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Abstract
Distributed storage systems and databases are widely used by various types of applications. Transac-
tional access to these storage systems is an important abstraction allowing application programmers
to consider blocks of actions (i.e., transactions) as executing atomically. For performance reasons, the
consistency models implemented by modern databases are weaker than the standard serializability
model, which corresponds to the atomicity abstraction of transactions executing over a sequentially
consistent memory. Causal consistency for instance is one such model that is widely used in practice.

In this paper, we investigate application-specific relationships between several variations of causal
consistency and we address the issue of verifying automatically if a given transactional program is
robust against causal consistency, i.e., all its behaviors when executed over an arbitrary causally
consistent database are serializable. We show that programs without write-write races have the same
set of behaviors under all these variations, and we show that checking robustness is polynomial time
reducible to a state reachability problem in transactional programs over a sequentially consistent
shared memory. A surprising corollary of the latter result is that causal consistency variations which
admit incomparable sets of behaviors admit comparable sets of robust programs. This reduction also
opens the door to leveraging existing methods and tools for the verification of concurrent programs
(assuming sequential consistency) for reasoning about programs running over causally consistent
databases. Furthermore, it allows to establish that the problem of checking robustness is decidable
when the programs executed at different sites are finite-state.
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1 Introduction

Distribution and replication are widely adopted in order to implement storage systems
and databases offering performant and available services. The implementations of these
systems must ensure consistency guarantees allowing to reason about their behaviors in an
abstract and simple way. Ideally, programmers of applications using such systems would like
to have strong consistency guarantees, i.e., all updates occurring anywhere in the system
are seen immediately and executed in the same order by all sites. Moreover, application
programmers also need an abstract mechanism such as transactions, ensuring that blocks
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t1 [z = 1
x = 1]

t2 [y = 1]
||

t3 [x = 2
r1 = z] //0

t4 [r2 = y //1
r3 = x] //2

(a) CCv but not CM.

t1 [x = 1]
t2 [r1 = x] //2 ||

t3 [x = 2]
t4 [r2 = x] //1

(b) CM but not CCv.

t1 [x = 2] ||
t2 [x = 1]
t3 [r1 = x] //2
t4 [r2 = x] //1

(c) CC but not CM nor CCv.

Figure 1 Computations showing the relation between CC, CCv and CM. Transactions are delimited
using brackets, same site transactions are aligned vertically, and read values are given in comments.

of actions (writes and reads) of a site can be considered as executing atomically without
interferences from actions of other sites. For transactional programs, the consistency model
offering strong consistency is serializability [37], i.e., every computation of a program is
equivalent to another one where transactions are executed serially one after another without
interference. In the non-transactional case this model corresponds to sequential consistency
(SC) [31]. However, while serializability and SC are easier to apprehend by application
programmers, their enforcement (by storage systems implementors) requires the use of global
synchronization between all sites, which is hard to achieve while ensuring availability and
acceptable performances [24, 25]. For this reason, modern storage systems ensure weaker
consistency guarantees. In this paper, we are interested in studying causal consistency [30].

Causal consistency is a fundamental consistency model implemented in several production
databases, e.g., AntidoteDB, CockroachDB, and MongoDB, and extensively studied in the
literature [7, 23, 33, 34, 39]. Basically, when defined at the level of actions, it guarantees that
every two causally related actions, say 𝑎1 is causally before (i.e., it has an influence on) 𝑎2,
are executed in that same order, i.e., 𝑎1 before 𝑎2, by all sites. The sets of updates visible to
different sites may differ and read actions may return values that cannot be obtained in SC
executions. The definition of causal consistency can be lifted to the level of transactions,
assuming that transactions are visible to a site in their entirety (i.e., all their updates are
visible at the same time), and they are executed by a site in isolation without interference
from other transactions. In comparison to serializability, causal consistency allows that
conflicting transactions, i.e., which read or write to a common location, be executed in
different orders by different sites as long as they are not causally related. Actually, we
consider three variations of causal consistency introduced in the literature, weak causal
consistency (CC) [38, 14], causal memory (CM) [3, 38], and causal convergence (CCv) [18].

The weakest variation of causal consistency, namely CC, allows speculative executions
and roll-backs of transactions which are not causally related (concurrent). For instance, the
computation in Fig. 1c is only feasible under CC: the site on the right applies t2 after t1
before executing t3 and roll-backs t2 before executing t4. CCv and CM offer more guarantees.
CCv enforces a total arbitration order between all transactions which defines the order in
which delivered concurrent transactions are executed by every site. This guarantees that all
sites reach the same state when all transactions are delivered. CM ensures that all values read
by a site can be explained by an interleaving of transactions consistent with the causal order,
enforcing thus PRAM consistency [32] on top of CC. Contrary to CCv, CM allows that two sites
diverge on the ordering of concurrent transactions, but both models do not allow roll-backs of
concurrent transactions. Thus, CCv and CM are incomparable in terms of computations they
admit. The computation in Fig. 1a is not admitted by CM because there is no interleaving
of those transactions that explains the values read by the site on the right: reading 0 from
z implies that the transactions on the left must be applied after t3 while reading 1 from
y implies that both t1 and t2 are applied before t4 which contradicts reading 2 from x.
However, this computation is possible under CCv because t1 can be delivered to the right
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after executing t3 but arbitrated before t3, which implies that the write to x in t1 will be
lost. The CM computation in Fig. 1b is not possible under CCv because there is no arbitration
order that could explain both reads from x.

As a first contribution of our paper, we show that the three causal consistency semantics
coincide for transactional programs containing no write-write races, i.e., concurrent transac-
tions writing on a common variable. We also show that if a transactional program has a
write-write race under one of these semantics, then it must have a write-write race under any
of the other two semantics. This property is rather counter-intuitive since CC is strictly weaker
than both CCv and CM, and CCv and CM are incomparable (in terms of admitted behaviors).
Notice that each of the computations in Figures 1b, 1a, and 1c contains a write-write race
which explains why none of these computations is possible under all three semantics.

Then, we investigate the problem of checking robustness of application programs against
causal consistency relaxations: Given a program 𝑃 and a causal consistency variation 𝑋, we
say that 𝑃 is robust against 𝑋 if the set of computations of 𝑃 when running under 𝑋 is the
same as its set of computations when running under serializability. This means that it is
possible to reason about the behaviors of 𝑃 assuming the simpler serializability model and
no additional synchronization is required when 𝑃 runs under 𝑋 such that it maintains all
the properties satisfied under serializability. Checking robustness is not trivial, it can be seen
as a form of checking program equivalence. However, the equivalence to check is between two
versions of the same program, obtained using two different semantics, one more permissive
than the other one. The goal is to check that this permissiveness has actually no effect on the
particular program under consideration. The difficulty in checking robustness is to apprehend
the extra behaviors due to the reorderings introduced by the relaxed consistency model w.r.t.
serializability. This requires a priori reasoning about complex order constraints between
operations in arbitrarily long computations, which may need maintaining unbounded ordered
structures, and make the problem of checking robustness hard or even undecidable.

We show that verifying robustness of transactional programs against causal consistency
can be reduced in polynomial time to the reachability problem in concurrent programs over
SC. This allows to reason about distributed applications running on causally consistent
storage systems using the existing verification technology and it implies that the robustness
problem is decidable for finite-state programs; the problem is PSPACE-complete when the
number of sites is fixed, and EXPSPACE-complete otherwise. This is the first result on the
decidability and complexity of verifying robustness against causal consistency. In fact, the
problem of verifying robustness has been considered in the literature for several consistency
models of distributed systems, including causal consistency [12, 16, 17, 20, 35]. These works
provide (over- or under-)approximate analyses for checking robustness, but none of them
provides precise (sound and complete) algorithmic verification methods for solving this
problem, nor addresses its decidability and complexity.

The approach we adopt for tackling this verification problem is based on a precise
characterization of the set of robustness violations, i.e., executions that are causally consistent
but not serializable. For both CCv and CM, we show that it is sufficient to search for a special
type of robustness violations, that can be simulated by serial (SC) computations of an
instrumentation of the original program. These computations maintain the information
needed to recognize the pattern of a violation that would have occurred in the original
program under a causally consistent semantics (executing the same set of operations). A
surprising consequence of these results is that a program is robust against CM iff it is robust
against CC, and robustness against CM implies robustness against CCv. This shows that the
causal consistency variations we investigate can be incomparable in terms of the admitted
behaviors, but comparable in terms of the robust applications they support.
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2 Causal Consistency

Program syntax. We consider a simple programming language where a program is parallel
composition of processes distinguished using a set of identifiers P. Each process is a sequence
of transactions and each transaction is a sequence of labeled instructions. Each transaction
starts with a begin instruction and finishes with an end instruction. Each other instruction
is either an assignment to a process-local register from a set R or to a shared variable from
a set V, or an assume statement. The assignments use values from a data domain D. An
assignment to a register ⟨𝑟𝑒𝑔⟩ := ⟨𝑣𝑎𝑟⟩ is called a read of ⟨𝑣𝑎𝑟⟩ and an assignment to a
shared variable ⟨𝑣𝑎𝑟⟩ := ⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩ is called a write to ⟨𝑣𝑎𝑟⟩ (⟨𝑟𝑒𝑔-𝑒𝑥𝑝𝑟⟩ is an expression
over registers). The statement assume ⟨𝑏𝑒𝑥𝑝𝑟⟩ blocks the process if the Boolean expression
⟨𝑏𝑒𝑥𝑝𝑟⟩ over registers is false. Each instruction is followed by a goto statement which defines
the evolution of the program counter. Multiple instructions can be associated with the same
label which allows us to write non-deterministic programs and multiple goto statements can
direct the control to the same label which allows us to mimic imperative constructs like loops
and conditionals. We assume that the control cannot pass from one transaction to another
without going as expected through begin and end instructions.

Causal memory (CM) semantics. Informally, the semantics of a program under causal
memory is defined as follows. The shared variables are replicated across each process, each
process maintaining its own local valuation of these variables. During the execution of a
transaction in a process, the shared-variable writes are stored in a transaction log which is
visible only to the process executing the transaction and which is broadcasted to all the other
processes at the end of the transaction1. To read a shared variable 𝑥, a process 𝑝 first accesses
its transaction log and takes the last written value on 𝑥, if any, and then its own valuation
of the shared variables, if 𝑥 was not written during the current transaction. Transaction logs
are delivered to every process in an order consistent with the causal delivery relation between
transactions, i.e., the transitive closure of the union of the program order (the order in which
transactions are executed by a process), and the delivered-before relation (a transaction 𝑡1 is
delivered-before a transaction 𝑡2 iff the log of 𝑡2 has been delivered at the process executing
𝑡1 before 𝑡1 starts). By an abuse of terminology, we call this property causal delivery. Once
a transaction log is delivered, it is immediately applied on the shared-variable valuation of
the receiving process. Also, no transaction log can be delivered to a process 𝑝 while 𝑝 is
executing another transaction, we call this property transaction isolation.

Causal convergence (CCv) semantics. Compared to causal memory, causal convergence
ensures eventual consistency of process-local copies of the shared variables. Each transaction
log is associated with a timestamp and a process applies a write on some variable 𝑥 from a
transaction log only if it has a timestamp larger than the timestamps of all the transaction
logs it has already applied and that wrote the same variable 𝑥. For simplicity, we assume that
the transaction identifiers play the role of timestamps, which are totally ordered according
to some relation <. CCv satisfies both causal delivery and transaction isolation as well.

Weak causal consistency (CC) semantics. Compared to the previous semantics, CC allows
that reads of the same process observe concurrent writes as executing in different orders.
Each process maintains a set of values for each shared variable, and a read returns any one

1 For simplicity, we assume that every transaction commits. The effects of aborted transactions shouldn’t
be visible to any process.
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begin(𝑝1, 𝑡1)
isu(𝑝1, 𝑡1, 𝑥, 1)

end(𝑝1, 𝑡1)
·

begin(𝑝2, 𝑡3)
isu(𝑝2, 𝑡3, 𝑥, 2)

end(𝑝2, 𝑡3)
· del(𝑝1, 𝑡3) · del(𝑝2, 𝑡1) ·

begin(𝑝2, 𝑡4)
ld(𝑝2, 𝑡4, 𝑥, 1)

end(𝑝2, 𝑡4)
·

begin(𝑝1, 𝑡2)
ld(𝑝1, 𝑡2, 𝑥, 2)

end(𝑝1, 𝑡2)

(a) CM execution of the program in Fig. 1b.

begin(𝑝1, 𝑡1)
isu(𝑝1, 𝑡1, 𝑧, 1)
isu(𝑝1, 𝑡1, 𝑥, 1)

end(𝑝1, 𝑡1)

·

begin(𝑝2, 𝑡3)
isu(𝑝2, 𝑡3, 𝑥, 2)
ld(𝑝2, 𝑡3, 𝑧, 0)

end(𝑝2, 𝑡3)

· del(𝑝1, 𝑡3) · del(𝑝2, 𝑡1) ·
begin(𝑝1, 𝑡2)

isu(𝑝1, 𝑡2, 𝑦, 1)
end(𝑝1, 𝑡2)

·del(𝑝2, 𝑡2) ·

begin(𝑝2, 𝑡4)
ld(𝑝2, 𝑡4, 𝑦, 1)
ld(𝑝2, 𝑡4, 𝑥, 2)

end(𝑝2, 𝑡4)

(b) CCv execution of the program in Figure 1a.

begin(𝑝1, 𝑡1)
isu(𝑝1, 𝑡1, 𝑥, 2)

end(𝑝1, 𝑡1)
·

begin(𝑝2, 𝑡2)
isu(𝑝2, 𝑡2, 𝑥, 1)

end(𝑝2, 𝑡2)
· del(𝑝2, 𝑡1) ·

begin(𝑝2, 𝑡3)
ld(𝑝2, 𝑡3, 𝑥, 2)

end(𝑝2, 𝑡3)
·

begin(𝑝2, 𝑡4)
ld(𝑝2, 𝑡4, 𝑥, 1)

end(𝑝2, 𝑡4)
· del(𝑝1, 𝑡2)

(c) CC execution of the program in Figure 1c.

Figure 2 For readability, the sub-sequences of events delimited by begin and end are aligned
vertically, the execution-flow advancing from left to right and top to bottom.

of these values non-deterministically. Transaction logs are associated with vector clocks [30]
which represent the causal delivery relation, i.e., a transaction 𝑡1 is before 𝑡2 in causal-delivery
iff the vector clock of 𝑡1 is smaller than the vector clock of 𝑡2. We assume that transactions
identifiers play the role of vector clocks, which are partially ordered according to some
relation <. When applying a transaction log on the shared-variable valuation of the receiving
process, we only keep the values that were written by concurrent transactions (not related
by causal delivery). CC satisfies both causal delivery and transaction isolation.

Program execution. The semantics of a program 𝒫 under a causal consistency semantics
X ∈ {CCv, CM, CC} is defined using a labeled transition system [𝒫]X where the set Ev of
transition labels, called events, is defined by:

Ev = {begin(𝑝, 𝑡), ld(𝑝, 𝑡, 𝑥, 𝑣), isu(𝑝, 𝑡, 𝑥, 𝑣), del(𝑝, 𝑡), end(𝑝, 𝑡) : 𝑝 ∈ P, 𝑡 ∈ T, 𝑥 ∈ V, 𝑣 ∈ D}

where begin and end label transitions corresponding to the start, resp., the end of a transaction,
isu and ld label transitions corresponding to writing, resp., reading, a shared variable during
some transaction, and del labels transitions corresponding to applying a transition log received
from another process on the local copy of the shared variables. An event isu is called an
issue while an event del is called a store. An execution of [𝒫]X is a sequence of events
𝜌 = ev1 · ev2 · . . . labeling the transitions. Fig. 2a shows an execution under CM. This satisfies
transaction isolation since no transaction is delivered while another transaction is executing.
The execution in Fig. 2a is not possible under CCv since 𝑡4 and 𝑡2 read 2 and 1 from 𝑥,
respectively. This is possible only if 𝑡1 and 𝑡3 write 𝑥 at 𝑝2 and 𝑝1, respectively, which
contradicts the definition of CCv where we cannot have both 𝑡1 < 𝑡3 and 𝑡3 < 𝑡1. Fig. 2b
shows an execution under CCv (we assume 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4). Notice that del(𝑝2, 𝑡1) did not
result in an update of 𝑥 because the timestamp 𝑡1 is smaller than the timestamp of the last
transaction that wrote 𝑥 at 𝑝2, namely 𝑡3, a behavior that is not possible under CM. The
two processes converge and store the same shared variable copy at the end of the execution.
Fig. 2c shows an execution under CC, which is not possible under CCv and CM because 𝑡3 and
𝑡4 read 2 and 1, respectively. Since the transactions 𝑡1 and 𝑡2 are concurrent, 𝑝2 stores both
values 2 and 1 written by these transactions. A read of 𝑥 can return any of these two values.

Execution summary. Let 𝜌 be an execution under X ∈ {CCv, CM, CC}, a sequence 𝜏 of
events isu(𝑝, 𝑡) and del(𝑝, 𝑡) with 𝑝 ∈ P and 𝑡 ∈ T is called a summary of 𝜌 if it is obtained
from 𝜌 by substituting every sub-sequence of transitions in 𝜌 delimited by a begin and an

CONCUR 2019
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end transition, with a single “macro-event” isu(𝑝, 𝑡). For example, isu(𝑝1, 𝑡1) · isu(𝑝2, 𝑡3) ·
del(𝑝1, 𝑡3) · del(𝑝2, 𝑡1) · isu(𝑝2, 𝑡4) · isu(𝑝1, 𝑡2) is a summary of the execution in Fig. 2a.

We say that a transaction 𝑡 in 𝜌 performs an external read of a variable 𝑥 if 𝜌 contains
an event ld(𝑝, 𝑡, 𝑥, 𝑣) which is not preceded by a write on 𝑥 of 𝑡 (i.e., isu(𝑝, 𝑡, 𝑥, 𝑣)). Under CM
and CC, a transaction 𝑡 writes a variable 𝑥 if 𝜌 contains isu(𝑝, 𝑡, 𝑥, 𝑣), for some 𝑣. In Fig. 2a,
𝑡2 and 𝑡4 perform external reads, and 𝑡2 writes to 𝑦. A transaction 𝑡 executed by a process 𝑝

writes 𝑥 at process 𝑝′ ̸= 𝑝 if 𝑡 writes 𝑥 and 𝜌 contains del(𝑝′, 𝑡) (e.g., in Fig. 2a, 𝑡1 writes 𝑥 at
𝑝2). Under CCv, we say that a transaction 𝑡 executed by a process 𝑝 writes 𝑥 at process 𝑝′ ≠ 𝑝

if 𝑡 writes 𝑥 and 𝜌 contains an event del(𝑝′, 𝑡) which is not preceded by an event del(𝑝′, 𝑡′)
(or isu(𝑝′, 𝑡′)) with 𝑡 < 𝑡′ and 𝑡′ writing 𝑥 (if it would be preceded by such an event then the
write to 𝑥 of 𝑡 will be discarded). For example, in Fig. 2b, 𝑡1 does not write 𝑥 at 𝑝2.

3 Write-Write Race Freedom

We say that an execution 𝜌 has a write-write race on a shared variable 𝑥 if there exist two
concurrent transactions 𝑡1 and 𝑡2 that were issued in 𝜌 and each transaction contains a write
to the variable 𝑥. We call 𝜌 write-write race free if there is no variable 𝑥 such that 𝜌 has a
write-write race on 𝑥. Also, we say a program 𝒫 is write-write race free under a consistency
semantics X ∈ {CCv, CM, CC} iff for every 𝜌 ∈ ExX(𝒫), 𝜌 is write-write race free.

We show that if a given program has a write-write race under one of the three causal
consistency semantics then it must have a write-write race under the remaining two. The
intuition behind this is that the three semantics coincide for programs without write-write
races. Indeed, without concurrent transactions that write to the same variable, every process
local valuation of a shared variable will be a singleton set under CC and no process will ever
discard a write when applying an incoming transaction log under CCv.

I Theorem 1. Given a program 𝒫 and two consistency semantics X, Y ∈ {CCv, CM, CC}, 𝒫
has a write-write race under X iff 𝒫 has a write-write race under Y.

The following result shows that indeed, the three causal consistency semantics coincide for
programs which are write-write race free under any one of these three semantics.

I Theorem 2. Let 𝒫 be a program. Then, ExCC(𝒫) = ExCCv(𝒫) = ExCM(𝒫) iff 𝒫 has no
write-write race under CM, CCv, or CC.

4 Programs Robustness

4.1 Program Traces
We define an abstraction of executions satisfying transaction isolation, called trace. Intuitively,
a trace forgets the order in which shared-variables are accessed inside a transaction and
the order between transactions accessing different variables. The trace of an execution 𝜌 is
obtained by adding several standard relations between events in its summary which record
the data-flow, e.g. which transaction wrote the value read by another transaction.

The trace of an execution 𝜌 is a tuple tr(𝜌) = (𝜏, PO, WR, WW, RW, STO) where 𝜏 is the
summary of 𝜌, PO is the program order, which relates any two issue events isu(𝑝, 𝑡) and
isu(𝑝, 𝑡′) that occur in this order in 𝜏 , WR is the write-read relation (also called read-from),
which relates events of two transactions 𝑡 and 𝑡′ such that 𝑡 writes a value that 𝑡′ reads, WW
is the write-write order (also called store-order), which relates events of two transactions that
write to the same variable, and RW is the read-write relation (also called conflict), which
relates events of two transactions 𝑡 and 𝑡′ such that 𝑡 reads a value overwritten by 𝑡′, and
STO is the same-transaction relation, which relates events of the same transaction.
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isu(𝑝1, 𝑡1) isu(𝑝2, 𝑡3) del(𝑝1, 𝑡3) del(𝑝2, 𝑡1) isu(𝑝1, 𝑡2) del(𝑝2, 𝑡2) isu(𝑝2, 𝑡4)

WW

STO

PO

STO

PO

RW
WR

STO
WR

𝑡1 𝑡3 𝑡2 𝑡4

WW

PO PORW

WR

WR

Figure 3 The trace of the execution in Fig. 2b and its transactional happens-before.

Formally, WR relates any two events ev1 ∈ {isu(𝑝, 𝑡), del(𝑝, 𝑡)} and ev2 = isu(𝑝, 𝑡′) that
occur in this order in 𝜏 such that 𝑡′ performs an external read of 𝑥, and ev1 is the last
event in 𝜏 before ev2 such that 𝑡 writes 𝑥 if ev1 = isu(𝑝, 𝑡), and 𝑡 writes 𝑥 at 𝑝 if ev1 =
del(𝑝, 𝑡) (we may use WR(𝑥) to emphasize the variable 𝑥). Also, WW relates any two events
ev1 ∈ {isu(𝑝, 𝑡1), del(𝑝, 𝑡1)} and ev2 ∈ {isu(𝑝, 𝑡2), del(𝑝, 𝑡2)} that occur in this order in 𝜏

provided that 𝑡1 and 𝑡2 both write the same variable 𝑥, and if 𝜌 is an execution under
causal convergence, then (1) if ev𝑖 = del(𝑝, 𝑡𝑖), for some 𝑖 ∈ {1, 2}, then 𝑡𝑖 writes 𝑥 at 𝑝, and
(2) if ev1 ∈ {isu(𝑝, 𝑡1), del(𝑝, 𝑡1)} and ev2 = del(𝑝, 𝑡2), then 𝑡1 < 𝑡2 (we may use WW(𝑥) to
emphasize the variable 𝑥). We also define RW(𝑥) = WR−1(𝑥); WW(𝑥) (we use ; to denote
the standard composition of relations) and RW =

⋃︀
𝑥∈V RW(𝑥). If a transaction 𝑡 reads the

initial value of 𝑥 then RW(𝑥) relates isu(𝑝, 𝑡) to isu(𝑝′, 𝑡′) of any other transaction 𝑡′ which
writes to 𝑥 (i.e., (isu(𝑝, 𝑡), isu(𝑝′, 𝑡′)) ∈ RW(𝑥)). Finally, STO relates any event isu(𝑝, 𝑡) with
the set of events del(𝑝′, 𝑡), where 𝑝 ̸= 𝑝′.

Then, we define the happens-before relation HB as the transitive closure of the union of
all the relations in the trace, i.e., HB = (PO ∪ WR ∪ WW ∪ RW ∪ STO)+. Since we reason
about only one trace at a time, we may say that a trace is simply a summary 𝜏 , keeping the
relations implicit. The trace of the CCv execution in Fig. 2b is shown on the left of Fig. 3.
Tr(𝒫)X denotes the set of traces of executions of a program 𝒫 under X ∈ {CCv, CM, CC}.

The causal order CO of a trace tr = (𝜏, PO, WR, WW, RW, STO) is the transitive closure
of the union of the program order, write-read relation, and the same-transaction relation, i.e.,
CO = (PO ∪ WR ∪ STO)+. For readability, we write ev1 →HB ev2 instead of (ev1, ev2) ∈ HB.

4.2 Program Semantics Under Serializability
The semantics of a program under serializability [37] can be defined using a transition system
where the configurations keep a single shared-variable valuation (accessed by all processes)
with the standard interpretation of read or write statements. Each transaction executes in
isolation. Alternatively, the serializability semantics can be defined as a restriction of [𝒫]X,
X ∈ {CCv, CM, CC}, to the set of executions where each transaction is immediately delivered
to all processes, i.e., each event end(𝑝, 𝑡) is immediately followed by all del(𝑝′, 𝑡) with 𝑝′ ̸= 𝑝.
Such executions are called serializable and the set of serializable executions of a program 𝒫 is
denoted by ExSER(𝒫). The latter definition is easier to reason about when relating executions
under causal consistency and serializability, respectively.

A trace tr is called serializable if it is the trace of a serializable execution. Let TrSER(𝒫) de-
note the set of serializable traces. Given a serializable trace tr = (𝜏, PO, WR, WW, RW, STO)
we have that every event isu(𝑝, 𝑡) in 𝜏 is immediately followed by all del(𝑝′, 𝑡) with 𝑝′ ̸= 𝑝.
For simplicity, we write 𝜏 as a sequence of “atomic macro-events” (𝑝, 𝑡) where (𝑝, 𝑡) denotes
a sequence isu(𝑝, 𝑡) · del(𝑝1, 𝑡) · . . . · del(𝑝𝑛, 𝑡) for some 𝑝 ∈ P = {𝑝, 𝑝1, . . . , 𝑝𝑛}. We say that 𝑡

is “atomic”. In Fig. 3, 𝑡2 is atomic and we can use (𝑝2, 𝑡3) instead of isu(𝑝2, 𝑡3)del(𝑝1, 𝑡3).
Since multiple executions may have the same trace, it is possible that an execution 𝜌

produced by a variation of causal consistency has a serializable trace tr(𝜌) even though
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p1
t1 [r1 = x //0

x = r1 + 1]
||

p2
t2 [r2 = x //0

x = r2 + 1]

(a) Lost Update (LU).

p1
t1 [x = 1]
t2 [r1 = y] //0

||
p2

t3 [y = 1]
t4 [r2 = x] //0

(b) Store Buffering (SB).

[a = 1
z = 1
x = 1
y = 1]

||

if (a == 1)
[x = 2
r1 = z //0
r2 = y //1
r3 = x] //2

(c) Without transactions,
non-robust against CCv.

[a = 1
x = 1
r1 = x] //2

||
if (a == 1)

[x = 2
r2 = x] //1

(d) Without transactions, non-
robust only against CM.

if ( * )
[x = 1]

else
[r1 = x]

||

if ( * )
[x = 2]

else
[r2 = x]

(e) Robust against both
CM and CCv.

[x = 1]
[r1 = y] ||

[r2 = x
if (r2 == 1)
y = 1]

(f) Robust against both CM and CCv.

Figure 4 (Non-)robust programs. For non-robust programs, the read instructions are commented
with the values they return in robustness violations. The condition of if-else is checked inside a
transaction whose demarcation is omitted for readability (* denotes non-deterministic choice).

end(𝑝, 𝑡) actions may not be immediately followed by del(𝑝′, 𝑡) actions. However, 𝜌 would be
equivalent, up to reordering of “independent” (or commutative) transitions, to a serializable
execution. The happens-before relation between events is extended to transactions as follows:
a transaction 𝑡1 happens-before another transaction 𝑡2 ̸= 𝑡1 if the trace tr contains an event
of transaction 𝑡1 which happens-before an event of 𝑡2. The happens-before relation between
transactions is denoted by HB𝑡 and called transactional happens-before (an example is given
on the right of Fig. 3). The following result characterizes serializable traces.

I Theorem 3 ([2, 41]). A trace tr is serializable iff HB𝑡 is acyclic.

4.3 Robustness Problem
We consider the problem of checking whether the causally-consistent semantics of a program
produces the same set of traces as the serializability semantics.

I Definition 4. A program 𝒫 is called robust against a semantics X ∈ {CCv, CM, CC} iff
TrX(𝒫) = TrSER(𝒫).

Since TrSER(𝒫) ⊆ TrX(𝒫), the problem of checking robustness of a program 𝒫 against a
semantics X boils down to checking whether there exists a trace tr ∈ TrX(𝒫) ∖ TrSER(𝒫). We
call tr a robustness violation (or violation, for short). By Theorem 3, HB𝑡 of tr is cyclic.

We discuss several examples of programs which are (non-) robust against both CM and
CCv or only one of them. Fig. 4a and Fig. 4b show examples of programs that are not robust
against both CM and CCv, which have also been discussed in the literature on weak memory
models, e.g. [6]. The execution of Lost Update under both CM and CCv allows that the two
reads of x in transactions 𝑡1 and 𝑡2 return 0 although this cannot happen under serializability.
Also, executing Store Buffering under both CM and CCv allows that the reads of x and y return
0 although this would not be possible under serializability. These values are possible because
the first transaction in each of the processes may not be delivered to the other process.

Assuming for the moment that each instruction in Fig. 4c and Fig. 4d forms a different
transaction, the values we give in comments show that the program in Fig. 4c, resp., Fig. 4d,
is not robust against CCv, resp., CM. The values in Fig. 4c are possible assuming that the
timestamp of the transaction [x = 1] is smaller than the timestamp of [x = 2] (which
means that if the former is delivered after the second process executes [x = 2], then it
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will be discarded). Moreover, enlarging the transactions as shown in Fig. 4c, the program
becomes robust against CCv. The values in Fig. 4d are possible under CM because different
processes do not need to agree on the order in which to apply transactions, each process
applying the transaction received from the other process last. However, under CCv this
behavior is not possible, the program being actually robust against CCv. As in the previous
case, enlarging the transactions as shown in the figure leads to a robust program against CM.

We end the discussion with several examples of programs that are robust against both
CM and CCv. These are simplified models of real applications reported in [28]. The program
in Fig. 4e can be understood as the parallel execution of two processes that either create
a new user of some service, represented abstractly as a write on a variable x or check its
credentials, represented as a read of x (the non-deterministic choice abstracts some code
that checks whether the user exists). Clearly this program is robust against both CM and
CCv since each process does a single access to the shared variable. Although we considered
simple transactions that access a single shared-variable this would hold even for “bigger”
transactions that access an arbitrary number of variables. The program in Fig. 4f can be
thought of as a process creating a new user of some service and reading some additional data
in parallel to a process that updates that data only if the user exists. It is rather easy to see
that it is also robust against both CM and CCv.

5 Robustness Against Causal Consistency

We consider now the issue of checking robustness against a variation of causal consistency,
considering first the case of CCv and CM. The result concerning CC is derived from the one
concerning CM. We show next that a robustness violation should contain at least an issue and
a store event of the same transaction that are separated by another event that occurs after
the issue and before the store and which is related to both via the happens-before relation.
Otherwise, since any two events which are not related by happens-before could be swapped
in order to derive an execution with the same trace, every store event could be swapped until
it immediately follows the corresponding issue and the execution would be serializable.

I Lemma 5. Given a robustness violation 𝜏 , there exists a transaction 𝑡 such that 𝜏 = 𝛼 ·
isu(𝑝, 𝑡)·𝛽 ·del(𝑝0, 𝑡)·𝛾 and an event 𝑎 ∈ 𝛽 such that (isu(𝑝, 𝑡), 𝑎) ∈ HB and (𝑎, del(𝑝0, 𝑡)) ∈ HB.

The transaction 𝑡 in the trace 𝜏 above is called a delayed transaction. The happens-before
constraints imply that 𝑡 belongs to an HB𝑡 cycle.

Next, we show that a program which is not robust against CCv or CM admits violations of
particular shapes, which enables reducing robustness checking to a reachability problem in a
program running under serializability (presented in Section 6).

5.1 Robustness Violations under Causal Convergence
Roughly, our characterization of CCv robustness violations states that the first delayed
transaction (which must exist by Lemma 5) is followed by a possibly-empty sequence of
delayed transactions that form a “causality chain”, i.e., every new delayed transaction is
causally ordered after the previous delayed transaction. Moreover, the issue event of the last
delayed transaction happens-before the issue event of another transaction that reads a variable
updated by the first delayed transaction (this completes a cycle in HB𝑡). We say that a
sequence of issue events ev1 ·ev2 · . . . ev𝑛 forms a causality chain when (ev𝑖, ev𝑖+1) ∈ CO for all
1 ≤ 𝑖 ≤ 𝑛 − 1. Also, for simplicity, we use “macro-events” (𝑝, 𝑡) even in traces obtained under
causal consistency (recall that this notation was introduced to simplify serializable traces),
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𝜏CCv1:
𝛼 isu(𝑝, 𝑡)

∘ 𝛽 (𝑝0, 𝑡0)∘
del(𝑝0, 𝑡)
∘ 𝛾

HB ∖ CO
∀

CO
∀

WW(𝑥)
RW(𝑥); STO

𝜏CCv2:
𝛼 isu(𝑝, 𝑡)|¬𝑥∘ 𝛽1|¬𝑥

isu(𝑝1, 𝑡1)∘ 𝛽2
del(𝑝0, 𝑡)

∘ 𝛾

HB ∖ CO
∀

CO WW(𝑥) ∪ RW(𝑥)
∃

HB
∀

RW(𝑦 ̸= 𝑥)
∃

𝜏CM1:
𝛼 isu(𝑝, 𝑡)

∘ 𝛽 (𝑝0, 𝑡0)∘
del(𝑝0, 𝑡)

∘ 𝛾

HB ∖ CO
∀

CO
∀

WW(𝑥)
WW(𝑥)

𝜏CM2:
𝛼 isu(𝑝, 𝑡)|¬𝑥∘ 𝛽1|¬𝑥

isu(𝑝1, 𝑡1)∘ 𝛽2
del(𝑝0, 𝑡)

∘ 𝛾

HB ∖ CO
∀

CO RW(𝑥)
∃

RW(𝑦 ̸= 𝑥)
∃

HB
∀

Figure 5 Robustness violation patterns. We use 𝑎 𝛽
𝑅 ∀

to denote ∀ 𝑏 ∈ 𝛽. (𝑎, 𝑏) ∈ 𝑅. We
use 𝛽1|¬𝑥 to say that all delayed transactions in 𝛽1 do not access 𝑥. For violations 𝜏CCv1 and 𝜏CM1, 𝑡

is the only delayed transaction. For 𝜏CCv2 and 𝜏CM2, all delayed transactions are in 𝛽1|¬𝑥 and they
form a causality chain that starts at isu(𝑝, 𝑡) and ends at isu(𝑝1, 𝑡1).

i.e., we assume that any sequence of events formed of an issue isu(𝑝, 𝑡) followed immediately
by all the store events del(𝑝′, 𝑡) is replaced by (𝑝, 𝑡). Then, all the relations that held between
an event ev of such a sequence and another event ev′, e.g., (ev, ev′) ∈ PO, are defined to
hold as well between the corresponding macro-event (𝑝, 𝑡) and ev′, e.g, ((𝑝, 𝑡), ev′) ∈ PO.

I Theorem 6. A program 𝒫 is not robust against CCv iff Tr(𝒫)CCv contains a trace of type
𝜏CCv1 = 𝛼 · isu(𝑝, 𝑡) ·𝛽 · (𝑝0, 𝑡0) ·del(𝑝0, 𝑡) ·𝛾 or 𝜏CCv2 = 𝛼 · isu(𝑝, 𝑡) ·𝛽1 · isu(𝑝1, 𝑡1) ·𝛽2 ·del(𝑝0, 𝑡) ·𝛾
that satisfies the properties given in Fig. 5.

Above, 𝜏CCv1 contains a single delayed transaction while 𝜏CCv2 may contain arbitrarily many
delayed transactions. The issue event of the last delayed transactions, i.e., isu(𝑝, 𝑡) in 𝜏CCv1
and isu(𝑝1, 𝑡1) in 𝜏CCv2, happens before (𝑝0, 𝑡0) and some event in 𝛽2, respectively, which
read a variable updated by the first delayed transaction. The theorem above allows 𝛽1 = 𝜖,
𝛽2 = 𝜖, 𝛽 = 𝜖, 𝛾 = 𝜖, 𝑝 = 𝑝1, 𝑡 = 𝑡1, and 𝑡1 to be a read-only transaction. If 𝑡1 is a read-only
transaction then isu(𝑝1, 𝑡′) has the same effect as (𝑝1, 𝑡1) since 𝑡1 does not contain writes.
Fig. 6a and Fig. 6b show two violations under CCv.

The violation patterns in Theorem 6 characterize minimal robustness violations where
the measure defined as the sum of the distances (number of events that are causally related
to the issue) between issue and store events of the same transaction is minimal. Minimality
enforces the constraints stated above. For example, in the context of 𝜏CCv2, the delayed
transactions in 𝛽1 cannot create a cycle in the transactional happens-before (otherwise,
𝛼 · isu(𝑝, 𝑡) · 𝛽1 · del(𝑝0, 𝑡) · 𝛾′ would be a violation with a smaller measure, which contradicts
minimality). Also, if it were to have a delayed transaction 𝑡2 in 𝛽2 (resp., 𝛽 for 𝜏CCv1), then it
is possible to remove some transaction (all its issue and store events) from the original trace
and obtain a new violation with a smaller measure. For instance, in the case of 𝛽2, if 𝑡 ̸= 𝑡1,
then we can safely remove the last delayed transaction (i.e., 𝑡1), that is causally dependent
on the first delayed transaction, since all events in 𝛽2 · del(𝑝0, 𝑡) · 𝛾 neither read from the
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isu(𝑝1, 𝑡1) (𝑝2, 𝑡2) del(𝑝2, 𝑡1)
WW

STO

RW

(a) Violation of LU pro-
gram in Fig. 4a.

isu(𝑝1, 𝑡1) isu(𝑝1, 𝑡2) (𝑝2, 𝑡3) (𝑝2, 𝑡4) del(𝑝2, 𝑡1)

PO RW PO RW

(b) Violation of SB program in Fig. 4b.

isu(𝑝1, 𝑡1) (𝑝2, 𝑡2) del(𝑝2, 𝑡1)

WW WW

(c) Violation of LU program
in Fig. 4a.

Figure 6 (a) A 𝜏CCv1 violation where 𝛽2 = 𝜖, 𝛾 = 𝜖, and 𝑡 and 𝑡0 correspond to 𝑡1 and 𝑡2.
(b) A 𝜏CCv2 (resp., 𝜏CM2) violation where 𝑡 and 𝑡1 correspond to 𝑡1 and 𝑡2. 𝑡1 is a read-only
transaction. Also, 𝛽1 = 𝜖, 𝛽2 = (𝑝2, 𝑡3) · (𝑝2, 𝑡4), 𝛾 = 𝜖, such that (isu(𝑝1, 𝑡2), (𝑝2, 𝑡3)) ∈ RW(𝑦) and
((𝑝2, 𝑡4), del(𝑝2, 𝑡1)) ∈ RW(𝑥). (c) A 𝜏CM1 violation with 𝛽2 = 𝛾 = 𝜖, and 𝑡 and 𝑡0 correspond to 𝑡1
and 𝑡2. In all traces, we show only the relations that are part of the happens-before cycle.

writes of 𝑡1 nor are issued by the same process as 𝑡1. The resulting trace is still a robustness
violation (because of the HB𝑡 cycle involving 𝑡2) but with a smaller measure. Note that all
processes that delayed transactions, stop executing new transactions in 𝛽2 (resp., 𝛽) because
of the relation HB ∖ CO, shown in Fig. 5, between the delayed transaction 𝑡1 (resp., 𝑡) and
events in 𝛽2 (resp., 𝛽). This characterization of minimal violations is essential for deriving
an optimal reduction of robustness checking to SC reachability (presented in Section 6).

5.2 Robustness Violations under Causal Memory

The characterization of robustness violations under CM is at some level similar to that of
robustness violations under CCv. However, some instance of the violation pattern under CCv
is not possible under CM and CM admits some class of violations that is not possible under
CCv. This reflects the fact that these consistency models are incomparable in general. The
following theorem gives the precise characterization. Roughly, a program is not robust if it
admits a violation which can either be because of two concurrent transactions that write to
the same variable (a write-write race) or because of a restriction of the pattern admitted
by CCv where the last delayed transaction must be related only by RW in a happens-before
path with future transactions. The first pattern is not admitted by CCv because the writes
to each variable are executed according to the timestamp order.

I Theorem 7. A program 𝒫 is not robust against CM iff Tr(𝒫)CM contains a trace of type
𝜏CM1 = 𝛼 · isu(𝑝, 𝑡) · 𝛽 · (𝑝0, 𝑡0) · del(𝑝0, 𝑡) · 𝛾 or 𝜏CM2 = 𝛼 · isu(𝑝, 𝑡) · 𝛽1 · isu(𝑝1, 𝑡1) · 𝛽2 · del(𝑝0, 𝑡) · 𝛾

that satisfies the properties given in Fig. 5.

The CM violation in Fig. 6b (pattern 𝜏CM2) is a violation under CCv as well which corresponds
to the pattern 𝜏CCv2. The detection of the violation pattern 𝜏CM1 (e.g., Fig. 6c) implies the
existence of a write-write race under CM. Conversely, if a program has a trace which contains
a write-write race under CM, then this trace must be a robustness violation since the two
transactions, that caused the write-write race, form a cycle in the store order hence a cycle
in the transactional happens-before order2. Thus, the program is not robust against CM.
Therefore, a program which is robust against CM is also write-write race free under CM. Since
without write-write races, the CM and the CCv semantics coincide, we get the following.

I Lemma 8. If a program 𝒫 is robust against CM, then 𝒫 is robust against CCv.

2 Given two concurrent transactions 𝑡1 and 𝑡2 that write on a common variable 𝑥, isu(𝑝1, 𝑡1) is in store
order before del(𝑝1, 𝑡2) and isu(𝑝2, 𝑡2) before del(𝑝2, 𝑡1).
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5.3 Robustness Violations under Weak Causal Consistency
If a program is robust against CM, then it must not contain a write-write race under CM (note
that this is not true for CCv). Therefore, by Theorem 2, a program which is robust against
CM has the same set of traces under both CM and CC, which implies that it is also robust
against CC. Conversely, since CC is weaker than CM (i.e., TrCM(𝒫) ⊆ TrCC(𝒫) for any 𝒫), if a
program is robust against CC then it is robust against CM. Thus, we obtain the following.

I Theorem 9. A program 𝒫 is robust against CC iff it is robust against CM.

6 Reduction to SC Reachability

We present a reduction of robustness checking to a reachability problem in a program executing
under the serializability semantics. Given a program 𝒫 and a semantics X ∈ {CCv, CM, CC},
we define an instrumentation of 𝒫 such that 𝒫 is not robust against X iff the instrumentation
reaches an error state under serializability. The instrumentation uses auxiliary variables to
simulate the robustness violations (in particular, the delayed transactions) satisfying the
patterns given in Fig. 5. We focus our presentation on the second violation pattern of CCv
(similar to the second violation pattern of CM): 𝜏CCv2 = 𝛼·isu(𝑝, 𝑡)·𝛽1 ·isu(𝑝1, 𝑡1)·𝛽2 ·del(𝑝0, 𝑡)·𝛾.
We describe the instrumentation only informally, the precise definition can be found in [11].

The process 𝑝 that delayed the first transaction 𝑡 is called the Attacker. The processes
delaying transactions in 𝛽1 · isu(𝑝1, 𝑡1) are called Visibility Helpers. Recall that all the delayed
transactions must be causally after isu(𝑝, 𝑡) and causally before isu(𝑝1, 𝑡1). The processes
that execute transactions in 𝛽2 and contribute to the happens-before path between isu(𝑝1, 𝑡1)
and del(𝑝0, 𝑡) are called Happens-Before Helpers. A happens-before helper cannot be the
attacker or a visibility helper since this would contradict causal delivery (a transaction of
a happens-before helper is not delayed, so it is visible immediately to all processes, and it
cannot follow a delayed transaction). 𝛾 contains the stores of the delayed transactions from
isu(𝑝, 𝑡) ·𝛽1 · isu(𝑝1, 𝑡1). It is important to notice that we may have 𝑡 = 𝑡1. In this case, 𝛽1 = 𝜖

and the only delayed transaction is 𝑡. Also, all delayed transactions in 𝛽1 including 𝑡1 may
be issued on the same process as 𝑡. In all these cases, the set of Visibility Helpers is empty.

The instrumentation uses two copies of the set of shared variables in the original program.
We use primed variables 𝑥′ to denote the second copy. When a process becomes the attacker
or a visibility helper, it will write only to the second copy that is visible only to these
processes (and remains invisible to the other processes including the happens-before helpers).
The writes made by the other processes including the happens-before helpers are made visible
to all processes, i.e., they are applied on both copies of the shared variables.

To establish the causality chains of delayed transactions performed by the attacker and
the visibility helpers, we look whether a transaction can extend the causality chain started
by the first delayed transaction from the attacker. In order for a transaction to “join” the
causality chain, it has to satisfy one of the following conditions:

the transaction is issued by a process that has already another transaction in the causality
chain. Thus, we ensure the continuity of the causality chain through program order.
the transaction is reading from a variable updated by a previous transaction in the causality
chain. Hence, we ensure the continuity of the causality chain through write-read.

We introduce a flag for each shared variable to mark the fact that it was updated by a
previous transaction in the causality chain. These flags are used by the instrumentation to
establish whether a transaction “joins” a causality chain. Enforcing a happens-before path
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starting in the last delayed transaction, using transactions of the happens-before helpers,
can be done in the similar way. Compared to causality chains, there are two more cases in
which a transaction can extend a happens-before path:

the transaction writes to a variable read by a previous transaction in the happens-before
path. Hence, we ensure the continuity of the happens-before path through read-write.
the transaction writes to a variable updated by a previous transaction in the happens-
before path. We ensure the continuity of the happens-before path through write-write.

We extend the set of flags used for causality chains to record if a variable was read or written
by a previous transaction in the happens-before path. Overall, the instrumentation uses a
flag 𝑥.𝑒𝑣𝑒𝑛𝑡 or 𝑥′.𝑒𝑣𝑒𝑛𝑡 for each (copy of a) shared variable, that records the type of the
last access (read or write) to that variable. Initially, these flags and other flags used by the
instrumentation as explained below are initialized to null (⊥).

In general, whether a process is an attacker, visibility helper, or happens-before helper is
not enforced syntactically by the instrumentation, and can vary from execution to execution.
The role of a process in an execution is set non-deterministically during the execution using
some additional process-local flags. Thus, during an execution, each process chooses to set
to true at most one of the flags 𝑝.𝑎, 𝑝.𝑣ℎ, and 𝑝.ℎ𝑏ℎ, implying that the process becomes an
attacker, visibility helper, or happens-before helper, respectively. At most one process can be
an attacker, i.e., set 𝑝.𝑎 to true. Before a process becomes an attacker or visibility helper it
passes though a stage where it executes transactions in the usual way without delaying them.

A process can non-deterministically choose to delay a transaction at which point it sets a
global flag 𝑎trA to true. During the delayed transaction it chooses randomly a write instruction
to a shared variable 𝑦 and stores the name of this variable in the global variable 𝑎stA . The
values written during delayed transactions are stored in primed variables and visible only to
the attacker and the visibility helpers. Each time the attacker writes to a variable 𝑧′ (the
copy of 𝑧 from the original program) during a delayed transaction, it sets the flag 𝑧′.𝑒𝑣𝑒𝑛𝑡

to st which will allow other processes that read the same variable to join the set of visibility
helpers and start delaying their transactions. Once the attacker delays a transaction, it starts
reading only from the primed variables (i.e., 𝑧′).

When 𝑎trA is set to true by the attacker, other processes continue the execution of their
original instructions but, whenever they store a value they write it to both the shared variable
𝑧 and the primed variable 𝑧′ so it is visible to all processes. When a process chooses non
deterministically to join the visibility helpers, it delays all writes (i.e., writes only to primed
variables) and reads only from the primed variables.

In order for the attacker or a visibility helper to start the happens-before path, it has
to either read or write a shared variable 𝑥 that was not accessed by a delayed transaction
(i.e., 𝑥′.𝑒𝑣𝑒𝑛𝑡 =⊥). In this case we set the global flag HB to true to mark the start of the
happens-before path and the end of the causality chain, and set the flag 𝑥.𝑒𝑣𝑒𝑛𝑡 to ld. When
HB becomes true the attacker and the visibility helpers stop executing new transactions.

Also, when HB becomes true, the remaining processes can choose non-deterministically to
join the set of happens-before helpers, i.e., continue the happens-before path created by the
existing happens-before helpers, the attacker, or visibility helper. The happens-before helpers
continue executing their instructions, until one of them reads from the variable 𝑦 whose
name was stored in 𝑎stA . This establishes a happens-before path between the last delayed
transaction and a “fictitious” store event corresponding to the first delayed transaction that
could be executed just after this read of 𝑦. The execution doesn’t have to contain this store
event explicitly since it is always enabled. Therefore, at the end of every transaction, the
instrumentation checks whether the transaction reads 𝑦. If this is the case, then the execution
stops and goes to an error state to indicate that this is a robustness violation.
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The role of a process in an execution is chosen non-deterministically at runtime. Therefore,
the instrumentation [[𝒫]] of a program 𝒫 is obtained by replacing each instruction ⟨𝑙𝑖𝑛𝑠𝑡⟩
with the concatenation of the instrumentations corresponding to the attacker, the visibility
helpers, and the happens-before helpers, i.e., [[⟨𝑙𝑖𝑛𝑠𝑡⟩]] ::= [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]A [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]VH [[⟨𝑙𝑖𝑛𝑠𝑡⟩]]HbH.
The following theorem states the correctness of the instrumentation.

I Theorem 10. A program 𝒫 is not robust against CCv iff [[𝒫]] reaches the error state.

A similar instrumentation can be defined for the other variations of causal consistency, i.e.,
causal memory (CM) and weak causal consistency (CC).

The following result states the complexity of checking robustness for finite-state programs 3

against one of the three variations of causal consistency considered in this work (we use
causal consistency as a generic name to refer to all of them). It is a direct consequence
of Theorem 10 and of previous results concerning the reachability problem in concurrent
programs running over SC, with a fixed [27] or parametric number of processes [40].

I Corollary 11. Checking robustness of finite-state programs against causal consistency is
PSPACE-complete when the number of processes is fixed and EXPSPACE-complete, otherwise.

7 Related Work

Causal consistency is one of the oldest consistency models for distributed systems [30]. Formal
definitions of several variants of causal consistency, suitable for different types of applications,
have been introduced recently [19, 18, 38, 14]. The definitions in this paper are inspired from
these works and coincide with those given in [14]. In that paper, the authors address the
decidability and the complexity of verifying that an implementation of a storage system is
causally consistent (i.e., all its computations, for every client, are causally consistent).

While our paper focuses on trace-based robustness, state-based robustness requires that
a program is robust if the set of all its reachable states under the weak semantics is the
same as its set of reachable states under the strong semantics. While state-robustness is
the necessary and sufficient concept for preserving state-invariants, its verification, which
amounts in computing the set of reachable states under the weak semantics, is in general a
hard problem. The decidability and the complexity of this problem has been investigated in
the context of relaxed memory models such as TSO and Power, and it has been shown that
it is either decidable but highly complex (non-primitive recursive), or undecidable [8, 9]. As
far as we know, the decidability and complexity of this problem has not been investigated for
causal consistency. Automatic procedures for approximate reachability/invariant checking
have been proposed using either abstractions or bounded analyses, e.g., [10, 5, 21, 1]. Proof
methods have also been developed for verifying invariants in the context of weakly consistent
models such as [29, 26, 36, 4]. These methods, however, do not provide decision procedures.

Decidability and complexity of trace-based robustness has been investigated for the TSO
and Power memory models [15, 13, 22]. The work we present in this paper borrows the idea of
using minimal violation characterizations for building an instrumentation allowing to obtain
a reduction of the robustness checking problem to the reachability checking problem over SC.
However, applying this approach to the case of causal consistency is not straightforward and
requires different proof techniques. Dealing with causal consistency is far more tricky and
difficult than dealing with TSO, and requires coming up with radically different arguments

3 That is, programs where the number of variables and the data domain are bounded.
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and proofs, for (1) characterizing in a finite manner the set of violations, (2) showing that
this characterization is sound and complete, and (3) using effectively this characterization in
the definition of the reduction to the reachability problem.

As far as we know, our work is the first one that establishes results on the decidability and
complexity issues of the robustness problem in the context of causal consistency, and taking
into account transactions. The existing work on the verification of robustness for distributed
systems consider essentially trace-based concepts of robustness and provide either over- or
under-approximate analyses for checking it. The static analyses proposed in [12, 16, 17, 20]
are based on computing an abstraction of the set of computations, which is used in searching
for robustness violations. These approaches may return false alarms due to the abstractions
they consider. In particular, [12] shows that a trace under causal convergence is not admitted
by the serializability semantics iff it contains a (transactional) happens-before cycle with a
RW dependency, and another RW or WW dependency. This characterization alone is not
sufficient to prove the reduction in Theorem 10, which requires a finer characterization of
robustness violations. A sound (but not complete) bounded analysis for detecting robustness
violation is proposed in [35]. Our approach is technically different, is precise, and provides a
decision procedure for checking robustness when the program is finite-state.
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