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Abstract
In game theory, mechanism design is concerned with the design of incentives so that a desired
outcome of the game can be achieved. In this paper, we study the design of incentives so that
a desirable equilibrium is obtained, for instance, an equilibrium satisfying a given temporal logic
property – a problem that we call equilibrium design. We base our study on a framework where
system specifications are represented as temporal logic formulae, games as quantitative concurrent
game structures, and players’ goals as mean-payoff objectives. In particular, we consider system
specifications given by LTL and GR(1) formulae, and show that implementing a mechanism to
ensure that a given temporal logic property is satisfied on some/every Nash equilibrium of the game,
whenever such a mechanism exists, can be done in PSPACE for LTL properties and in NP/ΣP

2 for
GR(1) specifications. We also study the complexity of various related decision and optimisation
problems, such as optimality and uniqueness of solutions, and show that the complexities of all such
problems lie within the polynomial hierarchy. As an application, equilibrium design can be used as
an alternative solution to the rational synthesis and verification problems for concurrent games with
mean-payoff objectives whenever no solution exists, or as a technique to repair, whenever possible,
concurrent games with undesirable rational outcomes (Nash equilibria) in an optimal way.
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1 Introduction

Over the past decade, there has been increasing interest in the use of game-theoretic
equilibrium concepts such as Nash equilibrium in the analysis of concurrent and multi-agent
systems (see, e.g., [3, 4, 8, 14, 15, 17, 23]). This work views a concurrent system as a
game, with system components (agents) corresponding to players in the game, which are
assumed to be acting rationally in pursuit of their individual preferences. Preferences may
be specified by associating with each player a temporal logic goal formula, which the player
desires to see satisfied, or by assuming that players receive rewards in each state the system
visits, and seek to maximise the average reward they receive (the mean payoff ). A further
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22:2 Equilibrium Design for Concurrent Games

possibility is to combine goals and rewards: players primarily seek the satisfaction of their
goal, and only secondarily seek to maximise their mean payoff. The key decision problems in
such settings relate to what temporal logic properties hold on computations of the system
that may be generated by players choosing strategies that form a game-theoretic (Nash)
equilibrium. These problems are typically computationally complex, since they subsume
temporal logic synthesis [32]. If players have LTL goals, for example, then checking whether
an LTL formula holds on some Nash equilibrium path in a concurrent game is 2EXPTIME-
complete [14, 16, 17], rather than only PSPACE-complete as it is the case for model checking,
certainly a computational barrier for the practical analysis and automated verification of
reactive, concurrent, and multi-agent systems modelled as multi-player games.

Within this game-theoretic reasoning framework, a key issue is that individually rational
choices can cause outcomes that are highly undesirable, and concurrent games also fall prey
to this problem. This has motivated the development of techniques for modifying games,
in order to avoid bad equilibria, or to facilitate good equilibria. Mechanism design is the
problem of designing a game such that, if players behave rationally, then a desired outcome
will be obtained [26]. Taxation and subsidy schemes are probably the most important class
of techniques used in mechanism design. They work by levying taxes on certain actions (or
providing subsidies), thereby incentivising players away from some outcomes towards others.
The present paper studies the design of subsidy schemes (incentives) for concurrent games,
so that a desired outcome (a Nash equilibrium in the game) can be obtained – a problem
that we call Equilibrium design. We model agents as synchronously executing concurrent
processes, with each agent receiving an integer payoff for every state the overall system visits;
the overall payoff an agent receives over an infinite computation path is then defined to be
the mean payoff over this path. While agents (naturally) seek to maximise their individual
mean payoff, the designer of the subsidy scheme wishes to see some temporal logic formula
satisfied, either on some or on every Nash equilibrium of the game.

With this model, we assume that the designer – an external principal – has a finite budget
that is available for making subsidies, and this budget can be allocated across agent/state
pairs. By allocating this budget appropriately, the principal can incentivise players away from
some states and towards others. Since the principal has some temporal logic goal formula, it
desires to allocate subsidies so that players are rationally incentivised to choose strategies so
that the principal’s temporal logic goal formula is satisfied in the path that would result from
executing the strategies. For this general problem, following [24], we identify two variants of
the principal’s mechanism design problem, which we refer to as Weak Implementation
and Strong Implementation. In the Weak variant, we ask whether the principal can
allocate the budget so that the goal is achieved on some computation path that would be
generated by Nash equilibrium strategies in the resulting system; in the Strong variation,
we ask whether the principal can allocate the budget so that the resulting system has at least
one Nash equilibrium, and moreover the temporal logic goal is satisfied on all paths that
could be generated by Nash equilibrium strategies. For these two problems, we consider goals
specified by LTL formulae or GR(1) formulae [5], give algorithms for each case, and classify the
complexity of the problem. While LTL is a natural language for the specification of properties
of concurrent and multi-agent systems, GR(1) is an LTL fragment that can be used to easily
express several prefix-independent properties of computation paths of reactive systems, such
as ω-regular properties often used in automated formal verification. We then go on to study
variations of these two problems, for example considering optimality and uniqueness of
solutions, and show that the complexities of all such problems lie within the polynomial
hierarchy, thus making them potentially amenable to efficient practical implementations.
Table 1 summarises the main computational complexity results in the paper.
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Table 1 Summary of main complexity results.

LTL Spec. GR(1) Spec.

Weak Implementation PSPACE-complete (Thm. 6) NP-complete (Thm. 7)

Strong Implementation PSPACE-complete (Cor. 9) ΣP
2-complete (Thm. 10)

Opt-WI FPSPACE-complete (Thm. 14) FPNP-complete (Thm. 16)

Opt-SI FPSPACE-complete (Thm. 22) FPΣP
2 -complete (Thm. 25)

Exact-WI PSPACE-complete (Cor. 15) DP-complete (Cor. 17)

Exact-SI PSPACE-complete (Cor. 23) DP
2-complete (Cor. 26)

UOpt-WI PSPACE-complete (Cor. 18) ∆P
2-complete (Cor. 19)

UOpt-SI PSPACE-complete (Cor. 27) ∆P
3-complete (Cor. 28)

2 Preliminaries

Linear Temporal Logic. LTL [31] extends classical propositional logic with two operators,
X (“next”) and U (“until”), that can be used to express properties of paths. The syntax of
LTL is defined with respect to a set AP of atomic propositions as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. As commonly found in the LTL literature, we use of the following abbreviations:
ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, Fϕ ≡ > Uϕ, and Gϕ ≡ ¬F¬ϕ.

We interpret formulae of LTL with respect to pairs (α, t), where α ∈ (2AP)ω is an infinite
sequence of atomic proposition evaluations that indicates which propositional variables are
true in every time point and t ∈ N is a temporal index into α. Formally, the semantics of
LTL formulae is given by the following rules:

(α, t) |= >
(α, t) |= p iff p ∈ αt
(α, t) |= ¬ϕ iff it is not the case that (α, t) |= ϕ

(α, t) |= ϕ ∨ ψ iff (α, t) |= ϕ or (α, t) |= ψ

(α, t) |= Xϕ iff (α, t+ 1) |= ϕ

(α, t) |= ϕUψ iff for some t′ ≥ t :
(
(α, t′) |= ψ and

for all t ≤ t′′ < t′ : (α, t′′) |= ϕ
)
.

If (α, 0) |= ϕ, we write α |= ϕ and say that α satisfies ϕ.

General Reactivity of rank 1. The language of General Reactivity of rank 1, denoted GR(1),
is the fragment of LTL given by formulae written in the following form [5]:

(GFψ1 ∧ . . . ∧GFψm)→ (GFϕ1 ∧ . . . ∧GFϕn),

where each subformula ψi and ϕi is a Boolean combination of atomic propositions.

CONCUR 2019



22:4 Equilibrium Design for Concurrent Games

Mean-Payoff. For a sequence r ∈ Rω, let mp(r) be the mean-payoff value of r, that is,

mp(r) = lim inf
n→∞

avgn(r)

where, for n ∈ N \ {0}, we define avgn(r) = 1
n

∑n−1
j=0 rj , with rj the (j+1)th element of r.

Arenas. An arena is a tuple A = 〈N,Ac,St, s0, tr, λ〉 where N, Ac, and St are finite non-
empty sets of players (write N = |N|), actions, and states, respectively; if needed, we write
Aci(s), to denote the set of actions available to player i at s; s0 ∈ St is the initial state;
tr : St× ~Ac→ St is a transition function mapping each pair consisting of a state s ∈ St and
an action profile ~a ∈ ~Ac = AcN, one for each player, to a successor state; and λ : St→ 2AP

is a labelling function, mapping every state to a subset of atomic propositions.
We sometimes call an action profile ~a = (a1, . . . , an) ∈ ~Ac a decision, and denote ai the

action taken by player i. We also consider partial decisions. For a set of players C ⊆ N and
action profile ~a, we let ~aC and ~a−C be two tuples of actions, respectively, one for all players
in C and one for all players in N \ C. We also write ~ai for ~a{i} and ~a−i for ~aN\{i}. For two
decisions ~a and ~a′, we write (~aC ,~a′−C) to denote the decision where the actions for players in
C are taken from ~a and the actions for players in N \ C are taken from ~a′.

A path π = (s0,~a0), (s1,~a1) · · · is an infinite sequence in (St× ~Ac)ω such that tr(sk,~ak) =
sk+1 for all k. Paths are generated in the arena by each player i selecting a strategy σi that
will define how to make choices over time. We model strategies as finite state machines with
output. Formally, for arena A, a strategy σi = (Qi, q0

i , δi, τi) for player i is a finite state
machine with output (a transducer), where Qi is a finite and non-empty set of internal states,
q0
i is the initial state, δi : Qi × ~Ac→ Qi is a deterministic internal transition function, and
τi : Qi → Aci an action function. Let Stri be the set of strategies for player i. Note that this
definition implies that strategies have perfect information1 and finite memory (although we
impose no bounds on memory size).

A strategy profile ~σ = (σ1, . . . , σn) is a vector of strategies, one for each player. As with
actions, ~σi denotes the strategy assigned to player i in profile ~σ. Moreover, by (~σB , ~σ′C)
we denote the combination of profiles where players in disjoint B and C are assigned their
corresponding strategies in ~σ and ~σ′, respectively. Once a state s and profile ~σ are fixed, the
game has an outcome, a path in A, denoted by π(~σ, s). Because strategies are deterministic,
π(~σ, s) is the unique path induced by ~σ, that is, the sequence s0, s1, s2, . . . such that

sk+1 = tr(sk, (τ1(qk1 ), . . . , τn(qkn))), and
qk+1
i = δi(ski , (τ1(qk1 ), . . . , τn(qkn))), for all k ≥ 0.

Furthermore, we simply write π(~σ) for π(~σ, s0).
Arenas define the dynamic structure of games, but lack a central aspect of a game:

preferences, which give games their strategic structure. A multi-player game is obtained
from an arena A by associating each player with a goal. We consider multi-player games
with mp goals. A multi-player mp game is a tuple G =〈A, (wi)i∈N〉, where A is an arena and
wi : St→ Z is a function mapping, for every player i, every state of the arena into an integer
number. In any game with arena A, a path π in A induces a sequence λ(π) = λ(s0)λ(s1) · · ·
of sets of atomic propositions; if, in addition, A is the arena of an mp game, then, for each
player i, the sequence wi(π) = wi(s0)wi(s1) · · · of weights is also induced. Unless stated
otherwise, for a game G and a path π in it, the payoff of player i is payi(π) = mp(wi(π)).

1 Mean-payoff games with imperfect information are generally undecidable [13].
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Nash equilibrium. Using payoff functions, we can define the game-theoretic concept of
Nash equilibrium [26]. For a multi-player game G, a strategy profile ~σ is a Nash equilibrium
of G if, for every player i and strategy σ′i for player i, we have

payi(π(~σ)) ≥ payi(π((~σ−i, σ′i))) .

Let NE(G) be the set of Nash equilibria of G.

3 From Mechanism Design to Equilibrium Design

We now describe the two main problems that are our focus of study. As discussed in the
introduction, such problems are closely related to the well-known problem of mechanism
design in game theory. Consider a system populated by agents N, where each agent i ∈ N
wants to maximise its payoff payi(·). As in a mechanism design problem, we assume there is
an external principal who has a goal ϕ that it wants the system to satisfy, and to this end,
wants to incentivise the agents to act collectively and rationally so as to bring about ϕ. In
our model, incentives are given by subsidy schemes and goals by temporal logic formulae.

Subsidy Schemes. A subsidy scheme defines additional imposed rewards over those given
by the weight function w. While the weight function w is fixed for any given game, the
principal is assumed to be at liberty to define a subsidy scheme as they see fit. Since agents
will seek to maximise their overall rewards, the principal can incentivise agents away from
performing visiting some states and towards visiting others; if the principal designs the
subsidy scheme correctly, the agents are incentivised to choose a strategy profile ~σ such that
π(~σ) |= ϕ. Formally, we model a subsidy scheme as a function κ : N→ St→ N, where the
intended interpretation is that κ(i)(s) is the subsidy in the form of a natural number k ∈ N
that would be imposed on player i if such a player visits state s ∈ St. For instance, if we
have wi(s) = 1 and κ(i)(s) = 2, then player i gets 1 + 2 = 3 for visiting such a state. For
simplicity, hereafter we write κi(s) instead of κ(i)(s) for the subsidy for player i.

Notice that having an unlimited fund for a subsidy scheme would make some problems
trivial, as the principal can always incentivise players to satisfy ϕ (provided that there is
a path in A satisfying ϕ). A natural and more interesting setting is that the principal is
given a constraint in the form of budget β ∈ N. The principal then can only spend within the
budget limit. To make this clearer, we first define the cost of a subsidy scheme κ as follows.

I Definition 1. Given a game G and subsidy scheme κ, we let cost(κ) =
∑
i∈N

∑
s∈St κi(s).

We say that a subsidy scheme κ is admissible if it does not exceed the budget β, that is,
if cost(κ) ≤ β. Let K(G, β) denote the set of admissible subsidy schemes over G given budget
β ∈ N. Thus we know that for each κ ∈ K(G, β) we have cost(κ) ≤ β. We write (G, κ) to
denote the resulting game after the application of subsidy scheme κ on game G. Formally,
we define the application of some subsidy scheme on a game as follows.

I Definition 2. Given a game G = 〈A, (wi)i∈N〉 and an admissible subsidy scheme κ, we
define (G, κ) =〈A, (w′i)i∈N〉, where w′i(s) = wi(s) + κi(s), for each i ∈ N and s ∈ St.

We now come to the main question(s) that we consider in the remainder of the paper.
We ask whether the principal can find a subsidy scheme that will incentivise players to
collectively choose a rational outcome (a Nash equilibrium) that satisfies its temporal logic
goal ϕ. We call this problem equilibrium design. Following [24], we define two variants of this
problem, a weak and a strong implementation of the equilibrium design problem. The formal
definition of the problems and the analysis of their respective computational complexity are
presented in the next sections.

CONCUR 2019



22:6 Equilibrium Design for Concurrent Games

4 Equilibrium Design: Weak Implementation

In this section, we study the weak implementation of the equilibrium design problem, a logic-
based computational variant of the principal’s mechanism design problem in game theory.
We assume that the principal has full knowledge of the game G under consideration, that is,
the principal uses all the information available of G to find the appropriate subsidy scheme,
if such a scheme exists. We now formally define the weak variant of the implementation
problem, and study its respective computational complexity, first with respect to goals
(specifications) given by LTL formulae and then with respect to GR(1) formulae.

Let WI(G, ϕ, β) denote the set of subsidy schemes over G given budget β that satisfy a
formula ϕ in at least one path π generated by ~σ ∈ NE(G). Formally

WI(G, ϕ, β) = {κ ∈ K(G, β) : ∃~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

I Definition 3 (Weak Implementation). Given a game G, formula ϕ, and budget β:

Is it the case that WI(G, ϕ, β) 6= ∅?

In order to solve Weak Implementation, we first characterise the Nash equilibria of a
multi-player concurrent game in terms of punishment strategies. To do this in our setting,
we recall the notion of secure values for mean-payoff games [33].

For a player i and a state s ∈ St, by puni(s) we denote the punishment value of i over
s, that is, the maximum payoff that i can achieve from s, when all other players behave
adversarially. Such a value can be computed by considering the corresponding two-player
zero-sum mean-payoff game [35]. Thus, it is in NP ∩ coNP, and note that both player i and
coalition N\{i} can achieve the optimal value of the game using memoryless strategies. Then,
for a player i and a value z ∈ R, a pair (s,~a) is z-secure for player i if puni(tr(s, (~a−i, a′i))) ≤ z
for every a′i ∈ Ac. Write puni(G) for the set of punishment values for player i in G.

I Theorem 4. For every mp game G and ultimately periodic path π = (s0,~a0), (s1,~a1), . . .,
the following are equivalent:

1. There is ~σ ∈ NE(G) such that π = π(~σ, s0);
2. There exists z ∈ RN, where zi ∈ puni(G) such that, for every i ∈ N

a. for all k ∈ N, the pair (sk,~ak) is zi-secure for i, and
b. zi ≤ payi(π).

The characterisation of Nash Equilibria provided in Theorem 4 will allow us to turn the
Weak Implementation problem into a path finding problem over (G, κ). On the other
hand, with respect to the budget β that the principal has at its disposal, the definition of
subsidy scheme function κ implies that the size of K(G, β) is bounded, and particularly, it is
bounded by β and the number of agents and states in the game G, in the following way.

I Proposition 5. Given a game G with |N | players and |St| states and budget β, it holds that

|K(G, β)| = β + 1
m

(
β +m

β + 1

)
,

with m = |N × St| being the number of pairs of possible agents and states.

From Proposition 5 we derive that the number of possible subsidy schemes is polynomial
in the budget β and singly exponential in both the number of agents and states in the game.
At this point, solving Weak Implementation can be done with the following procedure:
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1. Guess:
a subsidy scheme κ ∈ K(G, β),
a state s ∈ St for every player i ∈ N, and
punishment memoryless strategies (~σ−1, . . . , ~σ−n) for all players i ∈ N;

2. Compute (G, κ);
3. Compute z ∈ RN;
4. Compute the game (G, κ)[z] by removing the states s such that puni(s) ≤ zi for some

player i and the transitions (s,~a−i) that are not zi secure for player i;
5. Check whether there exists an ultimately periodic path π in (G, κ)[z] such that π |= ϕ

and zi ≤ payi(π) for every player i ∈ N.

Since the set K(G, β) is finitely bounded (Proposition 5), and punishment strategies
only need to be memoryless, thus also finitely bounded, clearly step 1 can be guessed
nondeterministically. Moreover, each of the guessed elements is of polynomial size, thus
this step can be done (deterministically) in polynomial space. Step 2 clearly can be done in
polynomial time. Step 3 can also be done in polynomial time since, given (~σ−1, . . . , ~σ−n), we
can compute z solving |N| one-player mean-payoff games, one for each player i [35, Thm. 6].
For step 5, we will use Theorem 4 and consider two cases, one for LTL specifications and one
for GR(1) specifications. Firstly, for LTL specifications, consider the formula

ϕWI := ϕ ∧
∧
i∈N

(mp(i) ≥ zi)

written in LTLLim [7], an extension of LTL where statements about mean-payoff values over
a given weighted arena can be made.2 The semantics of the temporal operators of LTLLim

is just like the one for LTL over infinite computation paths π = s0, s1, s3. . . .. On the other
hand, the meaning of mp(i) ≥ zi is simply that such an atomic formula is true if, and only if,
the mean-payoff value of π with respect to player i is greater or equal to zi, a constant real
value; that is, mp(i) ≥ zi is true in π if and only if payi(π) = mp(wi(π)) is greater or equal
than constant value zi. Formula ϕWI corresponds exactly to 2(b) in Theorem 4. Furthermore,
since every path in (G, κ)[z] satisfies condition 2(a) of Theorem 4, every computation path of
(G, κ)[z] that satisfies ϕWI is a witness to the Weak Implementation problem.

I Theorem 6. Weak Implementation with LTL specifications is PSPACE-complete.

Proof. Membership follows from the procedure above and the fact that model checking for
LTLLim is PSPACE-complete [7]. Hardness follows from the fact that LTL model checking is a
special case of Weak Implementation. For instance, consider the case in which all weights
for all players are set to the same value, say 0, and the principal has budget β = 0. J

Case with GR(1) specifications. One of the main bottlenecks of our procedure to solve
Weak Implementation lies in step 5, where we solve an LTLLim model checking problem.
To reduce the complexity of our decision procedure, we consider Weak Implementation
with the specification ϕ expressed in the GR(1) sublanguage of LTL. With this specification
language, the path finding problem can be solved without model-checking the LTLLim formula
given before. In order to do this, we can define a linear program (LP) such that the LP has
a solution if and only if WI(G, ϕ, β) 6= ∅. From our previous procedure, observe that
step 1 can be done nondeterministically in polynomial time, and steps 2–4 can be done

2 The formal semantics of LTLLim can be found in [7]. We prefer to give only an informal description here.

CONCUR 2019



22:8 Equilibrium Design for Concurrent Games

(deterministically) in polynomial time. Furthermore, using LP, we also can check step 5
deterministically in polynomial time. For the lower-bound, we use [33] and note that if
ϕ = > and β = 0, then the problem reduces to checking whether the underlying mp game
has a Nash equilibrium. Based on the above observations, we have the following result.

I Theorem 7. Weak Implementation with GR(1) specifications is NP-complete.

Proof sketch. For the upper bound, we define an LP of size polynomial in (G, κ) having a
solution if and only if there is an ultimately periodic path π such that zi ≤ payi(π) and
satisfies the GR(1) specification. Recall that ϕ has the following form

ϕ =
m∧
l=1

GFψl →
n∧
r=1

GFθr,

and let V (ψl) and V (θr) be the subset of states in (G, κ) that satisfy the Boolean combinations
ψl and θr, respectively. Property ϕ is satisfied on π if, and only if, either π visits every state
in V (θr) infinitely often or some of the states in V (ψl) only a finite number of times. For
the game (G, κ)[z], let W = (V,E, (wa)a∈N) be the underlying multi-weighted graph, and
for every edge e ∈ E introduce a variable xe. Informally, the value of xe is the number of
times that e is used on a cycle. Formally, let src(e) = {v ∈ V : ∃w e = (v, w) ∈ E}; trg(e) =
{v ∈ V : ∃w e = (w, v) ∈ E}; out(v) = {e ∈ E : src(e) = v}; and in(v) = {e ∈ E : trg(e) = v}.
Now, consider ψl for some 1 ≤ l ≤ m, and define the following linear program LP(ψl):
Eq1: xe ≥ 0 for each edge e – a basic consistency criterion;
Eq2: Σe∈Exe ≥ 1 – at least one edge is chosen;
Eq3: for each a ∈ N, Σe∈Ewa(src(e))xe ≥ 0 – total sum of any solution is non-negative;
Eq4: Σsrc(e)∩V (ψl) 6=∅xe = 0 – no state in V (ψl) is in the cycle associated with the solution;
Eq5: for each v ∈ V , Σe∈out(v)xe = Σe∈in(v)xe – this condition says that the number of times

one enters a vertex is equal to the number of times one leaves that vertex.
LP(ψl) has a solution if and only if there is a path π in G such that zi ≤ payi(π) for
every player i and visits V (ψl) only finitely many times. Consider now the linear program
LP(θ1, . . . , θn) defined as follows. Eq1–Eq3 as well as Eq5 are as in LP(ψl), and:
Eq4: for all 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe ≥ 1 – this condition says that, for every V (θr), at

least one state in V (θr) is in the cycle associated with the solution of the linear program.
In this case, LP(θ1, . . . , θn) has a solution if and only if there exists a path π such that
zi ≤ payi(π) for every player i and visits every V (θr) infinitely many times. Since the
constructions above are polynomial in the size of both (G, κ) and ϕ, we can conclude it is
possible to check in NP the statement that there is a path π satisfying ϕ such that zi ≤ payi(π)
for every player i in the game if and only if one of the two linear programs defined above has
a solution. For the lower-bound, we use [33] as discussed before. J

We now turn our attention to the strong implementation of the equilibrium design problem.
As in this section, we first consider LTL specifications and then GR(1) specifications.

5 Equilibrium Design: Strong Implementation

Although the principal may find WI(G, ϕ, β) 6= ∅ to be good news, it might not be good
enough. It could be that even though there is a desirable Nash equilibrium, the others
might be undesirable. This motivates us to consider the strong implementation variant of
equilibrium design. Intuitively, in a strong implementation, we require that every Nash
equilibrium outcome satisfies the specification ϕ, for a non-empty set of outcomes. Then, let
SI(G, ϕ, β) denote the set of subsidy schemes κ given budget β over G such that:
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1. (G, κ) has at least one Nash equilibrium outcome,
2. every Nash equilibrium outcome of (G, κ) satisfies ϕ.

Formally we define it as follows:

SI(G, ϕ, β) = {κ ∈ K(G, β) : NE(G, κ) 6= ∅ ∧ ∀~σ ∈ NE(G, κ) s.t. π(~σ) |= ϕ}.

This gives us the following decision problem:

I Definition 8 (Strong Implementation). Given a game G, formula ϕ, and budget β:

Is it the case that SI(G, ϕ, β) 6= ∅?

Strong Implementation can be solved with a 5-step procedure where the first four
steps are as in Weak Implementation, and the last step (step 5) is as follows:
5. Check whether:
(a) there is no ultimately periodic path π in (G, κ)[z] such that zi ≤ payi(π) for each i ∈ N;
(b) there is an ultimately periodic path π in (G, κ)[z] such that π |= ¬ϕ and zi ≤ payi(π),

for each i ∈ N.

For step 5, observe that a positive answer to 5(a) or 5(b) is a counterexample to
κ ∈ SI(G, ϕ, β). Then, to carry out this procedure for the Strong Implementation
problem with LTL specifications, consider the following LTLLim formulae:

ϕ∃ =
∧
i∈N

(mp(i) ≥ zi);

ϕ∀ = ϕ∃ → ϕ.

Notice that the expression NE(G, κ) 6= ∅ can be expressed as “there exists a path π in G
that satisfies formula ϕ∃”. On the other hand, the expression ∀~σ ∈ NE(G, κ) such that π(~σ) |=
ϕ can be expressed as “for every path π in G, if π satisfies formula ϕ∃, then π also satisfies
formula ϕ”. Thus, using these two formulae, we obtain the following result.

I Corollary 9. Strong Implementation with LTL specifications is PSPACE-complete.

Proof. Membership follows from the fact that step 5(a) can be solved by existential LTLLim

model checking, whereas step 5(b) by universal LTLLim model checking – both clearly in
PSPACE by Savitch’s theorem. Hardness is similar to the construction in Theorem 6. J

Case with GR(1) specifications. Notice that the first part, i.e., NE(G, κ) 6= ∅ can be
solved in NP [33]. For the second part, observe that

∀~σ ∈ NE(G, κ) such that π(~σ) |= ϕ

is equivalent to

¬∃~σ ∈ NE(G, κ) such that π(~σ) |= ¬ϕ.

Thus we have

¬ϕ =
m∧
l=1

GFψl ∧ ¬
( n∧
r=1

GFθr
)
.

To check this, we modify the LP in Theorem 7. Specifically, we modify Eq4 in LP(θ1, . . . , θn)
to encode the θ-part of ¬ϕ. Thus, we have the following equation in LP′(θ1, . . . , θn):
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Eq4: there exists r, 1 ≤ r ≤ n, Σsrc(e)∩V (θr)6=∅xe = 0 – this condition ensures that at least
one set V (θr) does not have any state in the cycle associated with the solution.

In this case, LP′(θ1, . . . , θn) has a solution if and only if there is a path π such that
zi ≤ payi(π) for every player i and, for at least one V (θr), its states are visited only finitely
many times. Thus, we have a procedure that checks if there is a path π that satisfies ¬ϕ
such that zi ≤ payi(π) for every player i, if and only if both linear programs have a solution.
Using this new construction, we can now prove the following result.

I Theorem 10. Strong Implementation with GR(1) specifications is ΣP
2 -complete.

Proof sketch. For membership, observe that by rearranging the problem statement, we have
the following question: Check whether the following expression is true

∃κ ∈ K(G, β), (1)
∃~σ ∈ σ1 × · · · × σn, such that ~σ ∈ NE(G, κ), (2)

and
∀~σ′ ∈ σ1 × · · · × σn, if ~σ′ ∈ NE(G, κ) then π(~σ′) |= ϕ. (3)

Statement (2) can be checked in NP (Theorem 4), whereas verifying statement (3) is in
coNP; to see this, notice that we can rephrase (3) as follows: ¬∃z ∈ {puni(s) : s ∈ St}N such
that both LP(ψl) and LP′(θ1, . . . , θn) have a solution in (G, κ)[z]. Thus, membership in ΣP

2
follows. We prove hardness via a reduction from QSAT2 (satisfiability of quantified Boolean
formulae with 2 alternations), which is known to be ΣP

2 -complete [28]. J

6 Optimality and Uniqueness of Solutions

Having asked the questions studied in the previous sections, the principal – the designer
in the equilibrium design problem – may want to explore further information. Because the
power of the principal is limited by its budget, and because from the point of view of the
system, it may be associated with a reward (e.g., money, savings, etc.) or with the inverse
of the amount of a finite resource (e.g., time, energy, etc.) an obvious question is asking
about optimal solutions. This leads us to optimisation variations of the problems we have
studied. Informally, in this case, we ask what is the least budget that the principal needs to
ensure that the implementation problems have positive solutions. The principal may also
want to know whether a given subsidy scheme is unique, so that there is no point in looking
for any other solutions to the problem. In this section, we investigate these kind of problems,
and classify our study into two parts, one corresponding to the Weak Implementation
problem and another one corresponding to the Strong Implementation problem.

6.1 Optimality and Uniqueness in the Weak Domain
We can now define formally some of the problems that we will study in the rest of this section.
To start, the optimisation variant for Weak Implementation is defined as follows.

I Definition 11 (Opt-WI). Given a game G and a specification formula ϕ:

What is the optimum budget β such that WI(G, ϕ, β) 6= ∅?

Another natural problem, which is related to Opt-WI, is the “exact” variant – a
membership question. In this case, in addition to G and ϕ, we are also given an integer b,
and ask whether it is indeed the smallest amount of budget that the principal has to spend
for some optimal weak implementation. This decision problem is formally defined as follows.
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I Definition 12 (Exact-WI). Given a game G, a specification formula ϕ, and an integer b:

Is b equal to the optimum budget for WI(G, ϕ, β) 6= ∅?

To study these problems, it is useful to introduce some concepts first. More specifically, let
us introduce the concept of implementation efficiency. We say that a Weak Implementation
(resp. Strong Implementation) is efficient if β = cost(κ) and there is no κ′ such that
cost(κ′) < cost(κ) and κ′ ∈WI(G, ϕ, β) (resp. κ′ ∈ SI(G, ϕ, β)). In addition to the concept
of efficiency for an implementation problem, it is also useful to have the following result.

I Proposition 13. Let zi be the largest payoff that player i can get after deviating from a
path π. The optimum budget is an integer between 0 and

∑
i∈N zi · (|St| − 1).

Using Proposition 13, we can show that both Opt-WI and Exact-WI can be solved in
PSPACE for LTL specifications. Intuitively, the reason is that we can use the upper bound
given by Proposition 13 to go through all possible solutions in exponential time, but using
only nondeterministic polynomial space. Formally, we have the following results.

I Theorem 14. Opt-WI with LTL specifications is FPSPACE-complete.

I Corollary 15. Exact-WI with LTL specifications is PSPACE-complete.

The fact that both Opt-WI and Exact-WI with LTL specifications can be answered in,
respectively, FPSPACE and PSPACE does not come as a big surprise: checking an instance
can be done using polynomial space and there are only exponentially many instances to
be checked. However, for Opt-WI and Exact-WI with GR(1) specifications, these two
problems are more interesting.

I Theorem 16. Opt-WI with GR(1) specifications is FPNP-complete.

Proof sketch. Membership follows from the fact that the search space, which is bounded
as in Proposition 13, can be explored using binary search and Weak Implementation as
an oracle. More precisely, we can find the smallest budget β such that WI(G, ϕ, β) 6= ∅ by
checking every possible value for β, which lies between 0 and 2n, where n is the length of the
encoding of the instance. Since, due to the binary search routine, we need logarithmically
many calls to the NP oracle (i.e., to Weak Implementation), in the end we have a searching
procedure that would run in polynomial time. For the lower bound, we reduce from TSP
Cost (the optimal travelling salesman problem), which is FPNP-complete [28]. J

I Corollary 17. Exact-WI with GR(1) specifications is DP-complete.

Proof. For membership, observe that an input is a “yes” instance of Exact-WI if and
only if it is a “yes” instance of Weak Implementation and a “yes” instance of Weak
Implementation Complement (the problem where one asks whether WI(G, ϕ, β) = ∅).
Since the former problem is in NP and the latter problem is in coNP, membership in DP

follows. For the lower bound, we use the same reduction technique as in Theorem 16, and
reduce from Exact TSP, a problem known to be DP-hard [28, 29]. J

Following [27], we may naturally ask whether the optimal solution given by Opt-WI is
unique. We call this problem UOpt-WI. For some fixed budget β, it may be the case that
for two subsidy schemes κ, κ′ ∈WI(G, ϕ, β) – we assume the implementation is efficient – we
have κ 6= κ′ and cost(κ) = cost(κ′). With LTL specifications, it is not difficult to see that we
can solve UOpt-WI in polynomial space. Therefore, we have the following result.
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I Corollary 18. UOpt-WI with LTL specifications is PSPACE-complete.

For GR(1) specifications, we reason about UOpt-WI using the following procedure:
1. Find the exact budget using binary search and Weak Implementation as an oracle;
2. Use an NP oracle once to guess two distinct subsidy schemes with precisely this budget;

if no such subsidy schemes exist, return “yes”; otherwise, return “no”.
The above decision procedure clearly is in ∆P

2 (for the upper bound). Furthermore, since
Theorem 16 implies ∆P

2 -hardness [22] (for the lower bound), we have the following corollary.

I Corollary 19. UOpt-WI with GR(1) specifications is ∆P
2 -complete.

6.2 Optimality and Uniqueness in the Strong Domain
In this subsection, we study the same problems as in the previous subsection but with
respect to the Strong Implementation variant of the equilibrium design problem. We
first formally define the problems of interest and then present the two first results.

I Definition 20 (Opt-SI). Given a game G and a specification formula ϕ:

What is the optimum budget β such that SI(G, ϕ, β) 6= ∅?

I Definition 21 (Exact-SI). Given a game G, a specification formula ϕ, and an integer b:

Is b equal to the optimum budget for SI(G, ϕ, β) 6= ∅?

For the same reasons discussed in the weak versions of these two problems, we can prove
the following two results with respect to games with LTL specifications.

I Theorem 22. Opt-SI with LTL specifications is FPSPACE-complete.

I Corollary 23. Exact-SI with LTL specifications is PSPACE-complete.

For GR(1) specifications, observe that using the same arguments for the upper-bound
of Opt-WI with GR(1) specifications, we obtain the upper-bound for Opt-SI with GR(1)
specifications. Then, it follows that Opt-SI is in FPΣP

2 . For hardness, we define an FPΣP
2-

complete problem, namely Weighted MinQSAT2. Recall that in QSAT2 we are given
a Boolean 3DNF formula ψ(x,y) and sets x = {x1, . . . , xn},y = {y1, . . . , ym}, with a set
of terms T = {t1, . . . , tk}. Define Weighted MinQSAT2 as follows. Given ψ(x,y) and a
weight function c : x→ Z≥, Weighted MinQSAT2 is the problem of finding an assignment
~x ∈ {0, 1}n with the least total weight such that ψ(x,y) is true for every ~y ∈ {0, 1}m. Observe
that Weighted MinQSAT2 generalises MinQSAT2, which is known to be FPΣP

2[logn]-hard
[12], i.e., MinQSAT2 is an instance of Weighted MinQSAT2, where all weights are 1.

I Theorem 24. Weighted MinQSAT2 is FPΣP
2-complete.

Proof. Membership follows from the upper-bound of MinQSAT2 [12]: since we have an
exponentially large input with respect to that of MinQSAT2, by using binary search we will
need polynomially many calls to the ΣP

2 oracle. Hardness is immediate [12]. J

Now that we have an FPΣP
2 -hard problem in our hands, we can proceed to determine the

complexity class of Opt-SI with GR(1) specifications. For the upper bound we one can use
arguments analogous to those in Theorem 16. For the lower bound, one can reduce from
Weighted MinQSAT2. Formally, we have:
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I Theorem 25. Opt-SI with GR(1) specifications is FPΣP
2-complete.

I Corollary 26. Exact-SI with GR(1) specifications is DP
2 -complete.

Proof. Membership follows from the fact that an input is a “yes” instance of Exact-SI (with
GR(1) specifications) if and only if it is a “yes” instance of Strong Implementation and a
“yes” instance of Strong Implementation Complement, the decision problem where we
ask SI(G, ϕ, β) = ∅ instead. The lower bound follows from the hardness of Strong Imple-
mentation and Strong Implementation Complement problems, which immediately
implies DP

2 -hardness [1, Lemma 3.2]. J

Furthermore, analogous to UOpt-WI, we also have the following corollaries.

I Corollary 27. UOpt-SI with LTL specifications is PSPACE-complete.

I Corollary 28. UOpt-SI with GR(1) specifications is ∆P
3 -complete.

7 Conclusions & Related and Future Work

Equilibrium design vs. mechanism design – connections with Economic theory

Although equilibrium design is closely related to mechanism design, as typically studied in
game theory [21], the two are not exactly the same. Two key features in mechanism design
are the following. Firstly, in a mechanism design problem, the designer is not given a game
structure, but instead is asked to provide one; in that sense, a mechanism design problem is
closer to a rational synthesis problem [14, 16]. Secondly, in a mechanism design problem, the
designer is only interested in the game’s outcome, which is given by the payoffs of the players
in the game; however, in equilibrium design, while the designer is interested in the payoffs of
the players as these may need to be perturbed by its budget, the designer is also interested –
and in fact primarily interested – in the satisfaction of a temporal logic goal specification,
which the players in the game do not take into consideration when choosing their individual
rational choices; in that sense, equilibrium design is closer to rational verification [17] than
to mechanism design. Thus, equilibrium design is a new computational problem that sits
somewhere in the middle between mechanism design and rational verification/synthesis.
Technically, in equilibrium design we go beyond rational synthesis and verification through
the additional design of subsidy schemes for incentivising behaviours in a concurrent and
multi-agent system, but we do not require such subsidy schemes to be incentive compatible
mechanisms, as in mechanism design theory, since the principal may want to reward only
a group of players in the game so that its temporal logic goal is satisfied, while rewarding
other players in the game in an unfair way – thus, leading to a game with a suboptimal
social welfare measure. In this sense, equilibrium design falls short with respect to the more
demanding social welfare requirements often found in mechanism design theory.

Equilibrium design vs. rational verification – connections with Computer science

Typically, in rational synthesis and verification [14, 16, 17, 23] we want to check whether
a property is satisfied on some/every Nash equilibrium computation run of a reactive,
concurrent, and multi-agent system. These verification problems are primarily concerned
with qualitative properties of a system, while assuming rationality of system components.
However, little attention is paid to quantitative properties of the system. This drawback has
been recently identified and some work has been done to cope with questions where both
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qualitative and quantitative concerns are considered [3, 6, 9, 10, 11, 18, 20, 34]. Equilibrium
design is new and different approach where this is also the case. More specifically, as
in a mechanism design problem, through the introduction of an external principal – the
designer in the equilibrium design problem – we can account for overall qualitative properties
of a system (the principal’s goal given by an LTL or a GR(1) specification) as well as for
quantitative concerns (optimality of solutions constrained by the budget to allocate additional
rewards/resources). Our framework also mixes qualitative and quantitative features in a
different way: while system components are only interested in maximising a quantitative
payoff, the designer is primarily concerned about the satisfaction of a qualitative (logic)
property of the system, and only secondarily about doing it in a quantitatively optimal way.

Equilibrium design vs. repair games and normative systems – connections with AI

In recent years, there has been an interest in the analysis of rational outcomes of multi-agent
systems modelled as multi-player games. This has been done both with modelling and with
verification purposes. In those multi-agent settings, where AI agents can be represented as
players in a multi-player game, a focus of interest is on the analysis of (Nash) equilibria
in such games [8, 17]. However, it is often the case that the existence of Nash equilibria
in a multi-player game with temporal logic goals may not be guaranteed [16, 17]. For this
reason, there has been already some work on the introduction of desirable Nash equilibria in
multi-player games [2, 30]. This problem has been studied as a repair problem [2] in which
either the preferences of the players (given by winning conditions) or the actions available
in the game are modified; the latter one also being achieved with the use of normative
systems [30]. In equilibrium design, we do not directly modify the preferences of agents in the
system, since we do not alter their goals or choices in the game, but we indirectly influence
their rational behaviour by incentivising players to visit, or to avoid, certain states of the
overall system. We studied how to do this in an (individually) optimal way with respect to
the preferences of the principal in the equilibrium design problem. However, this may not
always be possible, for instance, because the principal’s temporal logic specification goal is
just not achievable, or because of constraints given by its limited budget.

Future work: social welfare requirements and practical implementation

As discussed before, a key difference with mechanism design is that social welfare requirements
are not considered [25]. However, a benevolent principal might not see optimality as an
individual concern, and instead consider the welfare of the players in the design of a subsidy
scheme. In that case, concepts such as the utilitarian social welfare may be undesirable as the
social welfare maximising the payoff received by players might allocate all the budget to only
one player, and none to the others. A potentially better option is to improve fairness in the
allocation of the budget by maximising the egalitarian social welfare. Finally, given that the
complexity of equilibrium design is much better than that of rational synthesis/verification,
we should be able to have efficient implementations, for instance, as an extension of EVE [19].
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