
Long-Run Average Behavior
of Vector Addition Systems with States
Krishnendu Chatterjee
IST Austria, Klosterneuburg, Austria
krish.chat@ist.ac.at

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria
tah@ist.ac.at

Jan Otop
University of Wrocław, Poland
jotop@cs.uni.wroc.pl

Abstract
A vector addition system with states (VASS) consists of a finite set of states and counters. A
configuration is a state and a value for each counter; a transition changes the state and each counter
is incremented, decremented, or left unchanged. While qualitative properties such as state and
configuration reachability have been studied for VASS, we consider the long-run average cost of
infinite computations of VASS. The cost of a configuration is for each state, a linear combination
of the counter values. In the special case of uniform cost functions, the linear combination is the
same for all states. The (regular) long-run emptiness problem is, given a VASS, a cost function,
and a threshold value, if there is a (lasso-shaped) computation such that the long-run average value
of the cost function does not exceed the threshold. For uniform cost functions, we show that the
regular long-run emptiness problem is (a) decidable in polynomial time for integer-valued VASS, and
(b) decidable but nonelementarily hard for natural-valued VASS (i.e., nonnegative counters). For
general cost functions, we show that the problem is (c) NP-complete for integer-valued VASS, and
(d) undecidable for natural-valued VASS. Our most interesting result is for (c) integer-valued VASS
with general cost functions, where we establish a connection between the regular long-run emptiness
problem and quadratic Diophantine inequalities. The general (nonregular) long-run emptiness
problem is equally hard as the regular problem in all cases except (c), where it remains open.

2012 ACM Subject Classification Theory of computation→ Automata over infinite objects; Theory
of computation → Quantitative automata

Keywords and phrases vector addition systems, mean-payoff, Diophantine inequalities

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.27

Related Version A full version of the paper is available at http://arxiv.org/abs/1905.05537.

Funding Krishnendu Chatterjee: The Austrian Science Fund (FWF) NFN grant S11407-N23
(RiSE/SHiNE)
Thomas A. Henzinger : The Austrian Science Fund (FWF) grants S11402-N23 (RiSE/ShiNE) and
Z211-N23 (Wittgenstein Award)
Jan Otop: The National Science Centre (NCN), Poland under grant 2017/27/B/ST6/00299

Acknowledgements We thank Petr Novotný for helpful discussion on the literature.

1 Introduction

Vector Addition System with States (VASS). Vector Addition Systems (VASS) [20] are
equivalent to Petri Nets, and they provide a fundamental framework for formal analysis
of parallel processes [14]. The extension of VASs with a finite-state transition structure

© Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 27; pp. 27:1–27:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4561-241X
mailto:krish.chat@ist.ac.at
mailto:tah@ist.ac.at
https://orcid.org/0000-0002-8804-8011
mailto:jotop@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.CONCUR.2019.27
http://arxiv.org/abs/1905.05537
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Long-Run Average Behavior of Vector Addition Systems with States

gives Vector Addition Systems with States (VASS). Informally, a VASS consists of a finite
set of control states and transitions between them, and a set of k counters, where at every
transition between the control states each counter is either incremented, decremented, or
remains unchanged. A configuration consists of a control state and a valuation of each
counter, and the transitions of the VASS describe the transitions between the configurations.
Thus a VASS represents a finite description of an infinite-state transition system between
the configurations. If the counters can hold all possible integer values, then we call them
integer-valued VASS; and if the counters can hold only non-negative values, then we call
them natural-valued VASS.

Modelling power. VASS are a fundamental model for concurrent processes [14], and often
used in performance analysis of concurrent processes [12, 16, 18, 19]. Moreover, VASS have
been used (a) in analysis of parametrized systems [2], (b) as abstract models for programs
for bounds and amortized analysis [29], (c) in interactions between components of an API
in component-based synthesis [15]. Thus they provide a rich framework for a variety of
problems in verification as well as program analysis.

Previous results for VASS. A computation (or a run) in a VASS is a sequence of configu-
rations. The well-studied problems for VASS are as follows: (a) control-state reachability
where given a set of target control states a computation is successful if one of the target
states is reached; (b) configuration reachability where given a set of target configurations a
computation is successful if one of the target configurations is reached. For natural-valued
VASS, (a) the control-state reachability problem is ExpSpace-complete: the ExpSpace-
hardness is shown in [25, 13] and the upper bound follows from [28]; and (b) the configuration
reachability problem is decidable [26, 21, 22, 23], and a recent breakthrough result shows
that the problem is non-elementary hard [10]. For integer-valued VASS, (a) the control-state
reachability problem is NLogSpace-complete: the counters can be abstracted away and
we have to solve the reachability problem for graphs; and (b) the configuration reachability
problem is NP-complete: this is a folklore result obtained via reduction to linear Diophantine
inequalities.

Long-run average property. The classical problems for VASS are qualitative (or Boolean)
properties where each computation is either successful or not. In this work we consider
long-run average property that assigns a real value to each computation. A cost is associated
to each configuration and the value of a computation is the long-run average of the costs
of the configurations of the computation. For cost assignment to configuration we consider
linear combination with natural coefficients of the values of the counters. In general the
linear combination for the cost depends on the control state of the configuration, and in the
special case of uniform cost functions the linear combination is the same across all states.

Motivating examples. We present some motivating examples for the problems we consider.
First, consider a VASS where the counters represent different queue lengths, and each queue
consumes resource (e.g., energy) proportional to its length, however, for different queues
the constant of the proportionality might differ. The computation of the long-run average
resource consumption is modeled as a uniform cost function, where the linear combination
for the cost function is obtained from the constants of proportionality. Second, consider a
system that uses two different batteries, and the counters represent the charge levels. At
different states, different batteries are used, and we are interested in the long-run average

K. Chatterjee, T. A. Henzinger, and J. Otop 27:3

charge of the used battery. This is modeled as a general cost function, where depending on
the control state the cost function is the value of the counter representing the battery used
in the state.

Our contributions. We consider the following decision problem: given a VASS and a cost
function decide whether there is a regular (or periodic) computation such that the long-run
average value is at most a given threshold. Our main contributions are as follows:
1. For uniform cost functions, we show that the problem is (a) decidable in polynomial time

for integer-valued VASS, and (b) decidable but non-elementary hard for natural-valued
VASS. In (b) we assume that the cost function depends on all counters.

2. For general cost functions, we show that the problem is (a) NP-complete for integer-valued
VASS, and (b) undecidable for natural-valued VASS.

Our most interesting result is for general cost functions and integer-valued VASS, where
we establish an interesting connection between the problem we consider and quadratic
Diophantine inequalities. Finally, instead of regular computations, if we consider existence of
an arbitrary computation, then all the above results hold, other than the NP-completeness
result for general cost functions and integer-valued VASS (which remains open).

Related works. Long-run average behavior have been considered for probabilistic VASS [5],
and other infinite-state models such as pushdown automata and games [9, 8, 1]. In these
works the costs are associated with transitions of the underlying finite-state representation.
In contrast, in our work the costs depend on the counter values and thus on the configurations.
Costs based on configurations, specifically the content of the stack in pushdown automata,
have been considered in [27]. Quantitative asymptotic bounds for polynomial-time termination
in VASS have also been studied [4, 24], however, these works do not consider long-run average
property. Finally, a related model of automata with monitor counters with long-run average
property have been considered in [7, 6]. However, there are some crucial differences: in
automata with monitor counters, the cost always depends on one counter, and counters are
reset once the value is used. Moreover, the complexity results for automata with monitor
counters are quite different from the results we establish.

2 Preliminaries

For a sequence w, we define w[i] as the (i+ 1)-th element of w (we start with 0) and w[i, j]
as the subsequence w[i]w[i + 1] . . . w[j]. We allow j to be ∞ for infinite sequences. For a
finite sequence w, we denote by |w| its length; and for an infinite sequence the length is ∞.

We use the same notation for vectors. For a vector ~x ∈ Rk (resp., Qk, Zk or Nk), we
define x[i] as the i-th component of ~x. We define the support of ~x, denoted by supp(~x) as
the set of components of ~x with non-zero values. For vectors ~x, ~y of equal dimension, we
denote by ~x · ~y, the dot-product of ~x and ~y.

2.1 Vector addition systems with states (VASS)
A k-dimensional vector addition system with states (VASS) over Z (resp., over N), referred
to as VASS(Z, k) (resp., VASS(N, k)), is a tuple A = 〈Q,Q0, δ〉, where (1) Q is a finite
set of states, (2) Q0 ⊆ Q is a set of initial states, and (3) δ ⊆ Q×Q× Zk. We denote by
VASS(Z, k) (resp., VASS(N, k)) the class of k-dimensional VASS over Z (resp., N). We
often omit the dimension in VASS and write VASS(Z),VASS(N),VASS(N),VASS(Z) if a
definition or an argument is uniform w.r.t. the dimension.

CONCUR 2019

27:4 Long-Run Average Behavior of Vector Addition Systems with States

Configurations and computations. A configuration of a VASS(Z, k) A is a pair from
Q× Zk, which consists of a state and a valuation of the counters. A computation of A is an
infinite sequence π of configurations such that (a) π[0] ∈ Q0 × {~0}1, and (b) for every i ≥ 0,
there exists (q, q′, ~y) ∈ δ such that π[i] = (q, ~x) and π[i+ 1] = (q′, ~x+ ~y). A computation of
a VASS(N, k) A is a computation π of A considered as a VASS(Z, k) such that the values
of all counters are natural, i.e., for all i > 0 we have π[i] ∈ Q× Nk.

Paths and cycles. A path ρ = (q0, q
′
0, ~y0), (q1, q

′
1, ~y1), . . . in a VASS(Z) (resp., VASS(N))

A is a (finite or infinite) sequence of transitions (from δ) such that for all 0 ≤ i ≤ |ρ| we have
q′i = qi+1. A finite path ρ is a cycle if ρ = (q0, q

′
0, ~y0), . . . , (qm, q′m, ~ym) and q0 = q′m. Every

computation in a VASS(Z) (resp., VASS(N)) defines a unique infinite path. Conversely,
every infinite path in a VASS(Z) A starting with q0 ∈ Q0 defines a computation in A.
However, if A is a VASS(N, k), some paths do not have corresponding computations due to
non-negativity restriction posed on the counters.

Regular computations. We say that a computation π of a VASS(Z) (resp., VASS(N)) is
regular if it corresponds to a path which is ultimately periodic, i.e., it is of the form αβω

where α, β are finite paths.

2.2 Decision problems
We present the decision problems that we study in the paper.

Cost functions. Consider a VASS(Z, k) (resp., VASS(N, k)) A = (Q,Q0, δ). A cost func-
tion f for A is a function f : Q × Zk → Z, which is linear with natural coefficients, i.e.,
for every q there exists ~a ∈ Nk such that f(q, ~z) = ~a · ~z for all ~z ∈ Zk. We extend cost
functions to computations as follows. For a computation π of A, we define f(π) as the
sequence f(π[0]), f(π[1]), Every cost function f is given by a labeling l : Q → Nk by
f(q, ~z) = l(q) · ~z. We define the size of f , denoted by |f |, as the size of binary representation
of l considered as a sequence of natural numbers of the length |Q| · k.

Uniform cost functions. We say that a cost function f is uniform, if it is given by a
constant function l, i.e., for all states q, q′ and ~z ∈ Zk we have f(q, ~z) = f(q′, ~z). Uniform
cost functions are given by a single vector ~a ∈ Nk.

The long-run average. We are interested in the long-run average of the values returned
by the cost function, which is formalized as follows. Consider an infinite sequence of real
numbers w. We define LimAvg(w) = lim infk→∞ 1

k+1
∑k
i=0 w[i].

I Definition 1 (The average-value problems). Given a VASS(Z, k) (resp., VASS(N, k)) A,
a cost function f for A, and a threshold λ ∈ Q,

the average-value problem (resp., the regular average-value problem) asks whether
A has a computation (resp., a regular computation) π such that LimAvg(f(π)) ≤ λ, and
the finite-value problem (resp., the regular finite-value problem) asks whether A has
a computation (resp., a regular computation) π such that LimAvg(f(π)) <∞.

The following example illustrates the regular average-value problem for VASS(Z).

1 Without loss of generality, we assume that the initial counter valuation is ~0. We can encode any initial
configuration in the VASS itself.

K. Chatterjee, T. A. Henzinger, and J. Otop 27:5

A B C

e1,
(

1
0
)

e2,
(0
−1
)

e3,
(

0
3
)

e4,
(−2

0
)

A 7→
(

4
0
)

B 7→
(

1
1
)

C 7→
(

0
1
)

Figure 1 The VASS Ae and its labeling.

I Example 2. Consider the VASS(Z, 2) Ae = 〈{A,B,C}, {B}, {e1, e2, e3, e4}〉 depicted in
Figure 1 and a (non-uniform) cost function f is given by the labeling from Figure 1. A 7→

(
4
0
)
,

Consider an infinite path (e1e2e3e4)ω that defines the regular computation π0. This
computation can be divided into blocks of 4 consecutive configurations. The (i+ 1)-th block
has the following form

. . . (B,
(−i

2i
)
)(A,

(−i+1
2i
)
)(B,

(−i+1
2i−1

)
)(C,

(−i+1
2i+2

)
) . . .

and the corresponding values of f(π) are:

. . . i − 4i+ 4 i 2i+ 2 . . .

Therefore, the sum of values over each block is 6 and hence LimAvg(f(π0)) = 3
2 .

The answer to the (regular) average-value problem with any threshold is YES. Consider
j ∈ N and a path (e1e2)j(e1e2e3e4)ω. Observe that it defines a regular computation πj ,
which after the block (e1e2)j coincides with π0 with all counter values shifted by

(−2j
3j
)
.

Note that in each block e1e2e3e4, the value f on the vector
(−2j

3j
)
are j,−8j, j, 3j. Therefore,

LimAvg(f(πj)) = LimAvg(f(π0)) + −3j
4 = −3j−6

4 . It follows that for every threshold λ ∈ Q,
there exists a regular computation πj with LimAvg(f(πj)) ≤ λ.

Organization. In this paper, we study the (regular) average-value problem for VASS(Z, k)
and VASS(N, k). First, we study the average-value problem for uniform cost functions
(Section 3). Next, we consider the non-uniform case, where we focus on VASS(Z) (Section 4).
We start with solving the (regular) finite-value problem, and then we move to the regular
average-value problem. We show that both problems are NP-complete. Next, we discuss
the non-uniform case for VASS(N) and we show that the regular finite-value problem is
decidable (and non-elementary), while the (regular) average-value problem is undecidable.

3 Uniform cost functions

In this section we study the average-value problem for VASS(Z) and VASS(N) for the
uniform cost functions.

3.1 Integer-valued VASS: VASS(Z)
Consider a VASS(Z, k) A and a uniform cost function f for A. This function is defined
by a single vector of coefficients ~a ∈ Nk. First, observe that we can reduce the number
of the counters to one, which tracks the current cost. This counter c stores the value of
f(π[i]) = ~a · ~z, where ~z are the values of counters. Initially, the counter c is 0 = ~a ·~0. Next,
in each step i > 0, counters ~z are updated with some values ~y and we update c with ~a · ~y.
Note that the value of f(π[i+ 1]) = ~a · (~z + ~y) equals f(π[i]) + ~a · ~y.

CONCUR 2019

27:6 Long-Run Average Behavior of Vector Addition Systems with States

Second, observe that the average-value problem for VASS(Z, 1) and uniform cost functions
is equivalent to single-player average energy games (with no bounds on energy levels), which
are solvable in polynomial time [3]. Moreover, average-energy games (with no bounds on
energy levels) admit memoryless winning strategies and hence the average-value and the
regular average-value problems coincide. In consequence we have:

I Theorem 3. The average-value and the regular average-value problems for VASS(Z) and
uniform cost functions are decidable in polynomial time.

3.2 Natural-valued VASS: VASS(N)
For natural-valued VASS, we cannot reduce the number of counters to one; we need to track
all counters to make sure that all of them have non-negative values. Moreover, we show
that the average-value problem for (single counter) VASS(N, 1) is in PSpace while the
average-value problem for VASS(N) is nonelementary.

First, the average-value problem for (single counter) VASS(N, 1) in the uniform case
is equivalent to single-player average energy games with non-negativity constraint on the
energy values. The latter problem is in PSpace and it is NP-hard [3].

In the multi-counter case, we show that the average-value problem is mutually reducible to
the configuration reachability problem for VASS, which has recently been shown nonelemen-
tary hard [10]. We additionally assume that the cost function depends on all its arguments,
i.e., all coefficients are non-negative. This assumption allows us show that if there is a
computation of the average value below some λ, then there is one, which is lasso-shaped and
the cycle in the lasso has exponential size in the size of the VASS and λ. Therefore, we can
non-deterministically pick such a cycle and check whether it is reachable from the initial
configuration.

I Theorem 4. The average-value and the regular average-value problems for VASS(N) and
uniform cost functions with non-zero coefficients are decidable and mutually reducible to the
configuration reachability problem for VASS(N).

We have used in the proof the fact that f depends on all counters. We conjecture that
this assumption can be lifted:

I Open question 5. Is the average-value problem for VASS(N) and uniform cost functions
decidable?

4 General cost functions and VASS(Z)

First, we consider (an extension of) the regular finite-value problem for VASS(Z) (Section 4.1).
We show that one can decide in non-deterministic polynomial time whether a given VASS
has a regular computation (a) of the value −∞, or (b) of some finite value. To achieve this,
we introduce path summarizations, which allow us to state conditions that entail (a) and
respectively (b). We show that these conditions can be checked in NP.

We apply the results from Section 4.1 to solve the regular average-value problem (Sec-
tion 4.2). We consider only VASS that have some computation of a finite value, and no
computation of the value −∞, i.e., the answer to (a) is NO and the answer to (b) is YES. In
other cases we can easily answer to the regular average-value problem. If the answer to (a) is
YES, then for any threshold we answer YES. If the answers to (a) and (b) are NO, then for
any threshold we answer NO. Finally, we show NP-hardness of the regular finite-value and
the regular average-value problems (Section 4.3).

K. Chatterjee, T. A. Henzinger, and J. Otop 27:7

The main result of this section is the following theorem:

I Theorem 6. The regular finite-value and the regular average-value problems for VASS(Z)
with (general) cost functions are NP-complete.

We fix a VASS(Z, k) A = 〈Q,Q0, δ〉, with the set of states Q and the set of transitions δ,
and a cost function f , which we refer to throughout this section. We exclude the complexity
statements, where the asymptotic behavior applies to all A and f .

4.1 The finite-value problem
For a path ρ, we define characteristics Gain(ρ),Vals(ρ), which summarize the impact of ρ
on the values of counters (Gain) and the value of the (partial) average of costs (Vals).

Let ρ be of the form (q1, q2, ~y1) . . . (qm, qm+1, ~ym). We define Gain(ρ) as the sum of
updates along ρ, i.e., Gain(ρ) =

∑m
i=1 ~yi. The vector Gain(ρ) is the update of counters

upon the whole path ρ. Observe that Gain(ρ1ρ2) = Gain(ρ1) + Gain(ρ2).
Let l : Q → Nk be the function representing f , i.e., for every ~z ∈ Zk we have f(q, ~z) =

l(q)·~z. We define Vals(ρ) as the sum of vectors l(qi) along ρ, i.e., Vals(ρ) =
∑m
i=1 l(qi). Note

that we exclude the last state qm+1, and hence we have Vals(ρ1ρ2) = Vals(ρ1) + Vals(ρ2).
The vector Vals(ρ) describes the coefficients with which each counter contributes to the
average along the path ρ.

Consider a regular computation π and a path ρ1(ρ2)ω that corresponds to it. Let π′
be the (regular) computation obtained from π by contracting |ρ2| to a single transition
(qf , qf ,Gain(ρ2)), which is a loop over a fresh state qf . The counters over this transition are
updated by Gain(ρ2) and the cost function in qf is defined as f(qf , ~z) = 1

|ρ2|Vals(ρ2) · ~z.
The values of π and π′ may be different, but they differ only by some finite value. Indeed,

the difference over a single iteration of ρ2 updates and computation of the partial averages
are interleaved along ρ2, while in (qf , qf ,Gain(ρ2)) we first compute the partial average and
then update the counters. Therefore, that difference is a finite value N that does not depend
on the initial values of counters. It follows that the difference between the average values of
(the computations corresponding to) ρ2 and (qf , qf ,Gain(ρ2)) is bounded by N .

Finally, observe that the value of π′ can be easily estimated. Observe that the partial
average of the first n+ 1 values of f in π′ equals

1
n+ 1

(
~0 ·Vals(ρ2) + Gain(ρ2) ·Vals(ρ2) + . . .+nGain(ρ2) ·Vals(ρ2)

)
= n

2 Gain(ρ2) ·Vals(ρ2).

In consequence, we have the following:

I Lemma 7. Let π be a regular computation corresponding to a path ρ1(ρ2)ω. Then, one of
the following holds:
1. Gain(ρ2) ·Vals(ρ2) < 0 and LimAvg(f(π)) = −∞, or
2. Gain(ρ2) ·Vals(ρ2) = 0 and LimAvg(f(π)) is finite, or
3. Gain(ρ2) ·Vals(ρ2) > 0 and LimAvg(f(π)) =∞.

I Example 8. Consider the VASS Ae and the cost function f from Example 2. We have
shown that the computation defined by the path (e1e2e3e4)ω has finite average value. This
can be algorithmically computed using Lemma 7. We compute

Gain(e1e2e3e4) =
(

1
0
)

+
(0
−1
)

+
(

0
3
)

+
(−2

0
)

=
(−1

2
)

Vals(e1e2e3e4) =
(

1
1
)

+
(

4
0
)

+
(

1
1
)

+
(

0
1
)

=
(

6
3
)

Therefore, Gain(e1e2e3e4) ·Vals(e1e2e3e4) = 0.

CONCUR 2019

27:8 Long-Run Average Behavior of Vector Addition Systems with States

Reduction to integer quadratic programming. Lemma 7 reduces the regular finite-value
problem to finding a cycle with Gain(ρ) ·Vals(ρ) < 0 (resp., Gain(ρ) ·Vals(ρ) = 0). We
show that existence of such a cycle can be stated as a polynomial-size instance of integer
quadratic programming, which can be decided in NP [11]. An instance of integer quadratic
programming consists of a symmetric matrix A ∈ Qn×n,~a ∈ Qn, d ∈ Q,B ∈ Qn×m,~c ∈ Qm

and it asks whether there exists a vector ~x ∈ Zn satisfying the following system:

~xTA~x+ ~a~x+ d ≤0
B~x ≤~c

Let ρ be a cycle. Observe that both Gain(ρ),Vals(ρ) depend only on the multiplicity
of transitions occurring in ρ; the order of transitions is irrelevant. Consider a vector
~x = (x[1], . . . , x[m]) of multiplicities of transitions e1, . . . , em in ρ. Then,

Gain(ρ) ·Vals(ρ) =
∑

1≤i,j≤m
x[i]x[j]Gain(ei) ·Vals(ej)

Therefore, we have

2 ·Gain(ρ) ·Vals(ρ) = ~xTA~x (1)

for a symmetric matrix A ∈ Zm×m defined for all i, j as

A[i, j] = Gain(ei) ·Vals(ej) + Gain(ej) ·Vals(ei). (2)

The left hand side of (1) is multiplied by 2 to avoid division by 2. It follows that if
Gain(ρ) ·Vals(ρ) < 0 (resp., Gain(ρ) ·Vals(ρ) = 0), then the inequality ~xTA~x − 1 ≤ 0
(resp., ~xTA~x ≤ 0) has a solution.

Note that the above inequality can have a solution, which does not correspond to a
cycle. We can encode with a system of linear inequalities that ~x corresponds to a cycle.
Consider S ⊆ Q, which corresponds to all states visited by ρ. It suffices to ensure that
(a) for all s ∈ S, the number of incoming transitions to s, which is the sum of multiplicities
of transitions leading to s, equals the number of transitions outgoing from s, (b) for every
s ∈ S, the number of outgoing transitions is greater or equal to 1, and (c) for s ∈ Q \ S, the
number of incoming and outgoing transitions is 0. Finally, we state that all multiplicities are
non-negative. We can encode such equations and inequalities as BS~x ≤ ~cS . Observe that
every vector of multiplicities ~x ∈ Z satisfies ~xTA~x− 1 ≤ 0 (resp., ~xTA~x ≤ 0) and BS~x ≤ ~cS
defines a cycle ρ with Gain(ρ),Vals(ρ) < 0 (resp., Gain(ρ),Vals(ρ) = 0). The matrices
A,BS and the vector ~cS are polynomial in |A|. The set S can be picked non-deterministically.
In consequence, we have the following:

I Lemma 9. The problem: given a VASS(Z, k) A and a cost function f , decide whether A
has a regular computation of the value −∞ (resp., less than +∞) is in NP.

4.2 The regular average-value problem
In this section, we study the regular average-value problem for VASS(Z). We assume that A
has a regular computation of finite value and does not have a regular computation of the value
−∞. Finally, we consider the case of the threshold λ = 0. The case of an arbitrary threshold
λ ∈ Q can be easily reduced to the case λ = 0 (see [7, 6] for intuitions and techniques in
mean-payoff games a.k.a. limit-average games).

K. Chatterjee, T. A. Henzinger, and J. Otop 27:9

Consider a regular computation π and let ρ1(ρ2)ω be a path corresponding to π. We
derive the necessary and sufficient conditions on ρ1, ρ2 to have LimAvg(f(π)) ≤ 0.

Assume that LimAvg(f(π)) ≤ 0. Due to Lemma 7, we have Gain(ρ2) ·Vals(ρ2) = 0,
which implies that every iteration of ρ2 has the same average. Therefore, LimAvg(f(π)) is
the average value of ρ2 (starting with counter values defined by ρ1). The latter value is at
most 0 if and only if the sum of values along ρ2 is at most 0. We define this sum below.

The sum of values Sum~g(ρ). Let l be the labeling defining the cost function f . Consider
a path ρ of length m such that ρ = (q1, q2, ~y1) . . . (qm, qm+1, ~ym). Let π be the computation
corresponding to ρ with the initial counter values being ~g. Then, the value of counters at
the position i in π is ~g +

∑i−1
j=1 ~yj . Therefore, the sum of values over ρ starting with counter

values ~g ∈ Zk, denoted by Sum~g(ρ), is given by the following formula:

Sum~g(ρ) =
m∑
i=1

(
~g +

i−1∑
j=1

~yj

)
· l(qi)

We have the following:

I Lemma 10. There exists a regular computation π with LimAvg(f(π)) ≤ 0 if and only if
there exist paths ρ1, ρ2 such that
(C1) ρ1(ρ2)ω is an infinite path and ρ2 is a cycle,
(C2) Gain(ρ2) ·Vals(ρ2) = 0, and
(C3) SumGain(ρ1)(ρ2) ≤ 0.

Due to results from the previous section, we can check in NP the existence of ρ1, ρ2
satisfying (C1) and (C2). We call a cycle ρ2 balanced if Gain(ρ2) · Vals(ρ2) = 0. In the
remaining part we focus on condition (C3), while keeping in mind (C1) and (C2).

The plan of the proof. The proof has three key ingredients which are as follows: factoriza-
tions, quadratic factor elimination, and the linear case.

Factorizations. We show that we can consider only paths ρ2 of the form

α0β
n[1]
1 α1β

n[2]
2 . . . βn[p]

p αp,

where |αi|, |βi| ≤ |A| and each βi is a distinct simple cycle (Lemma 12). It follows that p
is exponentially bounded in |A|. Next, we show that for ρ2 in such a form we have

SumGain(ρ1)(ρ2) = ~nTB~n+ ~c · ~n+ e

where B ∈ Zp×p,~c ∈ Zp (Lemma 13). Therefore, SumGain(ρ1)(ρ2) ≤ 0 can be presented
as an instance of integer quadratic programming, where the variables correspond to
multiplicities of simple cycles.
However, there are two problems to overcome. First, ρ2 has to be balanced, i.e., it has to
satisfy Gain(ρ2) ·Vals(ρ2) = 0, which introduces another quadratic equation. Solving a
system of two quadratic equations over integers is considerably more difficult (see [11] for
references). Second, p is (bounded by) the number of distinct simple cycles and hence it
can be exponential in |A|. Therefore, B and ~c may have exponential size (of the binary
representation) in |A|.
Quadratic factor elimination. To solve these problems, we fix a sequence Tpl =
(α0, β1, α1, . . . , βp, αp) and consider BTpl,~cTpl, eTpl for Tpl. We show that one of the
following holds (Lemma 14 and Lemma 15):

CONCUR 2019

27:10 Long-Run Average Behavior of Vector Addition Systems with States

~nTBTpl~n+ ~cTpl · ~n+ eTpl ≤ 0 has a simple solution, or
there exist ~dTpl ∈ Zp, hTpl ∈ Z such that for all vectors ~n, if the cycle ρ2 =
α0β

n[1]
1 . . . β

n[p]
p αp is balanced (C2), then ~nTBTpl~n = ~dTpl · ~n+ hTpl.

We can decide in non-deterministic polynomial time whether the first condition holds
(Lemma 20).
The linear case. Assuming that the second condition holds, we reduce the problem of
solving the quadratic inequality ~nTBTpl~n + ~cTpl · ~n + eTpl ≤ 0 to solving the linear
inequality (~cTpl + ~dTpl) · ~n + (eTpl + hTpl) ≤ 0. Moreover, we can compute ~dTpl, hTpl
from the sequence Tpl. At this point, we can solve the problem in non-deterministic
exponential time. Next, we argue that we do not have to compute the whole system.
We show that if (~cTpl + ~dTpl) · ~n+ eTpl + hTpl ≤ 0 has a solution, then it has a solution
for a vector ~n0 with m = O(|A|) non-zero components. Therefore, we can remove cycles
corresponding to 0 coefficients of ~n0. Still,

∑p
i=0 |αi| can be exponential in |A|, but this

operation shortens the size of the template, i.e., the value
∑p
i=0 |αi| +

∑p
i=1 |βi|, and

hence by iterating it we get a polynomial size template, which yields a polynomial-size
system of inequalities. These inequalities can be solved in NP.

We now present the details of each ingredient.

4.2.1 Factorizations
The regular finite-value problem has been solved via reduction to solving (quadratic and
linear) inequalities. In this section, we show a reduction of the regular average-value problem
to linear and quadratic inequalities as well. First, we establish that we can consider only
cycles ρ, which have a compact representation using templates parametrized by multiplicities
of cycles. The value Sum~g(ρ) for a cycle represented by a template is given by a quadratic
function in the multiplicities of cycles.

Templates and multiplicities. A template Tpl is a sequence of paths (α0, β1, α1, . . . , βp, αp)
such that all β1, . . . , βp are cycles and α0β1α1 . . . βpαp is a cycle. A template is minimal if for
all i ∈ {0, . . . , p} we have |αi| < |Q| and all βi are pairwise distinct simple cycles. For every
vector ~n ∈ Np, called multiplicities, we define Tpl(~n) as a cycle α0β

n[1]
1 α1β

n[2]
2 . . . β

n[p]
p αp. A

cycle ρ has a (minimal) factorization if there exists a (minimal) template and multiplicities
~n such that ρ = Tpl(~n).

Observe that every cycle ρ has a factorization such that for all i we have |αi| < |Q| and
each βi is a simple cycle. However, the sequence βi’s can have repetitions. The following
lemma states that if a cycle β occurs twice in ρ, then we can group them together.

I Lemma 11. Consider ~g ∈ Zk and a cycle α0βα1βα2. Then, one of the following holds:
Sum~g(α0β

2α1α2) ≤ Sum~g(α0βα1βα2) or Sum~g(α0α1β
2α2) ≤ Sum~g(α0βα1βα2).

Careful repeated application of Lemma 11 implies that we can look for a cycle ρ satisfying
(C1), (C2) and (C3) among cycles that have a minimal factorization:

I Lemma 12. For every cycle ρ and ~g ∈ Zk, there exists a cycle ρ′ that has a minimal
factorization such that Gain(ρ) = Gain(ρ′), Vals(ρ) = Vals(ρ′) and Sum~g(ρ) ≥ Sum~g(ρ′).

Consider a template Tpl = (α0, β1, α1, . . . , βp, αp). We present Sum~g(Tpl(~n)) as a
function from multiplicities of simple cycles ~n ∈ N into Z. First, observe that

Sum~g(Tpl(~n)) = Sum~0(Tpl(~n)) + ~g ·Vals(Tpl(~n)).

K. Chatterjee, T. A. Henzinger, and J. Otop 27:11

The expression Vals(Tpl(~n)) is a linear expression in ~n with natural coefficients, and the
expression Sum~0(Tpl(~n)) is a quadratic function in each of its arguments ~n.

I Lemma 13. Given a template Tpl we can compute in polynomial time in |Tpl|+ |A|+ |f |,
a symmetric matrix BTpl ∈ Zp×p,~cTpl ∈ Zp and eTpl ∈ Z such that the following holds:

2 · Sum~0(Tpl(~n)) = ~nTBTpl~n+ ~cTpl~n+ eTpl (3)

Moreover, for all i, j ∈ {1, . . . , p} we have

BTpl[i, j] = Gain(βmin(i,j)) ·Vals(βmax(i,j)). (4)

Observe that BTpl is similar to the matrix A from (1). We exploit this similarity in the
following section to eliminate the term ~nTBTpl~n if possible.

4.2.2 Elimination of the quadratic factor
We show how to simplify the expression (3) of Lemma 13 for Sum~0(Tpl(~n)). We show that
either the inequality Sum~0(Tpl(~n)) + ~g ·Vals(Tpl(~n)) ≤ 0 has a simple solution for every
~g, or the quadratic term in (3) of Lemma 13 can be substituted with a linear term.

Negative and linear templates. Consider a template Tpl. A template Tpl is positive
(resp., negative) if there exist multiplicities ~n1, ~n2 ∈ Np such that
1. ~nT1 BTpl~n1 > 0 (resp., ~nT1 BTpl~n1 < 0), and
2. for every t ∈ N+, we have Gain(Tpl(t~n1 + ~n2)) ·Vals(Tpl(t~n1 + ~n2)) = 0.
A template Tpl is linear if there exist ~dTpl ∈ Zp and hTpl ∈ Z such that for all ~n, if
Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0, then ~nTBTpl~n = ~dTpl · ~n+ hTpl.

We observe that the existence of a negative cycle Tpl implies that Sum~g(Tpl(~n)) ≤ 0
has a solution for every ~g ∈ Nk, which in turn implies that the answer to the average-value
problem is YES. Basically, for ρt defined as Tpl(t~n1 + ~n2) and t big enough we can make
Sum~g(ρt) arbitrarily small.

I Lemma 14. If there exist a negative template, whose any state is reachable from some
initial state, then the answer to the regular average-value problem with threshold 0 is YES.

We show that either there is a template, which is negative or all templates are linear
(Lemma 15). Next, we show that we can check in non-deterministic polynomial time whether
there exists a negative template (Lemma 20).

I Lemma 15. (1) There exists a negative template or all templates are linear. (2) If
there exists a positive template Tpl, then there exists a negative one of the size bounded by
|Tpl|2. (3) If a template Tpl is linear, we can compute ~dTpl, hTpl in polynomial time in
|Tpl|+ |A|+ |f |.

Proof ideas. Consider a template Tpl with all connecting paths being empty, i.e., Tpl =
(ε, β1, . . . , βp, ε). Let ~n be a vector of multiplicities such that a cycle Tpl(~n) is balanced, i.e.,
Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0. We consider three cases:
The case ~nT BTpl~n < 0. Then, ~n1 = ~n and ~n2 = ~0 witness negativity of Tpl.
The case ~nT BTpl~n > 0. Then, Tpl is positive and we show that the reversed template

TplR = (ε, βp, . . . , β1, ε) is negative. Equality Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0 can be
stated as a matrix equation ~nTA~n = 0, where A is defined as in (2). We juxtapose (2)
and (4), and get that for all i, j we have A[i, j] = BTpl[i, j] + BTplR [p− i+ 1, p− j + 1].
Thus, 0 = ~nTA~n = ~nTBTpl~n + ~nR

TBTplR ~nR, where ~nR is the reversed vector ~n. It
follows that TplR is negative.

CONCUR 2019

27:12 Long-Run Average Behavior of Vector Addition Systems with States

The above two cases fail. Then for all ~n, if Gain(Tpl(~n)) · Vals(Tpl(~n)) = 0, then
~nTBTpl~n = 0. Therefore, Tpl is linear with ~dTpl, hTpl being ~0 and 0 respectively.

Essentially the same line of reasoning can be applied if the connecting paths in Tpl are
non-empty. However, in that case ~dTpl, hTpl may be non-zero. J

Now, we discuss how to check whether there exists a negative template. One of the
conditions of negativity is that Gain(Tpl(t~n1 +~n2)) ·Vals(Tpl(t~n1 +~n2)) = 0. Recall that
Gain and Vals depend on the multiset of transitions, but not on the order of transitions.
Therefore, for a given template Tpl, we define TransTpl(~n) ∈ Nm, where m = |δ|, as the
vector of multiplicities of transitions in Tpl(~n). We will write Trans(~n) if Tpl is clear from
the context.

I Lemma 16. Let Tpl be a template and let ~n ∈ Np be a vector of multiplicities. There exist
r1, . . . , r` ∈ Q+ and ~z1, . . . , ~z` ∈ Np such that (1) supp(~zi) ≤ m (the number of transitions
of |A|), (2) there exists t ∈ N+ such that Trans(~zi) = t ·Trans(~n), and (3) ~n =

∑`
i=1 ri~zi.

I Remark. The condition Trans(~zi) = t · Trans(~n) implies that if the cycle Tpl(~n) is
balanced, then all the cycles Tpl(~z1), . . . ,Tpl(~z`) are balanced as well.

Proof ideas. First, observe that Trans is a linear function transforming vectors from Np

into vectors from Nm. The value p can be exponential w.r.t. m = |δ| and hence we show
that each vector from Np can be presented as a linear combination over Q+ of vectors with
polynomially-bounded supports. J

Next, we show that if there exists a negative template, then there exists one of polynomial
size. If ~n1, ~n2 ∈ Np are the vectors witnessing positivity (resp., negativity) of a template
Tpl, then by Lemma 16, there exist witnesses ~n0

1, ~n
0
2 with polynomial-size support. We

remove from Tpl cycles corresponding to coefficient 0 in both ~n0
1 and ~n0

2 and obtain only
polynomially many cycles. In consequence, we have:

I Lemma 17. If there exists a negative template, then there exists one of polynomial size in
|Tpl|+ |A|+ |f |.

Still, to check whether there exists a negative template we have to solve a system consisting
of a quadratic inequality ~nT1 BTpl~n1 < 0 and a quadratic equation, which corresponds to
Gain(Tpl(t~n1 + ~n2)) ·Vals(Tpl(t~n1 + ~n2)) = 0. We show that this quadratic equation can
be transformed into a system of linear inequalities. We show that using standard elimination
of quadratic terms for successive variables n[1], n[2], . . . , n[p+ 1]. The key observation is that
Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0 implies that for every variable n[i] either n[i] = 0 or n[i]
is a double root (∆ = 0). Thanks to this property, we obtain a polynomial-size system of
linear inequalities.

I Lemma 18. Let Tpl be a template. There exist systems of linear equations and inequalities
S1, . . . , Sl such that (1) each Si has polynomial size in |Tpl|+ |A|+ |f |, (2) for all ~n ∈ Np

we have Gain(Tpl(~n)) ·Vals(Tpl(~n)) = 0 iff for some i the vector ~n satisfies Si.

Finally, Lemma 17 and Lemma 18 imply that existence of a negative template can be
solved in NP via reduction to integer quadratic programming.

I Lemma 19. We can verify in NP whether a given VASS(Z, k) A has a negative template.

K. Chatterjee, T. A. Henzinger, and J. Otop 27:13

Proof sketch. We non-deterministically pick a template Tpl of polynomial size (Lemma 17).
Then, we non-deterministically pick a system Si for template (Lemma 18). We make two
copies of Si: S1

i and S2
i ; in one we substitute ~n with ~n2 and in the other with ~n1 + ~n2. It

follows that for all t ∈ R the vector t~n1 + ~n2 satisfies Si (substituted for ~n). Finally, we solve
an instance of integer quadratic programming consisting of ~n1BTpl~n1 − 1 ≤ 0 and linear
equations and inequalities S1

i and S2
i , which is an instance of integer quadratic programming

and hence can be solved in NP [11]. J

4.2.3 The linear case
We consider the final case, where all templates are linear. The decision procedure described
in the following lemma answers YES (in at least one of non-deterministic computations)
whenever the answer to the regular average-value problem with threshold 0 is YES and all
templates are linear. Thus, it is complete.

Our main algorithm assumes that all templates are linear if it fails to find a negative
template. The failure can be due to a wrong non-deterministic pick. Having that in mind, we
make sure that the decision procedure from the following lemma is sound regardless of the
linearity of templates, i.e., if it answers YES, then the answer to the regular average-value
problem with threshold 0 is YES.

I Lemma 20. Assume that all templates are linear. Then, we can solve the regular average-
value problem with threshold 0 in non-deterministic polynomial time. Moreover, the procedure
is sound irrespectively of the linearity assumption.

Proof sketch. First, we show that using Lemma 16, if there is a cycle ρ with (a) Gain(ρ) ·
Vals(ρ) = 0 and (b) Sum~g(ρ) ≤ 0, then there is a cycle ρ′ defined by a template of polynomial
size satisfying both conditions (a) and (b). We take a path ρ, write it as Tpl(~n) and apply
Lemma 16 to ~n. We get a vector with polynomially many non-zero coefficients ~n0 and define
a reduced template Tpl′ by removal of cycles that correspond to 0 coefficients.

Second, consider a template Tpl of polynomial size. We nondeterministically pick a
subset of states Q and write a system of equations SQGain over variables ~x, ~y such that ~x, ~y is
a solution of SQGain if and only if there exists a path ρ1 satisfying (a) ~x are multiplicities of
transitions along ρ1 (b) ρ1 is from some initial state of A to the first state of Tpl, (c) ρ1
visits all states from Q, (d) ~y = Gain(ρ1).

Finally, if all templates are linear, then there exist ρ1, ρ2 defining a regular computation
of the average value at most 0 if and only if there is a subset of states Q and a template Tpl
of polynomial size such that the system of inequalities consisting of SQGain and the inequality
Hx,y : (~cTpl,~0 + ~dTpl) ·~n+ eTpl,~0 +hTpl + 2 · ~y ·Vals(Tpl(~n)) ≤ 0 has a solution over natural
numbers. Note that all the components except for ~y ·Vals(Tpl(~n)) are linear. Since ~y and
~n are variables, the component ~y ·Vals(Tpl(~n)) is quadratic. Still, SQGain with Hx,y is an
instance of integer quadratic programming, which can be solved in NP [11].

Having a solution of the system SQGain, we can compute in polynomial time Gain(ρ1) and
SumGain(ρ1)(Tpl(~n)) and then verify SumGain(ρ1)(Tpl(~n)) ≤ 0. Therefore, the correctness
of the algorithm does not depend on the linearity assumption. J

4.2.4 Summary
We present a short summary of the non-deterministic procedure deciding whether a given
VASS(Z, k) A has a regular computation of the value at most 0. We assume that all states
in A are reachable from initial states.

CONCUR 2019

27:14 Long-Run Average Behavior of Vector Addition Systems with States

Step 1. Check whether there is a cycle ρ with Gain(ρ) ·Vals(ρ) < 0. It can be done in
non-deterministic polynomial time (Lemma 9). If the answer is YES, then the answer to
the average-value problem is YES (Lemma 7). Otherwise, proceed to Step 2.
Step 2. Check whether there exists a negative template in A. It can be done in non-
deterministic polynomial time (Lemma 19). If the answer is YES, then the answer to the
regular average-value problem is YES (Lemma 14). Otherwise, proceed to Step 3.
Step 3. Assuming that the previous steps failed, all templates are linear. Solve the
regular average-value problem in non-deterministic polynomial time (Lemma 20). Note
that Step 2, could have failed due to unfortunate non-deterministic pick. However, the
procedure from Lemma 20 is sound regardless of the linearity assumption.

In consequence, we have the main result of this section:

I Lemma 21. The regular average-value problem for VASS(Z) with (general) cost functions
is in NP.

4.3 Hardness
We show that the regular finite-value and the regular average-value problems are NP-hard.
The proof is via reduction from the 3-SAT problem. Given a 3-CNF formula ϕ over n
variables, we construct a VASS of dimension 2n, where dimensions correspond to literals
in ϕ. Each simple cycle ρ in the VASS consists of two parts: The first part corresponds to
picking a substitution σ, which is stored in the vector Gain(ρ). The second part ensures
that Gain(ρ) ·Vals(ρ) = 0 if σ satisfies ϕ and it is strictly positive otherwise. Therefore,
if ϕ is satisfiable, the VASS has a regular run of the average cost 0, and otherwise all its
regular runs have infinite average cost. In consequence, we have the following:

I Lemma 22. The regular finite-value and the regular average-value problems for VASS(Z)
with (general) cost functions are NP-hard.

The main results of this section (Lemma 9, Lemma 21 and Lemma 22) summarize to
Theorem 6. We leave the case of non-regular runs as an open question.

I Open question 23. What is the complexity of the average-value and finite-value problems
for VASS(Z)?

5 General cost functions and VASS(N)

We show that the average-value and the regular average-value problems are undecidable.
The proofs are via reduction from the halting problem for Minsky machines [17], which are
automata with two natural-valued registers r1, r2. There are two main differences between
Minsky machines and VASS(N). First, the former can perform zero- and nonzero-tests on
their registers, while the latter can take any transition as long as the counters’ values remain
non-negative. Second, the halting problem for Minsky machines is qualitative, i.e., the answer
is YES or NO. We consider quantitative problems for VASS, where we are interested in the
values assigned to computations. We exploit the quantitative features of our problems to
simulate zero- and nonzero-tests.

The problems with an exact threshold are undecidable, but we can decide existence of a
regular computation of some finite value via reduction to reachability in VASS.

I Theorem 24. (1) The average-value and the regular average-value problems for VASS(N)
with (general) cost functions are undecidable. (2) The regular finite-value problem for
VASS(N) with (general) cost functions is decidable.

K. Chatterjee, T. A. Henzinger, and J. Otop 27:15

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Piotr Hofman, Richard Mayr, K. Narayan Kumar,

and Patrick Totzke. Infinite-state energy games. In CSL-LICS 2014, pages 7:1–7:10, 2014.
2 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, and

Josef Widder. Decidability in Parameterized Verification. SIGACT News, 47(2):53–64, 2016.
3 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.

Average-energy games. Acta Inf., 55(2):91–127, 2018.
4 Tomás Brázdil, Krishnendu Chatterjee, Antonín Kucera, Petr Novotný, Dominik Velan, and

Florian Zuleger. Efficient Algorithms for Asymptotic Bounds on Termination Time in VASS.
In LICS 2018, pages 185–194, 2018.

5 Tomás Brázdil, Stefan Kiefer, Antonín Kucera, and Petr Novotný. Long-Run Average Behaviour
of Probabilistic Vector Addition Systems. In LICS 2015, pages 44–55, 2015. doi:10.1109/
LICS.2015.15.

6 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Nested Weighted Limit-Average
Automata of Bounded Width. In MFCS 2016, pages 24:1–24:14, 2016.

7 Krishnendu Chatterjee, Thomas A. Henzinger, and Jan Otop. Quantitative Monitor Automata.
In SAS 2016, pages 23–38, 2016.

8 Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for multidimen-
sional mean-payoff games. J. Comput. Syst. Sci., 88:236–259, 2017.

9 Krishnendu Chatterjee and Yaron Velner. The Complexity of Mean-Payoff Pushdown Games.
J. ACM, 64(5):34:1–34:49, 2017.

10 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The Reachability Problem for Petri Nets is Not Elementary. In STOC, pages 398–406, 2019.

11 Alberto Del Pia, Santanu S Dey, and Marco Molinaro. Mixed-integer quadratic programming
is in NP. Mathematical Programming, 162(1-2):225–240, 2017.

12 Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. Automatic Verification
of Erlang-Style Concurrency. In Francesco Logozzo and Manuel Fähndrich, editors, SAS
2013, pages 454–476, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-38856-9_24.

13 Javier Esparza. Decidability and complexity of Petri net problems—an introduction. Lectures
on Petri nets I: Basic models, pages 374–428, 1998.

14 Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets - a survey. Bulletin of
the European Association for Theoretical Computer Science, 52:245–262, 1994.

15 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-based
Synthesis for Complex APIs. In POPL 2017, POPL 2017, pages 599–612, New York, NY,
USA, 2017. ACM. doi:10.1145/3009837.3009851.

16 Pierre Ganty and Rupak Majumdar. Algorithmic Verification of Asynchronous Programs.
ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, May 2012. doi:10.1145/2160910.2160915.

17 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2006.

18 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Dynamic Cutoff Detection in
Parameterized Concurrent Programs. In CAV 2010, pages 645–659, 2010. doi:10.1007/
978-3-642-14295-6_55.

19 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient Coverability Analysis by Proof
Minimization. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012, pages 500–515,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. doi:10.1007/978-3-642-32940-1_35.

20 Richard M. Karp and Raymond E. Miller. Parallel Program Schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969.

21 S. Rao Kosaraju. Decidability of Reachability in Vector Addition Systems (Preliminary Version).
In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982,
San Francisco, California, USA, pages 267–281, 1982. doi:10.1145/800070.802201.

CONCUR 2019

http://dx.doi.org/10.1109/LICS.2015.15
http://dx.doi.org/10.1109/LICS.2015.15
http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://dx.doi.org/10.1145/3009837.3009851
http://dx.doi.org/10.1145/2160910.2160915
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/978-3-642-14295-6_55
http://dx.doi.org/10.1007/978-3-642-32940-1_35
http://dx.doi.org/10.1145/800070.802201

27:16 Long-Run Average Behavior of Vector Addition Systems with States

22 Jean-Luc Lambert. A Structure to Decide Reachability in Petri Nets. Theor. Comput. Sci.,
99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

23 Jérôme Leroux. Vector addition systems reachability problem (a simpler solution). In EPiC,
volume 10, pages 214–228. Andrei Voronkov, 2012.

24 Jérôme Leroux. Polynomial Vector Addition Systems With States. In ICALP 2018, pages
134:1–134:13, 2018.

25 R. Lipton. The Reachability Problem Requires Exponential Space. Technical report 62, Yale,
1976.

26 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In STOC
1981, pages 238–246, 1981. doi:10.1145/800076.802477.

27 Jakub Michaliszyn and Jan Otop. Average Stack Cost of Büchi Pushdown Automata. In
FSTTCS 2017, pages 42:1–42:13, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.42.

28 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theo-
retical Computer Science, 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

29 Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable Static Analysis for
Bound Analysis and Amortized Complexity Analysis. In CAV, pages 745–761, 2014.

http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.42
http://dx.doi.org/10.1016/0304-3975(78)90036-1

	Introduction
	Preliminaries
	Vector addition systems with states (VASS)
	Decision problems

	Uniform cost functions
	Integer-valued VASS: VASS(Z)
	Natural-valued VASS: VASS(N)

	General cost functions and VASS(Z)
	The finite-value problem
	The regular average-value problem
	Factorizations
	Elimination of the quadratic factor
	The linear case
	Summary

	Hardness

	General cost functions and VASS(N)

