > b} and [[[b]]]X(A) = {β ∈ B(X) | β(X \A) ≤ b}.

E.g. the formula νX. (φ ∧ ♦1X) says that the current state is the root of an infinite tree
with branching degree at least 2 (counting multiplicities) on which φ holds everywhere.

3. Probabilistic µ-calculus: Let D denote the discrete distribution functor, defined on sets by
D(X) = {β : X → [0, 1] |

∑
x∈X β(x) = 1}. That is, D(X) is the set of discrete probability

distributions on X; coalgebras for D are just Markov chains. Similarly as for the graded
µ-calculus, we take modalities [p], 〈p〉 indexed over p ∈ [0, 1] ∩Q, interpreted over D by
[[〈p〉]]X(A) = {β ∈ D(X) | β(A) > p} and J[p]KX(A) = {β ∈ D(X) | β(X \A) ≤ p} (using
the same measure-theoretic notation as in the previous item). The arising coalgebraic
µ-calculus is the probabilistic µ-calculus [6, 21].

4. Monotone µ-calculus: The monotone neighbourhood functor M maps a set X to the set
M(X) = {A ∈ 2(2X) | A upwards closed} of set systems over X that are upwards closed
under subset inclusion (i.e. A ∈ A and A ⊆ B imply B ∈ A). Coalgebras for M are
monotone neighbourhood frames in the sense of Scott-Montague semantics [5]. We take
Λ = {�,♦} and interpret � overM by the predicate lifting

[[�]]X(A) = {A ∈M(X) | A ∈ A} = {A ∈M(X) | ∃B ∈ A. B ⊆ A},

and ♦ by the corresponding dual lifting, [[♦]]X(A) = {A ∈M(X) | (X \A) /∈ A} = {A ∈
M(X) | ∀B ∈ A. B∩A 6= ∅}. The arising coalgebraic µ-calculus is known as the monotone
µ-calculus [12]. When we add propositional atoms and actions, and replace M with
its subfunctor Ms defined by Ms(X) = {A ∈ M(X) | ∅ /∈ A 3 X}, whose coalgebras
are serial monotone neighbourhood frames, we arrive at the ambient fixpoint logic of
concurrent dynamic logic [25] and Parikh’s game logic [23]. In game logic, actions are
understood as atomic games of Angel vs. Demon, and we read �aφ as “Angel has a
strategy to enforce φ in game a”. Game logic is then mainly concerned with composite
games, formed by the control operators of dynamic logic and additional ones; the semantics
can be encoded into fixpoint definitions. For instance, the formula νX. p∧�aX says that
Angel can enforce p in the composite game where a is played repeatedly, with Demon
deciding when to stop.

5. Alternating-time µ-calculus: Fix a set N = {1, . . . , n} of agents. Using alternative
notation from coalition logic [24], we present the alternating-time µ-calculus (AMC) [1]
by modalities [D], 〈D〉 indexed over coalitions D ⊆ N , read “D can enforce” and “D
cannot prevent”, respectively. We define a functor G by

G(X) = {(k1, . . . , kn, f) | k1, . . . , kn ∈ N \ {0}, f :
(∏

i∈N [ki]
)
→ X}

where we write [k] = {1, . . . , k}. We understand (k1, . . . , kn, f) ∈ G(X) as a one-step
concurrent game with ki available moves for agent i ∈ N , and outcomes in X determined
by the outcome function f from a joint choice of moves by all the agents. For D ⊆ N ,

CONCUR 2019

35:6 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

we write SD =
∏
i∈D[ki]. Given joint choices sD ∈ SD, sN\D ∈ SN\D of moves for

D and N \ D respectively, we write (sD, sN\D) ∈ sN for the joint move of all agents
induced in the evident way. In this notation, we interpret the modalities [D] over G by
the predicate lifting

[[[D]]]X(A) = {(k1, . . . , kn, f) ∈ G(X) | ∃sD ∈ SD.∀sN\D ∈ SN\D. f(sD, sN\D) ∈ A},

and the modalities 〈D〉 by dualization. This captures exactly the semantics of the AMC:
G-coalgebras are precisely concurrent game structures [1], i.e. assign a one-step concurrent
game to each state, and [D]φ says that the agents in D have a joint move such that
whatever the agents in N \D do, the next state will satisfy φ. E.g. µX. p ∨ [D]X says
that coalition D can eventually enforce that p is satisfied (a property expressible already
in alternating-time temporal logic ATL [1]).

We fix the data T , Λ and a predicate lifting [[♥]] for each ♥ ∈ Λ for the rest of the paper.
We assume given a suitable representation size for the modalities in Λ; this is relevant in
particular when Λ is infinite, e.g. for the graded and the probabilistic µ-calculus. We generally
assume that numbers are coded in binary, except in the treatment of the graded µ-calculus
via one-step satisfaction games in Section 5.

We write size(ψ) for the ensuing representation size of a formula ψ, counting the represent-
ation size for each modality and 1 for other connectives and variables. Similarly, we assume
given a representation of elements of T (X) for finite sets X, with associated representation
size size(s) for elements s ∈ T (X). Again, we generally assume that numbers in s (e.g. in
probablity distributions) are encoded in binary, except in Section 5. Moreover, we represent
monotone neighbourhood systems A by set systems A0 ⊆ A that generate A by upwards
closure; otherwise, representations are essentially obvious.

The size size(ξ) of a finite coalgebra ξ : C → T (C) is then defined as
∑
x∈C(1+size(ξ(x))).

We also fix the input for the model checking algorithm: First, we fix a T -coalgebra (C, ξ)
with C finite; second, we fix a closed target formula χ, assuming w.l.o.g. that χ is clean,
i.e. that every fixpoint variable is bound by at most one fixpoint operator in χ. For a
variable X ∈ V that is bound in χ, we then write θ(X) to denote the formula ηX.ψ that
is a subformula of χ. Let Cl(χ) be the closure (that is, the set of subformulae) of χ. We
have |Cl(χ)| ≤ |χ| ≤ |size(χ)|, where |χ| denotes the number of operators or variables in χ
(ignoring representation sizes). We put k = max{ad(ηX.ψ) | ηX.ψ ∈ Cl(χ)}.

3 Local Model Checking for the Coalgebraic µ-Calculus

We proceed to introduce and analyse our model checking algorithm which essentially is a
more general version of the fixpoint iteration algorithm for standard parity games [3]. The
algorithm will interface with the functor via the following computational problem:

I Definition 2 (One-step satisfaction problem). Let T be a functor and let C be a set. The
one-step satisfaction problem for inputs s ∈ T (C), ♥ ∈ Λ and U ⊆ C consists in deciding
whether s ∈ J♥KU . We denote the time it takes to solve the problem for input s,♥, U by
t(size(s), size(♥), |C|), having |U | ≤ |C|.

We discuss the one-step satisfaction problem for some of the logics from Example 1:

D. Hausmann and L. Schröder 35:7

I Example 3.
1. In the relational case, with T = P, Λ = {♦,�}, to check one-step satisfaction for

s ∈ P(C),♦, U ⊆ C, we have to check whether s intersects with U ; and to check
one-step satisfaction for s,�, U , we have to check whether s is a subset of U . So
t(size(s), size(♥), |C|) ≤ |C| for ♥ ∈ Λ, assuming that containment in sets can be checked
in constant time.

2. In the graded case, with T = B, Λ = {〈b〉, [b] | b ∈ N}, to check one-step satisfaction
for s ∈ B(C), 〈b〉, U ⊆ C, we have to check whether

∑
u∈U s(u) > b; to check one-

step satisfaction for s, [b], U , we have to check whether
∑
u∈(C\U) s(u) ≤ b. Hence

t(size(s), size(♥), |C|) ≤ size(♥) · |C| for ♥ ∈ Λ; this holds even if grades are coded in
binary since binary numbers can be added and compared in linear time.

3. In the probabilistic case, with T = D, Λ = {〈p〉, [p] | p ∈ Q ∩ [0, 1]}, to check one-step
satisfaction for s ∈ D(C), 〈p〉, U ⊆ C, we have to check whether

∑
u∈U s(u) > p; to check

one-step satisfaction for s, [p], U , we have to check whether
∑
u∈(C\U) s(u) ≤ p. Hence

t(size(s), size(♥), |C|) ∈ O(((|C| ·size(s))2) · |C|) for ♥ ∈ Λ. This holds even if probabilities
are coded in binary since quotients of o-bit binary numbers can be added in time O(o2);
there are at most |C| summation steps, and since each summation step increases the
number of bits of the denominator of the summand by at most size(s), each summation
step can be done in time (|C| · size(s))2.

Since our model checking algorithm can be seen as an algorithm for solving a coalgebraic
variant of parity games, we now recall some basic notions of parity games (see e.g. [14]).

I Definition 4 (Parity games). A parity game (V,E, α) consists of a set of nodes V , a set
of moves E ⊆ V × V and a priority function α : V → N. Furthermore, each node belongs
to exactly one of the players Eloise or Abelard (where we denote Eloise’s nodes by V∃ and
Abelard’s nodes by V∀). A play ρ = v0, v1, . . . ⊆ V ∗ ∪ V ω is a (finite or infinite) sequence of
nodes such that for all i ≥ 0 such that ρ contains at least i+ 1 nodes, we have (vi, vi+1) ∈ E.
We say that an infinite play ρ = v0, v1, . . . is even, if the largest priority that occurs infinitely
often in it is even (formally, if max{α(v) | ∀j. (vj = v)⇒ ∃j′ > j. (vj′ = v) and ∃j. vj = v} is
an even number), and odd otherwise; finite plays are required to end in nodes that have no
outgoing move. Player Eloise wins all even plays and finite plays that end in an Abelard-node;
player Abelard wins all other plays. The size of a parity game (V,E, α) is |V |. A (history-free)
Eloise-strategy s : V∃ ⇀ V is a partial function that assigns moves s(x) to Eloise-nodes
x ∈ dom(s). A play ρ = v0, v1, . . . follows a strategy s if for all i ≥ 0 such that vi ∈ V∃,
vi+1 = s(vi). An Eloise-strategy wins a node v ∈ V if Eloise wins all plays that start at v
and follow s. We have a dual notion of Abelard-strategies; solving a parity game consists in
computing the winning regions of the two players, that is, the sets of states that they win.

A crucial property of parity games is that they are history-free determined [14], that is, that
every node in a parity game is won by exactly one of the two players and then there is a
history-free strategy for the respective player that wins the node.

One natural way to solve a parity game is by fixpoint iteration [3] (which essentially
computes a particular progress measure annotation [18] of the game). Algorithms that use
this method repeatedly apply a function (denoted by Ψ in Section 3.1 in [3] and sometimes
also referred to as is_mother , see e.g. Section 4.2 in [20]) that evaluates the allowed moves at
each node to compute the set of nodes that are won by player Eloise under the assumption that
sets of nodes computed by previous iterations of the function are also won by her. Intuitively,
the algorithm keeps a set of currently allowed nodes Yi for each priority i in memory; one
iteration of the function is_mother then computes the set of nodes is_mother(Y0, . . . , Yk)

CONCUR 2019

35:8 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

which have some priority j and which either belong to Eloise and have some move to a node
from Yj or belong to Abelard and only have moves to nodes from Yj . The repeated application
of this function is defined in terms of a nested fixpoint (referred to as Φd in [3], Section
3.1). The winning region for Abelard is computed as the dual fixpoint of the complementary
function is_mother . Our model checking algorithm proceeds in a very similar fashion, but
crucially uses instances of the one-step satisfaction problem to evaluate modal nodes. We
proceed to define our variants of the is_mother and is_mother functions which we call f
and g for brevity in this work.

I Definition 5. For V = Cl(χ)×C, we define the tracing function h : V → P(V) by putting

h(ψ, x) =

∅ if ψ = ⊥ or ψ = >
{(ψ1, x), (ψ2, x)} if ψ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2

{(ψ1, x)} if ψ = ηX.ψ1

{(θ(X), x)} if ψ = X

{(ψ1, y) | y ∈ C} if ψ = ♥ψ1

A non-modal formula ψ can be traced to the formula φ at x if and only if (φ, x) ∈ h(ψ, x),
so e.g. a conjunction ψ1 ∧ ψ2 can be traced to ψ1 and to ψ2, all at some state x. A modal
formula ♥ψ1 can be traced from x to the formula ψ1 at any state y (that is, we have
(ψ1, y) ∈ h(♥ψ1, x) for all y ∈ C); for instance, ♦ψ can be traced from some state x to
ψ at any state y ∈ C. Hence h(ψ, x) computes the set of nodes that are relevant for the
(one-step) satisfaction of ψ at x. For a given set G ⊆ V , we then define k + 1-ary functions
f, g : (P(G))k+1 → P(G) by putting, for Y = (Y0, . . . , Yk) ∈ (P(G))k+1,

f(Y) ={(>, x) | (>, x) ∈ G} ∪ {(♥ψ, x) ∈ G | ξ(x) ∈ J♥K{y | (ψ, y) ∈ Y0}}∪
{(ψ ∨ φ, x) ∈ G | h(ψ ∨ φ, x) ∩ Y0 6= ∅} ∪ {(ψ ∧ φ, x) ∈ G | h(ψ ∧ φ, x) ⊆ Y0}∪
{(ηX.ψ, x) ∈ G | h(ηX.ψ, x) ⊆ Y0} ∪ {(X,x) | h(X,x) ⊆ Yad(θ(X))}

g(Y) ={(⊥, x) | (⊥, x) ∈ G} ∪ {(♥ψ, x) ∈ G | ξ(x) /∈ J♥K{y | (ψ, y) ∈ (G \ Y0)}}∪
{(ψ ∨ φ, x) ∈ G | h(ψ ∨ φ, x) ⊆ Y0} ∪ {(ψ ∧ φ, x) ∈ G | h(ψ ∧ φ, x) ∩ Y0 6= ∅}∪
{(ηX.ψ, x) ∈ G | h(ηX.ψ, x) ⊆ Y0} ∪ {(X,x) ∈ G | h(X,x) ⊆ Yad(θ(X))}.

Finally, we put

EG = ηkYk.η1Y1.η0Y0.f(Y) and AG = ηkYk.η1Y1.η0Y0.g(Y),

where ηi is GFP if i is even and LFP otherwise and where LFP = GFP and GFP = LFP.

For instance, we have (X,x) ∈ f(Y) if (θ(X), x) ∈ Yp where p = ad(θ(X)), that is, when
passing the fixpoint variable X, priority p occurs in the game. We also have e.g. (ψ ∨ φ, x) ∈
f(Y) if (ψ, x) ∈ Y0 or (φ, x) ∈ Y0 but (ψ ∨ φ, x) ∈ g(Y) if (ψ, x) ∈ Y0 and (φ, x) ∈ Y0;
the latter constraint comes with the intuition that g is used to derive non-satisfaction of
formulas. Checking whether some pair (♥ψ, x) is contained in f(Y) or g(Y) is an instance of
the one-step satisfaction problem with input ξ(x),♥,{y | (ψ, y) ∈ U} for some U ⊆ V ; since
size(ξ(x)) ≤ size(C), size(♥) ≤ size(χ) and {y | (ψ, y) ∈ U} ⊆ C, the instance can be solved
in time t(size(C), size(χ), |C|).

The sets EG and AG can be seen as winning regions for the two players Eloise and Abelard
in a coalgebraic parity game with set of nodes G ⊆ V that is very similar to a model checking
parity game but uses instances of the one-step satisfaction problem instead of modal moves.

D. Hausmann and L. Schröder 35:9

Intuitively, Eloise has, for all nodes (ψ, x) ∈ EG and for all disjunctions that are encountered
when checking satisfaction of ψ at x, a choice such that the combination of her choices
guarantees that no trace of ψ through ξ that starts at x unfolds some least fixpoint infinitely
often without also unfolding a surrounding fixpoint infinitely often.

We now introduce our local model checking algorithm, which iteratively adds nodes from V

to a growing set of nodes G and computes the sets EG and AG in optional intermediate
model checking steps. The algorithm hence inherently supports local model checking [30]
since the coalgebraic model checking game is constructed step by step and the partially
constructed game can be solved on-the-fly, that is, at any time while building up the game,
terminating as soon as one of the players has a strategy that wins the initial node in the
game played over G. Since the model sizes in model checking tend to be exponential in
the sizes of formulas, on-the-fly solving seems to be a valuable capability as it allows to cut
down the search space of the algorithm; a concrete implementation of the algorithm and an
evaluation of this aspect remains a task for future work though.

Algorithm 1: Local model checking.
To decide whether x ∈ JχK, initialize U = {(χ, x)}, G = ∅.
1. Expansion: pick some (ψ, y) ∈ U , add it to G and remove it from U , and add

those pairs from h(ψ, y) that are not already contained in G to U .
2. (Optional) Check: compute EG and/or AG. If (χ, x) ∈ EG, then return “yes”, if

(χ, x) ∈ AG, then return “no”.
3. Loop: if U 6= ∅, then continue with step 1).
4. Final Check: compute EG. If (χ, x) ∈ EG, then return “yes”, otherwise return

“no”.

In the final checking step, all nodes that are reachable from (χ, x) using h have been added
to G so that EG = G \AG, i.e. every node – including (χ, x) – is won by exactly one of the
players; in the optional intermediate checking steps however, there may be nodes for which
no player has a winning strategy yet.

The correctness statement then reads as follows.

I Lemma 6. We have (χ, x) ∈ EV if and only if x ∈ JχK.

Proof sketch. Let (χ, x) ∈ EV . We use lexicalically ordered vectors of natural numbers as
a measure for the computation of the nested fixpoint EV (similar in spirit to coalgebraic
progress measures [16]) and then show x ∈ JχK by nested induction and coinduction, using the
measure to ensure termination of the inductive parts of the proof. For the converse direction,
let x ∈ JχK. Again we use lexicalically ordered vectors of natural numbers as a measure, but
this time for the satisfaction of fixpoint formulas in models. The proof of x ∈ EV then is
again by nested induction and coinduction, using the latter vectors as termination measure
for the inductive parts. J

I Lemma 7. The algorithm runs in time O(|V | · t(size(C), size(χ), |C|) · |V |k+1).

Proof. The runtime of the algorithm is dominated by the time it takes to compute EV . We
have to compute a k + 1-nested fixpoint which can be done by fixpoint iteration, that is, by
computing f(Y) for some Y at most |V |k+1 times. A single computation of f(Y) can be
implemented to run in time |V | · t(size(C), size(χ), |C|) since we have to solve the one-step
satisfaction problem at most for all (♥ψ, x) ∈ V , that is, at most |V | times. J

CONCUR 2019

35:10 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

This yields the following bounds in concrete instances:

I Corollary 8. We obtain the following upper time bounds for the model checking problems
of the respective µ-calculi:
1. for the graded µ-calculus: O((|χ| · |C|2 · size(χ) · (|χ| · |C|)k+1);
2. for the probabilistic µ-calculus: O((|χ| · |C|4 · (size(C))2 · (|χ| · |C|)k+1);

Proof. Immediate from Lemma 7 by the observations from Example 3. J

4 Coalgebraic Model Checking in NP ∩ coNP

As a side result, we now show that if the one-step satisfaction problem of a coalgebraic logic
is in P, then the model checking problem of the µ-calculus over this logic is in NP ∩ coNP.
We derive this result independently of our local model checking algorithm, with the help of
the exponentially sized evaluation games for the coalgebraic µ-calculus from Definition 3.5.
in [7], which we briefly recall below; the authors of [7] use a slightly different but equivalent
formulation of the games that uses the Fischer-Ladner closure instead of Cl(χ).

I Definition 9 (Evaluation games, [7]). The evaluation game for χ is a parity game Eχ =
(W,E,α) with set of nodes W = V ∪ ({♥ψ ∈ Cl(χ)} ×P(C)), set of moves E ⊆W ×W and
priority function α : W → N. For nodes (ψ, x) ∈ V such that ψ is not a modal operator, we
put E(ψ, x) = h(ψ, x); for ♥ψ ∈ Cl(χ), we put

E(♥ψ, x) = {(♥ψ,U) | U ⊆ C, ξ(x) ∈ J♥K(U)},

and for U ⊆ C, we put E(♥ψ,U) = {(ψ, y) | y ∈ U}. Nodes (⊥, x), (ψ1 ∨ ψ2, x) and (♥ψ, x)
belong to player Eloise and nodes (>, x), (ψ1 ∧ ψ2, x) and (♥ψ,U) belong to player Abelard;
the ownership of nodes (ηX.ψ, x) and (X,x) is irrelevant since such nodes have exactly one
outgoing move. All nodes (ψ, x) ∈ V such that ψ is not a fixpoint variable and all nodes
(ψ,U) ∈ Cl(χ)× P(C) have priority 0; nodes (X,x) ∈ V have priority α(X,x) = ad(θ(X)).

For modal nodes (♥ψ, x), Eloise has to pick a set U of states in such a way that ξ(x) is
contained in the predicate on T (C) obtained by lifting U with J♥K (that is, ξ(x) ∈ J♥K(U));
player Abelard in turn can challenge, for all y ∈ U , whether ψ is satisfied at y, that is, he
can move from (♥ψ,U) to all nodes (y, ψ) with y ∈ U . As we have V ≤ |χ| · |C| and hence
W ≤ |χ|(|C|+ 2|C|), the sizes of evaluation games are exponential in the number of states of
the input models.

Under the stated assumptions on the one-step satisfaction problem, our algorithm can be
understood as a method to solve these exponential-sized parity games in time pk where p is a
polynomial in the formula size and the model size, by avoiding a full unfolding of the game.

I Lemma 10. We have (χ, x) ∈ EV if and only if Eloise wins the node (χ, x) in Eχ.

Proof. Directly from Lemma 6 and Theorem 3.6 in [7]. J

We now obtain the announced criterion for model checking in NP ∩ coNP:

I Theorem 11. If the one-step satisfaction problem for a coalgebraic logic is in P, then the
model checking problem for the µ-calculus over this logic is in NP ∩ coNP.

Proof sketch. We recall that the coalgebraic µ-calculus is closed under negation so that it
suffices to show containment in NP. A history-free Eloise-strategy turns an exponential-sized
evaluation game into a polynomial-sized graph since it picks, for each modal node, exactly

D. Hausmann and L. Schröder 35:11

one of the exponentially many moves that are available to Eloise. We nondeterministically
guess whether the input formula is satisfied at the input state or not; depending on this guess,
we then guess a history-free winning strategy in the evaluation game for the input formula
or its negation, and verify that it indeed is a winning strategy for the respective game. This
verification can be done in polynomial time since the guessed strategy turns the game into a
graph of polynomial size and since the one-step satisfaction problem (which has to be solved
once for each node in the graph) can be solved in polynomial time by assumption. J

5 Small model checking games

As we have recalled in Definition 9, the one-step satisfaction problem can also be encoded in
terms of the evalution games from [7]; this particular encoding however involves guessing
sets of states and hence leads to games of exponential size. We now introduce the notions of
one-step satisfaction arenas and games, which we use as an alternative game-based means to
decide one-step satisfaction of modal operators; for certain logics, including the monotone
µ-calculus, the graded µ-calculus with grades coded in unary, and the alternating-time
µ-calculus, this enables the construction of polynomial-size parity games for model checking,
which can be fed directly to parity game solvers and profit automatically from advances in
parity game solving.

I Definition 12 (One-step satisfaction arenas). Recall that T is a functor and Λ a set of
modal operators. Let C be a set. A one-step satisfaction arena A♥,t for ♥ ∈ Λ and t ∈ T (C)
consists of a set V♥,t of nodes that is made up of

the initial node (♥, t),
a set I♥,t of inner nodes,
the set C of exit nodes,

and an acyclic set E♥,t ⊆ V♥,t × V♥,t of moves such that E♥,t(x) = ∅ for all exit nodes
x ∈ C. Additionally, the initial and the inner nodes belong to exactly one of the players
Eloise or Abelard.

I Example 13.
1. For T = P, one-step satisfaction arenas have depth one and hence do not have inner

nodes. The initial node (♦, t) belongs to Eloise and she can move to any state y ∈ t;
formally, we put E♦,t(♦, t) = {y | y ∈ t}.

2. For the (serial) monotone µ-calculus, one-step satisfaction arenas have depth two. As
set of inner nodes, we choose I♦,t = t; the initial node (♦, t) belongs to player Eloise
and all nodes from I♦,t belong to player Abelard. The moves are defined by putting
E♦,t(♦, t) = {A | A ∈ t} and E♦,t(A) = {y | y ∈ A}. The one-step satisfaction arenas
thus have |I♦,t| = |t| ∈ O(size(C)) ⊆ 2O(|C|) inner nodes.

3. For graded logic, the one-step satisfaction arena for 〈b〉 and t ∈ B(C) has the set
I〈b〉,t = {1, . . . , |C|+ 1} × {0, . . . , b} × {0, 1} as inner nodes and there is a referee move
from the initial node (〈b〉, t) to (1, 0, 0) ∈ I〈b〉,t. We assume a linear ordering on C and
let vn denote the n-th element in the according sequence of states. Nodes (n, c, 0) belong
to player Eloise and nodes (n, c, 1) to player Abelard. We have moves

E〈b〉,t(n, c, 0) = {(n,min(b+ 1, c+ t(vn)), 1), (n+ 1, c, 0)}
E〈b〉,t(n, c, 1) = {vn, (n+ 1, c, 0)},

where we assume n ≤ |C| in the first clause. Nodes (|C|+ 1, c, 0) have no successors and
they belong to player Abelard if c > b and to player Eloise if c ≤ b. Note how we stop
counting when the counter c reaches b+ 1 by taking min(b+ 1, c+ t(vn)) as new counter.

CONCUR 2019

35:12 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

The one-step satisfaction arena for (〈b〉, t) contains |I〈b〉,t| = 2(|C|+ 1)(b+ 1) ∈ O(|C| · b)
inner nodes. The estimate on |I〈b〉,t| is thus linear in the size of 〈b〉 if grades are coded in
unary, and exponential if grades are coded in binary.

4. For probabilistic logic, we proceed analogously to the graded case; however, the obtained
one-step arenas are of exponential size, even when probabilities are coded in unary. We
define the one-step satisfaction arena for 〈p〉 and t to have the set I〈p〉,t = {1, . . . , |C|+
1}×Pt×{0, 1} as inner nodes, where Pt = {q ∈ Q | q ≤ p,∃U ⊆ C.

∑
u∈U t(u) = q}∪{∗}

(that is, Pt is the set of probabilities q ≤ p that can be encountered when summing up
any combination of probabilities that t assigns to states). There is a referee move from
the initial node (〈p〉, t) to (1, 0, 0) ∈ I〈p〉,t. Again, we assume a linear ordering on C and
let vn denote the n-th element in the according sequence of states. Nodes (n, c, 0) belong
to player Eloise and nodes (n, c, 1) to player Abelard. We have moves

E〈p〉,t(n, c, 0) = {(n, c⊕ t(vn), 1), (n+ 1, c, 0)} E〈p〉,t(n, c, 1) = {vn, (n+ 1, c, 0)},

where we assume n ≤ |C| in the first clause. Here, c ⊕ t(vn) = c + t(vn) if c 6= ∗ and
c+ t(vn) ≤ p and c⊕ t(vn) = ∗ if c = ∗ or c+ t(vn) > p, that is, we stop counting once
a probability greater than p has been reached. Nodes (|C|+ 1, c, 0) have no successors
and they belong to player Abelard if c = ∗ and to player Eloise if c 6= ∗. The one-step
satisfaction arena for (〈p〉, t) contains |I〈p〉,t| = 2(|C|+ 1)|Pt| ∈ O(|C| · |Pt|) inner nodes;
we have |Pt| ≤ 2|C| + 1.

5. For alternating-time logic, let N = {1, . . . , n} be the set of agents. For the one-step satis-
faction arena for ([D], t) with D ⊆ N , t = (k1, . . . , kn, f) ∈ G(C), and f : (

∏
i∈N [ki])→ C,

we put I[D],t = SD. The arena has the initial node ([D], t) that belongs to player Eloise
while all inner nodes sD ∈ SD belong to player Abelard. The moves are defined by

E[D],t([D], t) = {sD | sD ∈ SD} E[D],t(sD) = {f(sD, sN\D) | sN\D ∈ SN\D}.

The one-step satisfaction arena for ([D], t) has |I[D],t| = |SD| ∈ O(size(C)) inner nodes.
6. Also, we can always take the general one-step arena with initial node (♥, t), belonging

to Eloise, set of inner nodes I♥,t = {U ⊆ C | t ∈ J♥K(U)} (having |I♥,t| ≤ 2|C|),
all belonging to Abelard, and with moves E♥,t(♥, t) = {U ⊆ C | t ∈ J♥K(U)} and
E♥,t(U) = {y | y ∈ U}.

In all examples, except the last one, the one-step satisfaction arenas for dual modal operators
are obtained by simply switching the ownership of nodes.

I Definition 14 (One-step games). A one-step game (A♥,t, U) consists of a one-step satis-
faction arena A♥,t for ♥ and t together with a set U ⊆ C of states, encoding a winning
condition; player Eloise wins the game (A♥,t, U) if she has a strategy s such that all plays in
A♥,t that start at (♥, t) and that are played according to s end in exit nodes c ∈ U or in
inner nodes that belong to Abelard. A one-step satisfaction arena A♥,t for ♥ and t is one-step
sound and complete if for all U ⊆ C, we have t ∈ J♥KU if and only if Eloise wins the one-step
game (A♥,t, U).

I Example 15. The one-step satisfaction arenas from Example 13 all are one-step sound
and complete:
1. In the relational case, let t ∈ P(C) and U ⊆ C. We have t ∈ J♦KU if and only if t∩U 6= ∅

which in turn is the case if and only if there is some y ∈ t such that y ∈ U . Since Eloise
can move from (♦, t) to y if and only if y ∈ t, the last statement is true if and only if
Eloise wins the game (A♦,t, U).

D. Hausmann and L. Schröder 35:13

2. For the (serial) mononotone µ-calculus, let t ∈ P(P(C)) and U ⊆ C. We have t ∈ J♦KU
if and only if there is some A ∈ t such that A ⊆ U . The latter is the case if and only if
there is some A ∈ t (so that Eloise can move from (♦, t) to A) such that for all y ∈ A, we
have y ∈ U and hence an according Abelard-move from B to the exit node y. The move
from (♦, t) to A thus constitutes a winning strategy for Eloise.

3. For graded logic, assume input 〈b〉 where b ∈ N and t ∈ B(C) and let U ⊆ C. We have
t ∈ J〈b〉KU if and only if

∑
a∈U t(a) > b. So let

∑
a∈U t(a) > b. The function s defined by

s(n, c, 0) = (n,min(b+ 1, c+ t(vn), 1) if vn ∈ U and s(n, c, 0) = (n+ 1, c, 0) if vn /∈ U is a
strategy that ensures that all plays of the game end at exit nodes y ∈ U or at the inner
node s(|C|+1,

∑
a∈U t(a), 0) which belongs to Abelard. The former is the case since s uses

exactly nodes vn ∈ U to increase the counter so that Abelard can only reach exit nodes
from U . The latter is the case since there is just one play that reaches an ending node
s(|C|+ 1, c, 0) for some c and during this play, s moves in such a way that the counter
sums up the t(a) for all a ∈ U . For the converse direction, let Eloise have a winning
strategy in the game (A〈b〉,t, U). Using this strategy, Eloise only uses states vn ∈ U to
increase the counter; there is just a single final inner node of the shape (|C|+ 1, c, 0) to
which the strategy can lead and this node belongs to Abelard by assumption so that we
have c > b. There is some set A ⊆ U such that if the play that leads to this final node,
the counter sums up all t(a) for a ∈ A. Thus we have we have c = t(A) ≤ t(U) and hence
t(U) > b, as required.

4. For probabilistic logic, the proof is analogous to the proof for graded logic.
5. For alternating-time logic, assume input [D] where D ⊆ {1, . . . , n} and t ∈ G(C) where

t = (k1, . . . , kn, f) and let U ⊆ C. We have t ∈ J[D]KU if and only if there is some
sD ∈ SD such that for all sN\D ∈ SN\D, we have f(sD, sN\D) ∈ U . So assume that
the latter is the case. The move from ([D], t) to sD constitutes a winning strategy
for Eloise since for all Abelard-moves from sD to some exit node f(sD, sN\D), we have
f(sD, sN\D) ∈ U by assumption. For the converse direction, let there be a winning
strategy for Eloise in the game (A[D],t, U) that moves from ([D], t) to some sD such that
for all Abelard-moves from sD to some f(sD, sN\D), we have f(sD, sN\D) ∈ U . Then we
have ∃sD ∈ SD.∀sN\D ∈ SN\D.f(sD, sN\D) ∈ U .

6. The general one-step arenas from Example 13.6 are easily seen to be one-step sound and
complete. However, when using these one-step arenas, the model checking games from
Definition 16 below are essentially just the evaluation games recalled in Definition 9.

In the following, we assume that one-step sound and complete one-step satisfaction arenas
are available for all ♥ and t and that the sets of inner nodes of all these arenas are disjoint.
We continue to define our modular model checking game by plugging the one-step satisfaction
arenas into the modal steps of a standard parity model checking game:

IDefinition 16 (Coalgebraic model checking games). Themodel checking game Gχ = (W,E,α)
for χ is a parity game that is played over the set of nodes

V ′ = V ∪
⋃

♥ψ∈Cl(χ),x∈C

({ψ} × V♥,ξ(x)).

The set of moves E ⊆W ×W is defined by putting E(ψ, x) = h(ψ, x) if (ψ, x) ∈ V and ψ is
not a modal operator; for (♥ψ, x) ∈ V , we put E(♥ψ, x) = {(ψ, (♥, ξ(x)))}, that is, there is a
referee move from such nodes to the initial node of the one-step arena for ♥ and ξ(x), paired
with the formula ψ. For nodes (ψ, v) ∈ {ψ} × V♥,ξ(x) such that v ∈ V♥,ξ(x) is not an exit
node, we put E(ψ, v) = {ψ}×E♥,ξ(x)(v), that is, at such nodes, the moves are inherited from

CONCUR 2019

35:14 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

the arena A♥,ξ(x) and take place only in the second component. Nodes (>, x) and (ψ1∧ψ2, x)
belong to player Abelard, nodes (⊥, x) and (ψ1∨ψ2, x) belong to player Eloise. The ownership
of nodes (ηX.ψ, x), (X,x) and (♥ψ, x) is irrelevant. Nodes (ψ, v) ∈ {ψ} × V♥,ξ(x) such that
v ∈ V♥,ξ(x) is not an exit node are owned by the player that owns v in the arena A♥,ξ(x). All
nodes, including the nodes from the one-step satisfaction arenas, have priority 0, with the
exception of nodes (X,x) ∈ V which have priority α(X,x) = ad(θ(X)).

The game Gχ is a parity game with k priorities and |V |+
∑
♥ψ∈Cl(χ),x∈C |I♥,ξ(x)| nodes.

I Theorem 17. We have x ∈ JχK if and only if Eloise wins the node (χ, x) in Gχ.

Proof. We have that Eloise wins the node (χ, x) in Gχ if and only if Eloise wins the node
(χ, x) in the evaluation game (recalling Definition 9): the only difference between Gχ and
the evaluation game for χ is the modal step. If Eloise wins a node (♥ψ, x) in the evaluation
game, then there is a set U such that ξ(x) ∈ J♥K(U) and Eloise wins all nodes (ψ, y) such
that y ∈ U . It suffices to show that Eloise can win the one-step satisfaction game (A♥,ξ(x), U);
this however is the case since the one-step arena A♥,ξ(x) for ♥ and ξ(x) is one-step complete.
Conversely, let Eloise win a node (♥ψ, x) in Gχ. Then there is some set U ⊆ C of exit nodes
such that Eloise wins all nodes from {ψ} × U as well as the one-step game (A♥,ξ(x), U). By
one-step soundness of the one-step arena A♥,ξ(x), we have ξ(x) ∈ J♥K(U) so that in the
evaluation game, Eloise can move from (♥ψ, x) to (♥ψ,U) and for each Abelard-move from
(♥ψ,U) to (ψ, y) such that y ∈ U , Eloise wins (ψ, y). Lemmas 10 and 6 – or alternatively,
Theorem 3.6 in [7] – finish the proof. J

Using parity games, we can decide the model checking problem in quasi-polynomial time if
the one-step satisfaction arenas are of at most quasi-polynomial size.

I Corollary 18. Let q(size(χ), size(C)) denote the maximal number of inner nodes of the one-
step satisfaction arenas that are used when constructing the model checking game for χ and C.
Model checking C against χ can be done in time O(((|χ| · |C|) · q(size(χ), size(C)))log(k)+6).

Proof. The model checking game Gχ consists of at most |χ| · |C| one-step satisfaction games
that are plugged into one parity game of size |χ| · |C|, resulting in a parity game of size
O((|χ| · |C|) · q(size(χ), size(C))) and with k priorities. Using the methods from [4], this game
can be solved in time O(((|χ| · |C|) · q(size(χ), size(C)))log(k)+6). J

I Corollary 19. We obtain the following quasi-polynomial upper time bounds for the model
checking problems of the respective µ-calculi:
1. for the relational µ-calculus: O((|χ| · |C|)log(k)+6);
2. for the (serial) monotone µ-calculus: O((|χ| · |C| · size(C))log(k)+6);
3. for the graded µ-calculus with grades coded in unary: O((|χ| · |C|2 · size(χ))log(k)+6);
4. for the alternating-time µ-calculus: O((|χ| · |C| · size(C))log(k)+6).

Proof. Immediate from Corollary 18 by the observations from Example 13. J

6 Conclusion

We have presented an algorithm to solve the model checking problem for coalgebraic µ-calculi
in time pk, where p is a polynomial in the input formula size and the input model size and
where k is the alternation depth of the input formula; while the algorithm is correct for all
instances of the coalgebraic µ-calculus, the runtime analysis relies on the assumption that
the one-step satisfaction problem of the base logic is in P. This holds in many instance

D. Hausmann and L. Schröder 35:15

logics, including the graded µ-calculus and the probabilistic µ-calculus, even if grades and
probabilities are coded in binary. We also have shown that under the same assumption on
the one-step satisfaction problem, the model checking problem of a coalgebraic µ-calculus
is in NP ∩ coNP. Our approach relies centrally on a coalgebraic variant of parity games,
whose algorithmics we will develop further in future research. For certain logics, including
the graded µ-calculus with grades coded in unary, the alternating-time µ-calculus and the
monotone µ-calculus, we have shown how to construct model checking games as standard
parity games of polynomial size; this enables the efficient use of standard parity game solvers
in model checking, and also transfers any future progress on solving parity games directly to
model checking for such logics.

References
1 Rajeev Alur, Thomas Henzinger, and Orna Kupferman. Alternating-time temporal logic. J.

ACM, 49:672–713, 2002.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
3 Florian Bruse, Michael Falk, and Martin Lange. The Fixpoint-Iteration Algorithm for Parity

Games. In Games, Automata, Logics and Formal Verification, GandALF 2014, volume 161 of
EPTCS, pages 116–130, 2014.

4 Cristian Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Theory of Computing, STOC 2017, pages 252–263.
ACM, 2017.

5 Brian F. Chellas. Modal Logic. Cambridge University Press, 1980.
6 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgebraic

µ-calculus. In Computer Science Logic, CSL 2009, volume 5771 of LNCS, pages 179–193.
Springer, 2009.

7 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgebraic
µ-calculus. Log. Meth. Comput. Sci., 7, 2011.

8 Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal
logics are coalgebraic. Comput. J., 54:31–41, 2011.

9 Corina Cîrstea, Shunsuke Shimizu, and Ichiro Hasuo. Parity Automata for Quantitative
Linear Time Logics. In Algebra and Coalgebra in Computer Science, CALCO 2017, volume 72
of LIPIcs, pages 7:1–7:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. URL:
http://www.dagstuhl.de/dagpub/978-3-95977-033-0.

10 Giovanna D’Agostino and Albert Visser. Finality regained: A coalgebraic study of Scott-sets
and multisets. Arch. Math. Logic, 41:267–298, 2002.

11 E. Allen Emerson, Charanjit Jutla, and A. Prasad Sistla. On model checking for the µ-calculus
and its fragments. Theor. Comput. Sci., 258:491–522, 2001. URL: http://dx.nodoi.org/10.
1016/S0304-3975(00)00034-7.

12 Sebastian Enqvist, Fatemeh Seifan, and Yde Venema. Monadic Second-Order Logic and
Bisimulation Invariance for Coalgebras. In Logic in Computer Science, LICS 2015. IEEE,
2015.

13 Alessandro Ferrante, Aniello Murano, and Mimmo Parente. Enriched µ-Calculi Module
Checking. Log. Methods Comput. Sci., 4(3), 2008.

14 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002. doi:10.1007/
3-540-36387-4.

15 Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and Yde Venema. Parity Games and
Automata for Game Logic. In Dynamic Logic. New Trends and Applications, DALI 2017,
volume 10669 of LNCS, pages 115–132. Springer, 2018.

CONCUR 2019

http://www.dagstuhl.de/dagpub/978-3-95977-033-0
http://dx.nodoi.org/10.1016/S0304-3975(00)00034-7
http://dx.nodoi.org/10.1016/S0304-3975(00)00034-7
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/3-540-36387-4

35:16 Game-Based Local Model Checking for the Coalgebraic µ-Calculus

16 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic Progress Measures and
Coalgebraic Model Checking. In Principles of Programming Languages, POPL 2016, pages
718–732. ACM, 2016.

17 Daniel Hausmann and Lutz Schröder. Optimal Satisfiability Checking for Arithmetic µ-Calculi.
In Foundations of Software Science and Computation Structures, FOSSACS 2019, volume
11425 of LNCS, pages 277–294. Springer, 2019.

18 Marcin Jurdziński. Small Progress Measures for Solving Parity Games. In Horst Reichel and
Sophie Tison, editors, Symposium on Theoretical Aspects of Computer Science, STACS 2000,
pages 290–301, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

19 Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354, 1983.
20 Orna Kupferman, Ulrike Sattler, and Moshe Vardi. The Complexity of the Graded µ-Calculus.

In Automated Deduction, CADE 02, volume 2392 of LNCS, pages 423–437. Springer, 2002.
21 Wanwei Liu, Lei Song, Ji Wang, and Lijun Zhang. A Simple Probabilistic Extension of Modal

Mu-calculus. In International Joint Conference on Artificial Intelligence, IJCAI 2015, pages
882–888. AAAI Press, 2015.

22 Damian Niwinski. On Fixed-Point Clones (Extended Abstract). In Automata, Languages and
Programming, ICALP 1986, volume 226 of LNCS, pages 464–473. Springer, 1986.

23 Rohit Parikh. The logic of games and its applications. Ann. Discr. Math., 24:111–140, 1985.
24 Marc Pauly. A Modal Logic for Coalitional Power in Games. J. Logic Comput., 12:149–166,

2002.
25 David Peleg. Concurrent dynamic logic. J. ACM, 34:450–479, 1987. URL: http://nodoi.acm.

org/10.1145/23005.23008.
26 Jan Rutten. Universal Coalgebra: A Theory of Systems. Theor. Comput. Sci., 249:3–80, 2000.
27 Philippe Schnoebelen. The Complexity of Temporal Logic Model Checking. In Advances in

Modal Logic, AiML 2002, pages 393–436. College Publications, 2003.
28 Lutz Schröder and Dirk Pattinson. Strong completeness of coalgebraic modal logics. In

Theoretical Aspects of Computer Science, STACS 09, pages 673–684. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik; Dagstuhl, Germany, 2009.

29 Lutz Schröder and Yde Venema. Completeness of Flat Coalgebraic Fixpoint Logics. ACM
Trans. Comput. Log., 19(1):4:1–4:34, 2018.

30 Colin Stirling and David Walker. Local model checking in the modal mu-calculus. Theoretical
Computer Science, 89(1):161–177, 1991.

http://nodoi.acm.org/10.1145/23005.23008
http://nodoi.acm.org/10.1145/23005.23008

	Introduction
	The Coalgebraic mu-Calculus
	Local Model Checking for the Coalgebraic mu-Calculus
	Coalgebraic Model Checking in NP cap coNP
	Small model checking games
	Conclusion

