
Life Is Random, Time Is Not: Markov Decision
Processes with Window Objectives
Thomas Brihaye
UMONS – Université de Mons, Belgium

Florent Delgrange
UMONS – Université de Mons, Belgium
RWTH Aachen, Germany

Youssouf Oualhadj
LACL – UPEC, Paris, France

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Abstract
The window mechanism was introduced by Chatterjee et al. [17] to strengthen classical game
objectives with time bounds. It permits to synthesize system controllers that exhibit acceptable
behaviors within a configurable time frame, all along their infinite execution, in contrast to the
traditional objectives that only require correctness of behaviors in the limit. The window concept
has proved its interest in a variety of two-player zero-sum games, thanks to the ability to reason
about such time bounds in system specifications, but also the increased tractability that it usually
yields. In this work, we extend the window framework to stochastic environments by considering
the fundamental threshold probability problem in Markov decision processes for window objectives.
That is, given such an objective, we want to synthesize strategies that guarantee satisfying runs
with a given probability. We solve this problem for the usual variants of window objectives, where
either the time frame is set as a parameter, or we ask if such a time frame exists. We develop a
generic approach for window-based objectives and instantiate it for the classical mean-payoff and
parity objectives, already considered in games. Our work paves the way to a wide use of the window
mechanism in stochastic models.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Markov decision processes

Keywords and phrases Markov decision processes, window mean-payoff, window parity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2019.8

Related Version Full version available at https://arxiv.org/abs/1901.03571.

Funding Research supported by F.R.S.-FNRS, Grant n◦ F.4520.18 (ManySynth), and F.R.S.-FNRS
mobility funding for scientific missions (Y. Oualhadj in UMONS, 2018).
Mickael Randour : F.R.S.-FNRS Research Associate.

1 Introduction

Game-based models for controller synthesis. Two-player zero-sum games [28, 35] and
Markov decision processes (MDPs) [26, 4, 36] are two popular frameworks to model decision
making in adversarial and uncertain environments respectively. In the former, a system
controller and its environment compete antagonistically, and synthesis aims at building
strategies for the controller ensuring a specified behavior against all possible strategies of
the environment. In the latter, the system is faced with a given stochastic model of its
environment, and the focus is on satisfying a given level of expected performance, or a

© Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour;
licensed under Creative Commons License CC-BY

30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.CONCUR.2019.8
https://arxiv.org/abs/1901.03571
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

specified behavior with a sufficient probability. Classical objectives studied in both settings
include parity, a canonical way of encoding ω-regular specifications, and mean-payoff, which
evaluates the average payoff per transition in the limit of an infinite run in a weighted graph.

Window objectives in games. The traditional parity and mean-payoff objectives share two
shortcomings. First, they both reason about infinite runs in their limit. While this elegant
abstraction yields interesting theoretical properties and makes for robust interpretation, it is
often beneficial in practical applications to be able to specify a parameterized time frame in
which an acceptable behavior should be witnessed. Second, both parity and mean-payoff
games belong to UP ∩ coUP [34, 27], but despite recent breakthroughs [16, 22], they are
still not known to be in P. Furthermore, the latest results [21, 25] indicate that all existing
algorithmic approaches share inherent limitations that prevent inclusion in P.

Window objectives address the time frame issue as follows. In their fixed variant, they
consider a window of size bounded by λ ∈ N0 (given as a parameter) sliding over an infinite
run and declare this run to be winning if, in all positions, the window is such that the (mean-
payoff or parity) objective is locally satisfied. In their bounded variant, the window size is not
fixed a priori, but a run is winning if there exists a bound λ for which the condition holds.
Window objectives have been considered both in direct versions, where the window property
must hold from the start of the run, and prefix-independent versions, where it must hold from
some point on. Window games were initially studied for mean-payoff [17] and parity [14].
They have since seen diverse extensions and applications: e.g., [5, 3, 11, 15, 32, 38].

Window objectives in MDPs. Our goal is to lift the theory of window games to the
stochastic context. With that in mind, we consider the canonical threshold probability
problem: given an MDP, a window objective defining a set of acceptable runs E, and a
probability threshold α, we want to decide if there exists a controller strategy (also called
policy) to achieve E with probability at least α. It is well-known that many problems in
MDPs can be reduced to threshold problems for appropriate objectives: e.g., maximizing
the expectation of a prefix-independent function boils down to maximizing the probability to
reach the best end-components for that function (see examples in [4, 13, 37]).

Example. Before going further, let us consider an example. Take the MDP depicted in
Fig. 1(a): circles depict states and dots depict actions, labeled by letters. Each action
yields a probability distribution over successor states: for example, action b leads to s2 with
probability 0.5 and s3 with the same probability. This MDP is actually a Markov chain (MC)
as the controller has only one action available in each state: this process is purely stochastic.

We consider the parity objective here: each state is associated with a non-negative integer
priority and a run is winning if the minimum one amongst those seen infinitely often is even.
Clearly, any run in this MC is winning: either it goes through s3 infinitely often and the
min. priority is 0, or it does not, and the min. priority seen infinitely often is 2. Hence the
controller not only wins almost-surely (with probability one), but even surely (on all runs).

Now, consider the window parity objective that informally asks for the minimum priority
inside a window of size bounded by λ to be even, with this window sliding all along the
infinite run. Fix any λ ∈ N0. It is clear that every time s1 is visited, there will be a fixed
strictly positive probability ε > 0 of not seeing 0 before λ steps: this probability is 1/2λ−1.
Let us call this seeing a bad window. Since we are in a bottom strongly connected component
of the MC, we will almost-surely visit s1 infinitely often [4]. Using classical probability
arguments (Borel-Cantelli), one can easily be convinced that the probability to see bad

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:3

(a)

s1

1
s2

2

s3

0

a

bc

1

1 0.5

0.5

(b) s

1
t

0
a

b

0.5
0.5 1

Figure 1 Markov chains where (a) parity is surely satisfied but all window parity objectives have
probability zero, and (b) there is no uniform bound over all runs, in contrast to the game setting.

windows infinitely often is one. Hence the probability to win the window parity objective is
zero. This canonical example illustrates the difference between traditional parity and window
parity: the latter is more restrictive as it asks for a strict bound on the time frame in which
each odd priority should be answered by a smaller even priority.

Note that in practice, such a behavior is often wished for. For example, consider a
computer server having to grant requests to clients. A classical parity objective can encode
that requests should eventually be granted. However, it is clear that in a desired controller,
requests should not be placed on hold for an arbitrarily long time. The existence of a finite
bound on this holding time can be modeled with a bounded window parity objective, while a
specific bound can also be set as a parameter using a fixed window parity objective.

Our contributions. We study the threshold probability problem in MDPs for window ob-
jectives based on parity and mean-payoff, two prominent formalisms in qualitative and
quantitative (resp.) analysis of systems. We consider the different variants of window objec-
tives mentioned above: fixed vs. bounded, direct vs. prefix-independent. A nice feature of our
approach is that we provide a unified view of parity and mean-payoff window objectives: our
algorithm can actually be adapted for any window-based objective if an appropriate black-box
is provided for a restricted sub-problem. This has two advantages: (i) conceptually, our
approach permits a deeper understanding of the essence of the window mechanism, not biased
by technicalities of the specific underlying objective; (ii) our framework can easily be extended
to other objectives for which a window version could be defined. This point is of great
practical interest too, as it opens the perspective of a modular, generic software tool suite
for window objectives.

For the sake of space, we use acronyms below: DFW for direct fixed window, FW for
(prefix-independent) fixed window, DBW for direct bounded window, and BW for (prefix-
independent) bounded window. Our main contributions are as follows.
1. We solve DFW MDPs through reductions to safety MDPs over well-chosen unfoldings.

This results in polynomial-time and pseudo-polynomial-time algorithms for the parity
and mean-payoff variants respectively. We prove these complexities to be almost tight
(Thm. 5), the most interesting case being the PSPACE-hardness of DFW mean-payoff
objectives, even in the case of acyclic MDPs.
We also show that no upper bound can be established on the window size needed to win
in general (Ex. 3), in stark contrast to the two-player games situation (Rmk. 2).

2. We use similar reductions to prove that finite memory suffices in the prefix-independent
case (Thm. 4). In this case, we can do better than using unfoldings to solve the problem.
We study end-components (ECs), the crux for all prefix-independent objectives in MDPs:
we show that ECs can be classified based on their two-player zero-sum game interpretation
(Sect. 5). Using the result on finite memory, we prove that in ECs classified as good,
almost-sure satisfaction of window objectives can be ensured, whereas it is impossible to

CONCUR 2019

8:4 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

satisfy them with non-zero probability in other ECs (Lem. 10). We also establish tight
complexity bounds for this classification problem (Thm. 15). This EC classification is
(conceptually and complexity-wise) the cornerstone to deal with general MDPs.

3. Our general algorithm is developed in Sect. 6: we prove P-completeness for all prefix-
independent variants but for the BW mean-payoff one (Thm. 17), where we show that the
problem is in NP ∩ coNP and as hard as mean-payoff games, a canonical “hard” problem
for that complexity class.

4. For all variants, we prove tight memory bounds: see Thm. 5 for the direct fixed variants,
Thm. 17 for the prefix-independent fixed and bounded ones. In all cases, pure strategies
(i.e., without randomness) suffice.

5. We leave out DBW objectives from our analysis as we show they are not well-behaved.
We illustrate their behavior in Sect. 3 and discuss their pitfalls in Sect. 7.

Along the way, we develop side results that help drawing a line between MDPs and games
w.r.t. window objectives: e.g., the existence of a uniform bound in the bounded case (Rmk. 2).

In the game setting, window objectives are all in polynomial time, except for the BW
mean-payoff variant, in NP ∩ coNP. Despite clear differences in behaviors, the situation is
almost the same here. The only outlier case is the DFW mean-payoff one, whose complexity
rises significantly (Thm. 5): the loss of prefix-independence permits to emulate shortest
path problems on MDPs, famously hard to solve efficiently (e.g., [30, 37, 9, 31]). In the
almost-sure case, however, DFW mean-payoff MDPs collapse to P (Rmk. 6).

In games, window objectives permit to avoid long-standing NP∩coNP complexity barriers
for parity [14] and mean-payoff [17]. Since both are known to be in P for the threshold
probability problem in MDPs [20, 37], the main interest of window objectives resides in
their modeling power. Still, they may turn out to be more efficient in practice too, as
polynomial-time algorithms for parity and mean-payoff, based on linear programming, are
often forsaken in favor of exponential-time value or strategy iteration ones (e.g., [2]).

Related work. We already mentioned many related articles, hence we only briefly discuss
some remaining models here. Window parity games are strongly linked to the concept
of finitary ω-regular games: see, e.g., [19], or [14] for a complete list of references. The
window mechanism can be used to ensure a certain form of (local) guarantee over runs:
different techniques have been considered in MDPs, notably variance-based [10] or worst-
case-based [13, 7] methods.

Finally, let us mention the recent work of Bordais et al. [8], considering a seemingly
related question: the authors define a value function based on the window mean-payoff
mechanism and consider maximizing its expected value (which is different from the expected
window size we discuss in Sect. 7). While there are similarities in our works w.r.t. technical
tools, the two approaches are quite different and have their own strengths: we focus on
deep understanding of the window mechanism through a generic approach for the canonical
threshold probability problem for all window-based objectives, here instantiated as mean-
payoff and parity; whereas Bordais et al. focus on a particular optimization problem for a
function relying on the window mechanism. We mention three examples illustrating the
conceptual gap. First, in [8], the studied function takes the same value for direct and
prefix-independent bounded window mean-payoff objectives, whereas we show in Sect. 3 that
the classical definitions of window objectives induce a striking difference between both (in
the MDP of Ex. 3, the prefix-independent version is satisfied for window size one, whereas
no uniform bound on all runs can be defined for the direct case). Second, we prove PSPACE-
hardness for the DFW mean-payoff case, whereas the best lower bound known for the related
problem in [8] is PP. Lastly, recall that we also deal with window parity objectives while the
function of [8] is strictly built on mean-payoff.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:5

Outline. Sect. 2 defines the problem under study. In Sect. 3, we introduce window objectives,
discuss their status in games, and illustrate their behavior in MDPs. Sect. 4 is devoted to
the fixed variants and the aforementioned reductions. In Sect. 5, we analyze the case of ECs
and develop the classification procedure. We build on it in Sect. 6 to solve the general case.
Finally, in Sect. 7, we discuss the limitations of our work, as well as interesting extensions
within arm’s reach (e.g., multi-objective threshold problem, expected value problem). Full
details and proofs can be found in the full version of this paper [12].

2 Preliminaries

Markov decision processes. Given a set S, let D(S) be the set of rational probability
distributions over S. Given ι ∈ D(S), let Supp(ι) = {s ∈ S | ι(s) > 0} be its support. A
finite Markov decision process (MDP) is a tupleM = (S,A, δ) where S is a finite set of states,
A is a finite set of actions and δ : S ×A→ D(S) is a partial function called the probabilistic
transition function. The set of actions available in s ∈ S (i.e., for which δ(s, a) is defined) is
A(s). We assume w.l.o.g. that MDPs are deadlock-free: for all s ∈ S, A(s) 6= ∅. An MDP
where for all s ∈ S, |A(s)| = 1 is a fully-stochastic process called a Markov chain (MC).

A run of M is an infinite sequence ρ = s0a0 . . . an−1sn . . . of states and actions such
that δ(si, ai, si+1) > 0 for all i ≥ 0. The prefix up to the n-th state of ρ is the finite
sequence ρ[0, n] = s0a0 . . . an−1sn. The suffix of ρ starting from the n-th state of ρ is the
run ρ[n,∞] = snansn+1an+1 Moreover, we denote by ρ[n] the n-th state sn of ρ. Finite
prefixes of runs of the form h = s0a0 . . . an−1sn are called histories. We resp. denote the sets
of runs and histories of an MDPM by Runs(M) and Hists(M).

Strategies, induced MC and events. A strategy σ is a function Hists(M) → D(A) such
that for all h ∈ Hists(M) ending in s, we have Supp(σ(h)) ⊆ A(s). The set of all strategies
is Σ. A strategy is pure if all histories are mapped to Dirac distributions, i.e., the support is
a singleton. A strategy σ can be encoded by a stochastic state machine with outputs, called
Mealy machine. We say that σ is finite-memory if this machine is finite, and memoryless if it
has only one state, i.e., it only depends on the last state of the history. We see such strategies
as functions s 7→ D(A(s)) for s ∈ S. The entity choosing the strategy is called the controller.

An MDPM, a strategy σ, and a state s determine a Markov chainMσ
s . When considering

the probabilities of events in Mσ
s , we will often consider sets of runs of M. Thus, given

E ⊆ (SA)ω, we denote by PσM,s[E] the probability of the runs of Mσ
s whose projection

toM is in E, i.e., the probability of event E whenM is executed with initial state s and
strategy σ. For the sake of readability, we make similar abuse of notation – identifying runs
in the induced MC with their projections in the MDP – throughout our paper.

Note that every measurable set (event) has a uniquely defined probability [40] (Carathéo-
dory’s extension theorem induces a unique probability measure on the Borel σ-algebra over
cylinders of (SA)ω). When non-ambiguous, we drop some subscripts of PσM,s.

We say that an event E ⊆ (SA)ω is sure, written SσM,s[E], if and only if Runs(Mσ
s) ⊆ E

and that E is almost-sure, written ASσM,s[E], if and only if PσM,s[E] = 1.

Limiting behavior. Fix an MDP M = (S,A, δ). A sub-MDP of M is an MDP M′ =
(S′, A′, δ′) with S′ ⊆ S, ∅ 6= A′(s) ⊆ A(s) for all s ∈ S′, Supp(δ(s, a)) ⊆ S′ for all s ∈ S′, a ∈
A′(s), δ′ = δ|S′×A′ . Such a sub-MDPM′ is an end-component (EC) ofM if and only if the
underlying graph ofM′ is strongly connected, i.e., there is a run between any pair of states
in S′. Given an ECM′ = (S′, A′, δ′) ofM, we say that its sub-MDPM′′ = (S′′, A′′, δ′′),

CONCUR 2019

8:6 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

S′′ ⊆ S′, A′′ ⊆ A′, is a sub-EC ofM′ ifM′′ is also an EC. We let EC(M) denote the set of
ECs ofM, which may be of exponential size as ECs need not be disjoint. The counterparts
of ECs in MCs are bottom strongly-connected components (BSCCs).

The union of two ECs with non-empty intersection is an EC: hence we can define the
maximal ECs (MECs) of an MDP, i.e., the ECs that cannot be extended. We let MEC(M)
denote the set of MECs ofM, of polynomial size (because MECs are pair-wise disjoint) and
computable in polynomial time [18].

Given some run ρ = s0a0s1a1 . . . ∈ Runs(M), let inf(ρ) = {s ∈ S | ∀ i ≥ 0, ∃ j > i, sj =
s} denote the states visited infinitely-often along ρ, and let infAct(ρ) = {a ∈ A | ∀ i ≥
0, ∃ j > i, aj = a} similarly denote the actions taken infinitely-often along ρ. Let limitSet(ρ)
denote the pair (inf(ρ), infAct(ρ)). Note that this pair may induce a well-defined sub-MDP
M′ = (inf(ρ), infAct(ρ), δ|inf(ρ)×infAct(ρ)), but in general it need not be the case. A folklore
result in MDPs (e.g., [4]) is the following: for any state s of MDPM, for any strategy σ ∈ Σ,
we have that ASσM,s[{ρ ∈ Runs(Mσ

s) | limitSet(ρ) ∈ EC(M)}], that is, under any strategy,
the limit behavior of the MDP almost-surely coincides with an EC. This property is a key
tool in the analysis of MDPs with prefix-independent objectives, as it essentially says that
we only need to identify the “best” ECs and maximize the probability to reach them.

Weights, priorities and complexity. In this paper, we always assume an MDP with either
(i) a weight function w : A → Z of largest absolute weight W , or (ii) a priority function
p : S → {0, 1, . . . , d}, with d ≤ |S|+ 1 (w.l.o.g.). This choice is left implicit when the context
is clear, to offer a unified view of mean-payoff and parity variants of window objectives.

Regarding complexity, we make the classical assumptions of the field: we consider the
model size |M| to be polynomial in |S| and the binary encoding of weights and probabilities
(e.g., V = log2W), whereas we consider the largest priority d, as well as the upcoming
window size λ, to be encoded in unary. When a problem is polynomial in W , we say that it
is pseudo-polynomial: it would be polynomial if weights would be given in unary.

Objectives. An objective for an MDPM = (S,A, δ) is a measurable set of runs E ⊆ (SA)ω.
We consider window objectives based on mean-payoff and parity objectives. Let us discuss
those classical objectives.

Mean-Payoff is a quantitative objective for which we consider weighted MDPs. Let
ρ ∈ Runs(M) be a run of such an MDP. The mean-payoff of prefix ρ[0, n] is MP(ρ[0, n]) =
1
n

∑n−1
i=0 w(ai), for n > 0. This is naturally extended to runs by considering the limit

behavior. The mean-payoff of ρ is MP(ρ) = lim infn→∞MP(ρ[0, n]). Given a threshold
ν ∈ Q, the mean-payoff objective accepts all runs whose mean-payoff is above the
threshold, i.e., MeanPayoff(ν) = {ρ ∈ Runs(M) | MP(ρ) ≥ ν}. Note that ν can be taken
equal to zero w.l.o.g., and the mean-payoff function can be equivalently (in the classical
one-dimension setting) defined using lim sup.
Parity is a qualitative objective for which we consider MDPs with a priority function.
It requires that the smallest priority seen infinitely often along a run be even, i.e.,
Parity = {ρ ∈ Runs(M) | mins∈inf(ρ) p(s) = 0 (mod 2)}.

Decision problem. Given an MDPM = (S,A, δ), an initial state s, a threshold α ∈ [0, 1]∩Q,
and an objective E, the threshold probability problem is to decide whether there exists a
strategy σ ∈ Σ such that PσM,s [E] ≥ α or not.

Furthermore, if it exists, we want to build such a strategy. The related problems for both
mean-payoff and parity are in P and pure memoryless strategies suffice [37, 20].

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:7

3 Window objectives

Good Windows. Given a weighted MDPM and λ > 0, we define the good window mean-
payoff objective GWmp(λ) =

{
ρ ∈ Runs(M) | ∃ l < λ, MP

(
ρ[0, l + 1]

)
≥ 0

}
, requiring the

existence of a window of size bounded by λ and starting at the first position of the run, over
which the mean-payoff is at least equal to zero (w.l.o.g.).

Similarly, given an MDPM with priority function p, we define the good window parity
objective, GWpar(λ) =

{
ρ ∈ Runs(M) | ∃ l < λ,

(
p(ρ[l]) mod 2 = 0 ∧ ∀ k < l, p(ρ[l]) <

p(ρ[k])
)}
, requiring the existence of a window of size bounded by λ and starting at the first

position of the run, for which the last priority is even and is the smallest within the window.
We use subscripts mp and par for mean-payoff and parity variants respectively. So, given

Ω = {mp, par} and a run ρ ∈ Runs(M), we say that an Ω-window is closed in at most λ
steps from ρ[i] if ρ[i,∞] is in GWΩ(λ). If a window is not yet closed, we call it open.

Fixed variants. Given λ > 0, we define the direct fixed window objective DFWΩ(λ) =
{ρ ∈ Runs(M) | ∀ j ≥ 0, ρ[j,∞] ∈ GWΩ(λ)} , asking for all Ω-windows to be closed within λ
steps along the run. We also define the fixed window objective FWΩ(λ) = {ρ ∈ Runs(M) |
∃ i ≥ 0, ρ[i,∞] ∈ DFWΩ(λ)}, that is the prefix-independent version of the previous one: it
requires it to be eventually satisfied.

Bounded variant. The bounded window objective BWΩ = {ρ ∈ Runs(M) | ∃λ > 0, ρ ∈
FWΩ(λ)}, requires the existence of a λ for which the fixed window objective is satisfied. Note
that this bound need not be uniform along all runs in general. A direct variant may also be
defined, but turns out to be ill-suited in the stochastic context: we illustrate it in Ex. 3 and
discuss its pitfalls in Sect. 7. Hence we focus on the prefix-independent version here.

I Example 1. We first go back to the example of Sect. 1, depicted in Fig. 1(a). Let M
be this MDP. Fix run ρ = (s1 a s2 b s3 c)ω. We have that ρ 6∈ FWpar(λ = 2) – a fortiori,
ρ 6∈ DFWpar(λ = 2) – as the window that opens in s1 is not closed after two steps (because
s1 has odd priority 1, and 2 is not smaller than 1 so does not suffice to answer it). If we
now set λ = 3, we see that this window closes on time, as 0 is encountered within three
steps. As all other windows are immediately closed, we have ρ ∈ DFWpar(λ = 3) – a fortiori,
ρ ∈ FWpar(λ = 3) and ρ ∈ BWpar.

Regarding the probability of these objectives, however, we have already argued that, for
all λ > 0, PM,s1 [FWpar(λ)] = 0, whereas PM,s1 [Parity] = 1 since s3 is almost-surely visited
infinitely often but any time bound is almost-surely exceeded infinitely often too. Observe
that BWpar =

⋃
λ>0 FWpar(λ), hence we also have that PM,s1 [BWpar] = 0 (by countable

additivity). Similar reasoning holds for window mean-payoff, by taking the weight function
w = {a 7→ −1, b 7→ 0, c 7→ 1}.

I Remark 2. Window mean-payoff and window parity objectives were considered in two-player
zero-sum games [17, 14]. This setting is equivalent to deciding if there exists a strategy in
an MDP such that the objective is surely satisfied, i.e., by all consistent runs. Interestingly,
in games, if the controller can win the bounded window objective, then a uniform bound
exists, i.e., there exists a window size λ sufficiently large such that the bounded version
coincides with the fixed one. Recall that this is not granted by definition. This uniform
bound is pseudo-polynomial for mean-payoff and equal to the number of states for parity.
We illustrate in the following example that in MDPs, a uniform bound need not exist.

CONCUR 2019

8:8 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

I Example 3. Consider the MCM in Fig. 1(b). For any λ > 0, there is probability 1/2λ−1

that objective DFWpar(λ) is not satisfied. Hence, for all λ > 0, PM,s[DFWpar(λ)] < 1.
Now let DBWpar =

⋃
λ>0 DFWpar(λ) be the direct bounded window objective evoked

above. We claim that PM,s[DBWpar] = 1. Indeed, any run ending in t belongs to DBWpar, as
it belongs to DFWpar(λ) for λ equal to the length of the prefix up to t. Since t is almost-surely
reached (as it is the only BSCC of the MC), we conclude that DBWpar is indeed satisfied
almost-surely.

Essentially, the difference stems from the fairness of probabilities. In a game, the opponent
controls the successor choice after action a and always goes back to s, resulting in objective
DBWpar being lost. However, in this MC, s is almost-surely left eventually, but we cannot
guarantee when: hence there exists a window bound for each run, but there is no uniform
bound over all runs.

This MC also illustrates the difference between sure and almost-sure satisfaction: we
have ASM,s[FWpar(λ = 1)] but not SM,s[FWpar(λ = 1)], because of run ρ = (s a)ω. Again
the same reasoning holds for mean-payoff variants, for example with w = {a 7→ −1, b 7→ 1}.

We leave out the direct bounded objective from now on. We will come back to it in
Sect. 7 and motivate why this objective is not well-behaved. In the following, we focus on
direct and prefix-independent fixed window objectives and prefix-independent bounded ones.

4 Fixed case: better safe than sorry

We start with the fixed variants of window objectives. Our main goal here is to establish that
pure finite-memory strategies suffice in all cases. As a by-product, we also obtain algorithms
to solve the corresponding decision problems. Still, for the prefix-independent variants, we
will obtain better complexities using the upcoming generic approach (Sect. 6).

Our tools are natural reductions from direct (resp. prefix-independent) window problems
on MDPs to safety (resp. co-Büchi) problems on unfoldings based on the window size λ (i.e.,
larger arenas incorporating information on open windows).

Unfoldings. We use identical unfoldings for both direct and prefix-independent objectives.
LetM be an MDP and λ > 0 be the window size. We build a new MDPMλ, the unfolding
ofM for mean-payoff (resp. parity), with an extended state space S̃: each state ofMλ is
of the form s̃ = (s, l, x) so that s keeps track of the current state ofM, l of the size of the
current open window, and x of the current sum of weights (resp. the minimum priority) in
the window: the last two values are therefore reset whenever a window is closed or stays open
for λ steps. The remaining components ofMλ are then extended fromM in a natural way.

A key underlying property used here is the so-called inductive property of windows [17, 14]:
for all runs ρ = s0a0s1a1 . . . ofM, fix a window starting in position i ≥ 0 and let j be the
position in which this window gets closed, assuming it does. Then, all windows in positions
from i to j also close in j. The validity of this property is easy to check by contradiction (if
it would not hold, the window in i would close before j). This property is fundamental in
our reduction: without it we would have to keep track of all open windows in parallel, which
would result in a blow-up exponential in λ.

Reductions. A safety (resp. co-Büchi) objective consists of runs avoiding at all times
(resp. eventually avoiding) a given set of states B. InMλ, B is composed of states (s, l, x)
where l = λ and x < 0 for the mean-payoff variant or l = λ − 1 and x mod 2 = 1 for the
parity variant, that exactly correspond to windows staying open for λ steps.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:9

We state that the safety and co-Büchi objectives inMλ are probability-wise equivalent
to the direct fixed window and fixed window ones inM. For any strategy σ inM, s ∈ S
and its corresponding state s̃ ∈ S̃, there exists a strategy σ̃ inMλ such that the probability
of satisfying the direct fixed (resp. fixed) window objective of maximal window size λ in
Mσ

s equals the probability of satisfying the safety (resp. co-Büchi) objective inMσ̃
λ,s̃, and

conversely. To obtain a strategy σ inM from a strategy σ̃ inMλ, we have to integrate in
the memory of σ the additional information encoded in S̃: hence the memory required by σ
is the one used by σ̃ with a blow-up polynomial in |S̃|. These reductions, along with the fact
that pure memoryless strategies suffice for safety and co-Büchi objectives in MDPs [4], yield
sufficiency of finite-memory strategies, a key ingredient in our generic approach (Lem. 10).

I Theorem 4. Pure finite-memory strategies suffice for the threshold probability problem for
all fixed window objectives. That is, given MDPM = (S,A, δ), initial state s ∈ S, window
size λ > 0, Ω ∈ {mp, par}, objective E ∈ {DFWΩ(λ),FWΩ(λ)} and threshold probability
α ∈ [0, 1] ∩ Q, if there exists a strategy σ ∈ Σ such that PσM,s[E] ≥ α, then there exists a
pure finite-memory strategy σ′ such that Pσ′

M,s[E] ≥ α.

These reductions also yield algorithms for the fixed window case. We only use them for
the direct variants, as the approach we develop in Sect. 6 proves to be more efficient for the
prefix-independent one, for two reasons: first, we may restrict the co-Büchi-like analysis to
ECs; second, we use a more tractable analysis than the co-Büchi unfolding for mean-payoff.

We complement the corresponding upper bounds with almost-matching lower bounds,
showing that our approach is close to optimal, complexity-wise.

I Theorem 5. The threshold probability problem is
(a) P-complete for direct fixed window parity objectives, and pure polynomial-memory optimal

strategies can be constructed in polynomial time. Furthermore, polynomial memory is in
general necessary.

(b) in EXPTIME and PSPACE-hard for direct fixed window mean-payoff objectives (already for
acyclic MDPs), and pure pseudo-polynomial-memory optimal strategies can be constructed
in pseudo-polynomial time. Furthermore, pseudo-polynomial memory is in general
necessary.

Upper bounds. The algorithm is simple: given M and λ > 0, build Mλ and solve the
corresponding safety problem. This can be done in polynomial time in |Mλ| and pure
memoryless strategies suffice overMλ [4]. For parity,Mλ is of size polynomial in |M|, d
and λ. Since both d (anyway bounded by O(|S|)) and λ are assumed to be given in unary, it
yields the result. For mean-payoff,Mλ is of size polynomial in |M|, W and λ. Since weights
are assumed to be encoded in binary, we only have a pseudo-polynomial-time algorithm.

Lower bounds. We give some insights about the reductions yielding the results for lower
complexity bounds. We begin with P-hardness (item (a)). Roughly, we reduce two-player
reachability games [6, 33] to direct fixed window parity MDPs, using two key ingredients:
(i) if winning is possible in the game, it is possible in bounded time: we deduce a sufficient
window size λ from it; (ii) almost-sure winning for DFWΩ(λ) objectives is equivalent to sure
winning (if a losing run exists, it is witnessed by a finite prefix of strictly positive probability).

Regarding memory, the proof established for direct fixed window parity games in [14]
carries over easily to our setting by replacing the states of the opponent by stochastic actions,
in the natural way. Hence the lower bound is trivial to establish.

CONCUR 2019

8:10 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

Consider now PSPACE-hardness (item (b)). We proceed via a reduction from the
threshold probability problem for shortest path objectives [30, 37]. Given an MDPM with
state space S, a lower probability bound α and an upper bound ` ∈ N on the cumulative
sum of weights of actions through runs of the system, this problem asks whether there exists
a strategy allowing to visit a target set T ⊆ S with probability at least α and cost at most `
(note that weights are assumed to be strictly positive in this setting). The problem is known
to be PSPACE-hard, even for acyclic MDPs [30].

We establish a reduction from this problem, in the acyclic case, to a threshold probability
problem for DFWmp(λ = |S|), maintaining the acyclicity of the underlying graph. From
M, we build a new MDP M′ by taking the opposite of all weights; adding the bound `

when entering the target; and making the target cost-free. The result follows from three
key ingredients: (i) the sum of weights over a prefix inM′ that is not yet in T is strictly
negative, and the opposite of the sum over the same prefix inM; (ii) due to the addition of
` on entering T , any run ofM′ sees all its windows closed if and only if T is reached with a
cost less than ` inM; (iii) using the acyclicity, if a run reaches T , it does so within λ steps.

The need for pseudo-polynomial memory is also proved through this reduction. Indeed,
there is a chain of reductions from subset-sum games [39, 24] to our setting, via the shortest
path problem [30]. Subset-sum games require pseudo-polynomial-memory strategies.

I Remark 6. As noted above, almost-surely winning coincides with surely winning for the
direct fixed window objectives. Therefore, the threshold probability problem for DFWmp(λ)
collapses to P if α = 1 [17].

5 The case of end-components

We have solved the case of direct fixed window objectives: it remains to consider prefix-
independent fixed and bounded variants. The analysis of MDPs with prefix-independent
objectives crucially relies on ECs (Sect. 2): they are almost-surely reached in the long run.

First, we study what happens in ECs: how to play optimally and what can be achieved.
In Sect. 6, we will use this knowledge as the cornerstone of our algorithm for general MDPs.
The main result here is a strong link between ECs and two-player games: intuitively, either
the probability to win a window objective in an EC is zero, or it is one and there exists a
sub-EC where the controller can actually win surely, i.e., as in a two-player game played on
this sub-EC. We start by defining the notion of λ-safety, that will characterize such sub-ECs.

I Definition 7 (λ-safety). LetM be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈
EC(M), we say that C is λ-safeΩ if there exists a strategy σ ∈ Σ in C such that, from all
s ∈ SC, SσC,s[DFWΩ(λ)].

Classifying an EC as λ-safeΩ or not boils down to interpreting it as a two-player game (the
duality between MDPs and games is further explored in [13, 7]). The uncertainty becomes
adversarial: on entering a state s of the MDP, the controller chooses an action a following its
strategy and the opponent then chooses a successor s′ such that s′ ∈ Supp(δ(s, a)) without
taking into account the exact values of probabilities. In such a view, the opponent tries to
prevent the controller from achieving its objective. A winning strategy for the controller in
the game interpretation is a strategy that ensures the objective regardless of its opponent’s
strategy. An EC is thus said to be λ-safeΩ if and only if its two-player interpretation admits a
winning strategy for DFWΩ(λ). W.l.o.g., all our strategies are uniform in the game-theoretic
sense: we use it in our statements.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:11

I Proposition 8. LetM be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈ EC(M)
be λ-safeΩ. Then, there exists a pure polynomial-memory strategy σΩ,λ,C

safe in C such that

S
σΩ,λ,C

safe
C,s [DFWΩ(λ)] for all s ∈ SC.

The proof is straightforward by definition of λ-safety and pure polynomial-memory strategies
being sufficient in direct fixed window games, both for mean-payoff [17] and parity [14].

As sketched above, the existence of sub-ECs that are λ-safe is crucial in order to satisfy
any window objective in an EC. We thus introduce the notion of good ECs.

I Definition 9. LetM be an MDP, Ω ∈ {mp, par}, and C ∈ EC(M), we say that
C is λ-goodΩ, for λ > 0, if it contains a sub-EC C′ which is λ-safeΩ.
C is BW-goodΩ if it contains a sub-EC C′ which is λ-safeΩ for some λ > 0.

Any BW-goodΩ EC is λ-goodΩ for an appropriate λ > 0. Yet, we use a different
terminology as in the BW case, we do not fix λ a priori: this is important complexity-wise.

We now establish that goodΩ ECs are exactly the ones where window objectives can be
satisfied with non-zero probability, and actually, with probability one.

I Lemma 10 (Zero-one law). Let M be an MDP, Ω ∈ {mp, par} and C = (SC , AC , δC) ∈
EC(M). The following assertions hold.
(a) For all λ > 0,

(i) either C is λ-goodΩ and there exists a strategy σ in C such that ASσC,s[FWΩ(λ)] for
all s ∈ SC,

(ii) or for all s ∈ SC and for all strategy σ in C, PσC,s[FWΩ(λ)] = 0.
(b) (i) Either C is BW-goodΩ and there exists a strategy σ in C such that ASσC,s[BWΩ] for

all s ∈ SC, or
(ii) for all s ∈ SC, for all strategy σ in C, PσC,s[BWΩ] = 0.

We sketch the proof by focusing on case (a). Roughly, (i) holds thanks to the two following
facts. First, C is an EC in which there exists a strategy almost-surely visiting all states
of its state space. Second, there is a λ-safeΩ sub-EC in C in which there exists a strategy
surely satisfying DFWΩ(λ). Combining these two strategies yields the result. For case (ii),
recall that finite-memory strategies suffice for FWΩ(λ) objectives by Thm. 4. Hence, we fix
a finite-memory strategy in C, yielding a finite induced MC where runs almost-surely end
up in a BSCC B [4]. There is no λ-safeΩ sub-EC, so there exists a run ρ̂ in B such that
ρ̂ 6∈ DFWΩ(λ). From ρ̂, we extract a history ĥ that contains a window open for λ steps.
Since all states in B are almost-surely visited infinitely often, ĥ also happens infinitely often
with probability one and the probability to win FWΩ(λ) when reaching B is thus zero. Since
this holds for any BSCC induced by σ, we obtain the claim.

Items (b)(i) and (b)(ii) can then be shown by using the fact that BWΩ =
⋃
λ>0 FWΩ(λ).

I Remark 11. An interesting consequence of Lem. 10 is the existence of uniform bounds on
λ in ECs, in contrast to the general MDP case, as seen in Sect. 3. This is indeed natural, as
we established that winning with positive probability within an EC coincides with winning
surely in a sub-EC; sub-EC that can be seen as a two-player zero-sum game where uniform
bounds are granted by [17, 14].

Lem. 10 establishes that interesting strategies exist in goodΩ ECs. Let us describe them.

I Proposition 12. LetM be an MDP, Ω ∈ {mp, par}, and C = (SC , AC , δC) ∈ EC(M).
If C is λ-goodΩ, for λ > 0, then there exists a pure polynomial-memory strategy σΩ,λ,C

good

such that AS
σΩ,λ,C

good
C,s [FWΩ(λ)] for all s ∈ SC.

CONCUR 2019

8:12 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

If C is BW-goodΩ, then there exists a pure memoryless strategy σΩ,BW,C
good such that

AS
σΩ,BW,C

good
C,s [BWΩ] for all s ∈ SC.

Intuitively, such strategies first mimic a pure memoryless strategy reaching a safeΩ sub-EC
almost-surely, then switch to a strategy surely winning in this sub-EC, which is lifted from
the game interpretation.

We may already sketch a general solution to the threshold probability problem based on
Lem. 10 and the well-known fact that ECs are almost-surely reached under any strategy: an
optimal strategy must maximize the probability to reach goodΩ ECs. It is therefore crucial
to be able to identify such ECs efficiently. However, an MDP may contain an exponential
number of ECs. Fortunately, the next lemma states that we do not have to test them all.

I Lemma 13. LetM be an MDP and C ∈ EC(M). If C is λ-goodΩ (resp. BW-goodΩ), then
it is also the case of any super-EC C′ ∈ EC(M) containing C.

I Corollary 14. LetM be an MDP and C ∈ MEC(M) be a maximal EC. If C is not λ-goodΩ
(resp. BW-goodΩ), then neither is any of its sub-EC C′ ∈ EC(M).

The interest of Cor. 14 is that the number of MECs is bounded by |S| for any MDP
M = (S,A, δ) because they are all disjoint. Furthermore, decomposingM in MECs can be
done efficiently (e.g., quadratic time [18]). So, we know classifying MECs is sufficient and
MECs can easily be identified: it remains to discuss how to classify a MEC as goodΩ or not.

LetM = (S,A, δ). Recall that a MEC C = (SC , AC , δC) ∈ MEC(M) is λ-goodΩ (resp. BW-
goodΩ) if and only if it contains a λ-safeΩ sub-EC. This is equivalent to having a non-empty
winning set for the controller in the two-player game over C – naturally defined as above.
This winning set contains all states in SC from which the controller has a surely winning
strategy. This set, if non-empty, contains at least one sub-EC of C, as otherwise the opponent
could force the controller to leave it and win the game (by prefix-independence). Thus,
testing if a MEC is goodΩ boils down to solving its two-player game interpretation [17, 14].

I Theorem 15 (MEC classification). LetM be an MDP and C ∈ MEC(M). The following
assertions hold.
(a) Deciding if C is λ-goodΩ, for λ > 0, is in P for Ω ∈ {mp, par} and a corresponding pure

polynomial-memory strategy σΩ,λ,C
good can be constructed in polynomial time.

(b) Deciding if C is BW-goodmp is in NP ∩ coNP and a corresponding pure memoryless
strategy σmp,BW,C

good can be constructed in pseudo-polynomial time.
(c) Deciding if C is BW-goodpar is in P and a corresponding pure memoryless strategy

σpar,BW,C
good can be constructed in polynomial time.

6 General MDPs

We have all the ingredients to establish an algorithm in the general case. Given an MDP
M, a state s and a window objective FWΩ(λ) for λ > 0 (resp. BWΩ), we (i) compute the
MEC decomposition ofM; (ii) classify each MEC as λ-goodΩ (resp. BW-goodΩ) or not; and
(iii) compute an optimal strategy from s to reach the union of goodΩ MECs: the probability
of reaching such MECs is exactly the maximum probability for the window objective.

The fixed and bounded versions are presented in Fig. 2. Sub-procedure MaxReachability(s,
T) computes the maximum probability to reach the set T from s (in polynomial time [4]).
The overall complexity of the algorithm is dominated by the classification step.

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:13

Algorithm 1 FixedWindow(M, s,Ω, λ).
Input: MDPM, state s, Ω ∈ {mp, par}, λ > 0
Output: Maximum probability of FWΩ(λ) from s
1 T ← ∅
2 for all C = (SC , AC , δC) ∈ MEC(M) do
3 if C is λ-goodΩ then
4 T ← T] SC
5 ν = MaxReachability(s, T)
6 return ν

Algorithm 2 BoundedWindow(M, s,Ω).
Input: MDPM, state s, Ω ∈ {mp, par}
Output: Maximum probability of BWΩ from s
1 T ← ∅
2 for all C = (SC , AC , δC) ∈ MEC(M) do
3 if C is BW-goodΩ then
4 T ← T] SC
5 ν = MaxReachability(s, T)
6 return ν

Figure 2 Algorithms computing the max. probability of prefix independent window objectives.

I Lemma 16. Alg. 1 and Alg. 2 are correct: given an MDPM = (S,A, δ), an initial state s ∈
S, Ω ∈ {mp, par}, λ > 0, we have that FixedWindow(M, s,Ω, λ) = maxσ∈Σ PσM,s[FWΩ(λ)]
and BoundedWindow(M, s,Ω) = maxσ∈Σ PσM,s[BWΩ].

The proof is straightforward based on our previous results: (i) using prefix-independence
and almost-sure reachability of MECs, we know that the highest probability (of satisfying the
objective) is obtained when the “best” MECs are reached; (ii) by Lem. 10, this probability is
one in goodΩ ECs and zero in the others; (iii) maximizing the probability to reach goodΩ
ECs is exactly how our algorithms operate.

I Theorem 17. The threshold probability problem is
(a) P-complete for fixed window parity and fixed window mean-payoff objectives, and pure

polynomial-memory optimal strategies can be constructed in polynomial time. Further-
more, polynomial memory is in general necessary.

(b) P-complete for bounded window parity objectives, and pure memoryless optimal strategies
can be constructed in polynomial time;

(c) in NP ∩ coNP and as hard as mean-payoff games for bounded window mean-payoff objec-
tives, and pure memoryless optimal strategies can be constructed in pseudo-polynomial
time.

The results follow from Thm. 15 and the MEC classification in the BW-goodmp case
being the only non-polynomial operation of our algorithms. Plugging pure memoryless
optimal strategies for reaching goodΩ MECs (granted by [4]) to our MEC strategies yields
the upper bounds on memory. Hardness is essentially obtained through the two-player game
interpretation of ECs [14, 17].

7 Limitations and perspectives

We summarized our results and compared them to the state of the art in Sect. 1. Here, we
discuss the limitations of our work and some extensions within arm’s reach.

Direct bounded window objectives. We left out a window objective considered in games [17,
14]: the direct bounded one, DBWΩ =

⋃
λ>0 DFWΩ(λ). It is maybe not the most natural

as it is not prefix-independent, yet allows to close the windows of a run in an arbitrarily
large number of steps bounded along the run. This variant gives rise to complex behaviors
in MDPs, notably due to its interaction with the almost-sure reachability of ECs.

Consider the MDP in Fig. 3 and objective DBWmp. A window opens due to a. The only
way to close it is to use b up to the point where the running sum becomes non-negative.
When it does, all windows are closed and the controller may switch to s5. Observe that

CONCUR 2019

8:14 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

s1 s2

c,−1 d, 1

s3 s4

a,−1
f, 0

b, 0

e, 0 s5
1 1

1 1

0.5 0.5
1

Figure 3 There exists a strategy σ ensuring ASσM,s1 [DBWmp] but it requires infinite memory as
it needs to use b up to the point where the running sum becomes non-negative, then switch to e.

taking b repeatedly induces a symmetric random walk [29]. Classical probability results
ensure that a non-negative sum will be obtained almost-surely, but the number of times b is
played must remain unbounded (as for any bounded number, there exists a strictly positive
probability to obtain only −1’s for example). Thus, there exists an infinite-memory strategy
σ such that ASσM,s1 [DBWmp], but no finite-memory one can do as good.

Now, let δ(s2, b) = {s3 7→ 0.6, s4 7→ 0.4}: the random walk becomes asymmetric, with a
strictly positive chance to diverge toward −∞. While the best possible strategy is still the
one defined above, it only satisfies the objective with probability strictly less than one.

What do we observe? First, infinite-memory strategies are required, which is a problem
for practical applications. Second, even for qualitative questions (is the probability zero or
one?), the actual probabilities of the MDP must be considered, not only the existence of
a transition. This is in stark contrast to most problems in MDPs [4]: in that sense, the
direct bounded window objective is not well-behaved. This is due to the above connection
with random walks. It is well-known that complex random walks are difficult to tackle for
verification and synthesis: e.g., even simple asymmetric random walks are not decisive MCs,
a large and robust class of MCs where reachability questions can be answered [1].

Markov chains. Our work focuses on the threshold probability problem for MDPs, and the
corresponding strategy synthesis problem. Better complexities could possibly be obtained
for MCs, where there are no non-deterministic choices. To achieve this, a natural direction
would be to focus on the classification of ECs (Sect. 5), the bottleneck of our approach: for
MCs, this classification would involve one-player window games (for the opponent), whose
complexity has yet to be explored and would certainly be lower than for two-player games.

However, complexity is unlikely to be much lower: all parity variants are already in P, and
the high complexity of DFWmp would remain: a construction similar to the PSPACE-hardness
(Thm. 5) easily shows this problem to be PP-hard, already for acyclic MCs (again using [30]).

Expected value problem. Given an MDPM and an initial state s, we may be interested in
synthesizing a strategy σ that minimizes the expected window size for a fixed window objective
(say FWΩ(λ)), which we straightforwardly define as EσM,s,Ω(λ) =

∑∞
λ>0 λ · PσM,s[FWΩ(λ) \

FWΩ(λ− 1)], with FWΩ(0) = ∅. This meets the natural desire to build strategies that strive
to maintain the best time bounds possible in their local environment (e.g., EC ofM). Note
that this is totally different from the value function used in [8].

For prefix-independent variants, we already have all the necessary machinery to solve this
problem. First, we refine the classification process to identify the best window size achievable
in each MEC, if any. Indeed, if a MEC is λ-good, it necessarily is for some λ between one and
the upper bound derived from the game-theoretic interpretation (Rmk. 11): we determine the
smallest value of λ for each MEC via a binary search coupled with the classification procedure.
Second, using classical techniques (e.g., [37]), we contract each MEC to a single-state EC,
and give it a weight that represents the best window size we can ensure in it (hence this

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:15

weight may be infinite if a MEC is not BW-good). Finally, we construct a global strategy
that favors reaching MECs with the lowest weights, for example by synthesizing a strategy
minimizing the classical mean-payoff value. Note that if λ-good MECs cannot be reached
almost-surely, the expected value will be infinite, as wanted. Observe that such an approach
maintains tractability, as we end up with a polynomial-time algorithm.

Direct variants require more involved techniques, as the unfoldings of Sect. 4 are strongly
linked to the window size λ, and cannot be easily combined for different values of λ.

Multi-objective problems. Window games have been studied in the multidimension setting,
where several weight (resp. priority) functions are given, and the objective is the intersection
of all one-dimension objectives [17, 14]. Again, our generic approach supports effortless
extension to this setting. In the direct case, unfoldings of Sect. 4 can be generalized to multiple
dimensions, as in [17, 14]. For prefix-independent variants, the EC classification needs to
be adapted to handle multidimension window games, which we can solve using [17, 14].
Then, we also need to consider a multi-objective reachability problem [37]. While almost all
cases of multidimension window games are EXPTIME-complete, decidability of the bounded
mean-payoff case is still open, but however known to be non-primitive recursive hard.

Tool support. Thanks to its low complexity and its adequacy w.r.t. applications, our
window framework lends itself well to tool development. We are currently building a tool
suite for MDPs with window objectives based on the main results of this paper along with
the aforementioned extensions. Our aim is to provide a dedicated extension of Storm, a
cutting-edge probabilistic model checker [23].

References
1 Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Decisive Markov Chains.

Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:7)2007.
2 Pranav Ashok, Krishnendu Chatterjee, Przemyslaw Daca, Jan Kretínský, and Tobias Meggen-

dorfer. Value Iteration for Long-Run Average Reward in Markov Decision Processes. In
Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th In-
ternational Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part I, volume 10426 of Lecture Notes in Computer Science, pages 201–221. Springer, 2017.
doi:10.1007/978-3-319-63387-9_10.

3 Christel Baier. Reasoning About Cost-Utility Constraints in Probabilistic Models. In
Mikolaj Bojanczyk, Slawomir Lasota, and Igor Potapov, editors, Reachability Problems
- 9th International Workshop, RP 2015, Warsaw, Poland, September 21-23, 2015, Pro-
ceedings, volume 9328 of Lecture Notes in Computer Science, pages 1–6. Springer, 2015.
doi:10.1007/978-3-319-24537-9_1.

4 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.
5 Christel Baier, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich. Weight monitoring

with linear temporal logic: complexity and decidability. In Thomas A. Henzinger and Dale
Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 11:1–
11:10. ACM, 2014. doi:10.1145/2603088.2603162.

6 Catriel Beeri. On the Membership Problem for Functional and Multivalued Dependencies in
Relational Databases. ACM Trans. Database Syst., 5(3):241–259, 1980. doi:10.1145/320613.
320614.

CONCUR 2019

https://doi.org/10.2168/LMCS-3(4:7)2007
https://doi.org/10.1007/978-3-319-63387-9_10
https://doi.org/10.1007/978-3-319-24537-9_1
https://doi.org/10.1145/2603088.2603162
https://doi.org/10.1145/320613.320614
https://doi.org/10.1145/320613.320614

8:16 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

7 Raphaël Berthon, Mickael Randour, and Jean-François Raskin. Threshold Constraints with
Guarantees for Parity Objectives in Markov Decision Processes. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on
Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland,
volume 80 of LIPIcs, pages 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.ICALP.2017.121.

8 Benjamin Bordais, Shibashis Guha, and Jean-François Raskin. Expected Window Mean-Payoff.
CoRR, abs/1812.09298, 2018. arXiv:1812.09298.

9 Patricia Bouyer, Mauricio González, Nicolas Markey, and Mickael Randour. Multi-weighted
Markov Decision Processes with Reachability Objectives. In Andrea Orlandini and Martin
Zimmermann, editors, Proceedings Ninth International Symposium on Games, Automata,
Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th September
2018., volume 277 of EPTCS, pages 250–264, 2018. doi:10.4204/EPTCS.277.18.

10 Tomás Brázdil, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Trading per-
formance for stability in Markov decision processes. J. Comput. Syst. Sci., 84:144–170, 2017.
doi:10.1016/j.jcss.2016.09.009.

11 Tomás Brázdil, Vojtech Forejt, Antonín Kucera, and Petr Novotný. Stability in Graphs and
Games. In Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on
Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59
of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.CONCUR.2016.10.

12 Thomas Brihaye, Florent Delgrange, Youssouf Oualhadj, and Mickael Randour. Life is Random,
Time is Not: Markov Decision Processes with Window Objectives. CoRR, abs/1901.03571,
2019. arXiv:1901.03571.

13 Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet
your expectations with guarantees: Beyond worst-case synthesis in quantitative games. Inf.
Comput., 254:259–295, 2017. doi:10.1016/j.ic.2016.10.011.

14 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 September
2016., volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

15 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the Complexity of
Heterogeneous Multidimensional Games. In Josée Desharnais and Radha Jagadeesan, editors,
27th International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada, volume 59 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

16 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasipolynomial time. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 252–263. ACM,
2017. doi:10.1145/3055399.3055409.

17 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking
at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015. doi:
10.1016/j.ic.2015.03.010.

18 Krishnendu Chatterjee and Monika Henzinger. Efficient and Dynamic Algorithms for Alter-
nating Büchi Games and Maximal End-Component Decomposition. J. ACM, 61(3):15:1–15:40,
2014. doi:10.1145/2597631.

19 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in omega-
regular games. ACM Trans. Comput. Log., 11(1):1:1–1:27, 2009. doi:10.1145/1614431.
1614432.

https://doi.org/10.4230/LIPIcs.ICALP.2017.121
http://arxiv.org/abs/1812.09298
https://doi.org/10.4204/EPTCS.277.18
https://doi.org/10.1016/j.jcss.2016.09.009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.10
https://doi.org/10.4230/LIPIcs.CONCUR.2016.10
http://arxiv.org/abs/1901.03571
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.4204/EPTCS.226.10
https://doi.org/10.4230/LIPIcs.CONCUR.2016.11
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1016/j.ic.2015.03.010
https://doi.org/10.1145/2597631
https://doi.org/10.1145/1614431.1614432
https://doi.org/10.1145/1614431.1614432

T. Brihaye, F. Delgrange, Y. Oualhadj, and M. Randour 8:17

20 Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantitative stochastic
parity games. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-
14, 2004, pages 121–130. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.
982808.

21 Wojciech Czerwinski, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdzinski, Ranko Lazic,
and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. CoRR, abs/1807.10546, 2018. arXiv:1807.10546.

22 Laure Daviaud, Marcin Jurdzinski, and Ranko Lazic. A pseudo-quasi-polynomial algorithm
for mean-payoff parity games. In Anuj Dawar and Erich Grädel, editors, Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 325–334. ACM, 2018. doi:10.1145/3209108.3209162.

23 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A Storm is
Coming: A Modern Probabilistic Model Checker. In Rupak Majumdar and Viktor Kuncak,
editors, Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer
Science, pages 592–600. Springer, 2017. doi:10.1007/978-3-319-63390-9_31.

24 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-
complete. Inf. Comput., 243:26–36, 2015. doi:10.1016/j.ic.2014.12.004.

25 Nathanaël Fijalkow, Pawel Gawrychowski, and Pierre Ohlmann. The complexity of mean
payoff games using universal graphs. CoRR, abs/1812.07072, 2018. arXiv:1812.07072.

26 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer, 1997.
27 Thomas Gawlitza and Helmut Seidl. Games through Nested Fixpoints. In Ahmed Bouajjani

and Oded Maler, editors, Computer Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in
Computer Science, pages 291–305. Springer, 2009. doi:10.1007/978-3-642-02658-4_24.

28 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume
2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/3-540-36387-4.

29 Charles M. Grinstead and J. Laurie Snell. Introduction to probability. American Mathematical
Society, 1997.

30 Christoph Haase and Stefan Kiefer. The Odds of Staying on Budget. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 234–246.
Springer, 2015. doi:10.1007/978-3-662-47666-6_19.

31 Arnd Hartmanns, Sebastian Junges, Joost-Pieter Katoen, and Tim Quatmann. Multi-cost
Bounded Reachability in MDP. In Dirk Beyer and Marieke Huisman, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 24th International Conference,
TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II,
volume 10806 of Lecture Notes in Computer Science, pages 320–339. Springer, 2018. doi:
10.1007/978-3-319-89963-3_19.

32 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean payoff through
foggy windows. Acta Inf., 55(8):627–647, 2018. doi:10.1007/s00236-017-0304-7.

33 Neil Immerman. Number of Quantifiers is Better Than Number of Tape Cells. J. Comput.
Syst. Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

34 Marcin Jurdzinski. Deciding the Winner in Parity Games is in UP ∩ co-UP. Inf. Process.
Lett., 68(3):119–124, 1998. doi:10.1016/S0020-0190(98)00150-1.

35 Mickael Randour. Automated Synthesis of Reliable and Efficient Systems Through Game
Theory: A Case Study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII,
pages 731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

CONCUR 2019

http://dl.acm.org/citation.cfm?id=982792.982808
http://dl.acm.org/citation.cfm?id=982792.982808
http://arxiv.org/abs/1807.10546
https://doi.org/10.1145/3209108.3209162
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1016/j.ic.2014.12.004
http://arxiv.org/abs/1812.07072
https://doi.org/10.1007/978-3-642-02658-4_24
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-662-47666-6_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/978-3-319-89963-3_19
https://doi.org/10.1007/s00236-017-0304-7
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1007/978-3-319-00395-5_90

8:18 Life Is Random, Time Is Not: Markov Decision Processes with Window Objectives

36 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Variations on the Stochastic
Shortest Path Problem. In Deepak D’Souza, Akash Lal, and Kim Guldstrand Larsen, editors,
Verification, Model Checking, and Abstract Interpretation - 16th International Conference,
VMCAI 2015, Mumbai, India, January 12-14, 2015. Proceedings, volume 8931 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2015. doi:10.1007/978-3-662-46081-8_1.

37 Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-
dimensional Markov decision processes. Formal Methods in System Design, 50(2-3):207–248,
2017. doi:10.1007/s10703-016-0262-7.

38 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending Finite-Memory Determinacy
by Boolean Combination of Winning Conditions. In Sumit Ganguly and Paritosh K. Pandya,
editors, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, volume 122 of
LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.FSTTCS.2018.38.

39 Stephen D. Travers. The complexity of membership problems for circuits over sets of integers.
Theor. Comput. Sci., 369(1-3):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

40 Moshe Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Programs.
In Proc. of FOCS, pages 327–338. IEEE, 1985.

https://doi.org/10.1007/978-3-662-46081-8_1
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.1016/j.tcs.2006.08.017

	Introduction
	Preliminaries
	Window objectives
	Fixed case: better safe than sorry
	The case of end-components
	General MDPs
	Limitations and perspectives

