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Abstract
We study Markov decision processes and turn-based stochastic games with parity conditions. There
are three qualitative winning criteria, namely, sure winning, which requires all paths to satisfy the
condition, almost-sure winning, which requires the condition to be satisfied with probability 1, and
limit-sure winning, which requires the condition to be satisfied with probability arbitrarily close
to 1. We study the combination of two of these criteria for parity conditions, e.g., there are two
parity conditions one of which must be won surely, and the other almost-surely. The problem
has been studied recently by Berthon et al. for MDPs with combination of sure and almost-sure
winning, under infinite-memory strategies, and the problem has been established to be in NP∩co-NP.
Even in MDPs there is a difference between finite-memory and infinite-memory strategies. Our
main results for combination of sure and almost-sure winning are as follows: (a) we show that
for MDPs with finite-memory strategies the problem is in NP ∩ co-NP; (b) we show that for turn-
based stochastic games the problem is co-NP-complete, both for finite-memory and infinite-memory
strategies; and (c) we present algorithmic results for the finite-memory case, both for MDPs and
turn-based stochastic games, by reduction to non-stochastic parity games. In addition we show
that all the above complexity results also carry over to combination of sure and limit-sure winning,
and results for all other combinations can be derived from existing results in the literature. Thus
we present a complete picture for the study of combinations of two qualitative winning criteria for
parity conditions in MDPs and turn-based stochastic games.
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1 Introduction

Stochastic games and parity conditions. Two-player games on graphs are an important
model to reason about reactive systems, such as, reactive synthesis [21, 32] and open reactive
systems [2]. To reason about probabilistic behaviors of reactive systems, such games are
enriched with stochastic transitions, and this gives rise to models such as Markov decision
processes (MDPs) [25, 33] and turn-based stochastic games [22]. While these games provide
the model for stochastic reactive systems, the specifications for such systems that describe the
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6:2 Combinations of Qualitative Winning for Stochastic Parity Games

Table 1 Summary of Results for Sure-Almost-sure as well as Sure-Limit-sure Winning for Parity
Conditions. New results are boldfaced. The reductions give algorithmic results from algorithms for
non-stochastic games.

Model Finite-memory Infinite-memory
MDPs NP ∩ co-NP NP ∩ co-NP [5]

Reduction to non-stochastic parity games
Turn-based co-NP-complete co-NP-complete
stochastic game Reduction to non-stochastic games

with conjunction of parity conditions

desired non-terminating behaviors are typically ω-regular conditions [35]. The class of parity
winning conditions can express all ω-regular conditions, and has emerged as a convenient and
canonical specification for algorithmic studies in the analysis of stochastic reactive systems.

Qualitative winning criteria. In the study of stochastic games with parity conditions, there
are three basic qualitative winning criteria, namely, (a) sure winning, which requires all
possible paths to satisfy the parity condition; (b) almost-sure winning, which requires the
parity condition to be satisfied with probability 1; and (c) limit-sure winning, which requires
the parity condition to be satisfied with probability arbitrarily close to 1. For MDPs and
turn-based stochastic games with parity conditions, almost-sure winning coincides with limit-
sure winning, however, almost-sure winning is different from sure winning [9]. Moreover, for
all the winning criteria above, if a player can ensure winning, she can do so with memoryless
strategies, that do not require to remember the past history of the game. All the above
decision problems belong to NP ∩ co-NP, and the existence of polynomial-time algorithm is
a major open problem.

Combination of multiple conditions. While traditionally MDPs and stochastic games have
been studied with a single condition with respect to different winning criteria, in recent studies
combinations of winning criteria has emerged as an interesting problem. An example is the
beyond worst-case synthesis problem that combines the worst-case adversarial requirement
with probabilistic guarantee [7]. Consider the scenario that there are two desired conditions,
one of which is critical and cannot be compromised at any cost, and hence sure winning must
be ensured, whereas for the other condition the probabilistic behavior can be considered.
Since almost-sure and limit-sure provide the strongest probabilistic guarantee, this gives rise
to stochastic games where one condition must be satisfied surely, and the other almost-surely
(or limit-surely). The setting of two objectives have been considered in several prior works;
such as in [1], where the primary objective is parity objective and the secondary objective is
a quantitative mean-payoff objective; and in [5], where both the primary and the secondary
objectives are different parity objectives, but for MDPs.

Previous results and open questions. While MDPs and turn-based stochastic games with
parity conditions have been widely studied in the literature (e.g., [23, 24, 3, 14, 15, 9]), the
study of combination of different qualitative winning criteria is recent. The problem has been
studied only for MDPs with sure winning criteria for one parity condition, and almost-sure
winning criteria (also probabilistic threshold guarantee) for another parity condition, and it
has been established that even in MDPs infinite-memory strategies are required, and the
decision problem lies in NP ∩ co-NP [5]. While the existence of infinite-memory strategies
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Table 2 Conjunctions of various qualitative winning criteria.

Criterion 1 Criterion 2 Solution Method
Sure ψ1 Sure ψ2 Sure (ψ1 ∧ ψ2)
Sure ψ1 Almost-sure ψ2 This work
Sure ψ1 Limit-sure ψ2 This work

Almost-sure ψ1 Almost-sure ψ2 Almost-sure (ψ1 ∧ ψ2)
Almost-sure ψ1 Limit-sure ψ2 Almost-sure (ψ1 ∧ ψ2)
Limit-sure ψ1 Limit-sure ψ2 Almost-sure (ψ1 ∧ ψ2)

represent the general theoretical problem, many important questions have been left open
for the problem where both objectives are parity objectives. For example, (i) the analysis
for games, which is relevant in reactive synthesis, and (ii) finite-memory strategy synthesis,
which represents the synthesis of practical controllers (such as Mealy or Moore machines).
In this work we present answers to these open questions, with optimal complexity results.

Our results. In this work our main results are as follows:
1. For MDPs with finite-memory strategies, we show that the combination of sure winning

and almost-sure winning for parity conditions also belong to NP∩ co-NP, and we present
a linear reduction to parity games. Our reduction implies a quasi-polynomial time
algorithm, and also polynomial time algorithm as long as the number of indices for the
sure winning parity condition is logarithmic. Note that no such algorithmic result is
known for the infinite-memory case for MDPs.

2. For turn-based stochastic games, we show that the combination of sure and almost-sure
winning for parity conditions is a co-NP-complete problem, both for finite-memory as
well as infinite-memory strategies. For the finite-memory strategy case we present a
reduction to non-stochastic games with conjunction of parity conditions, which implies a
fixed-parameter tractable algorithm, as well as a polynomial-time algorithm as long as
the number of indices of the parity conditions are logarithmic.

3. Finally, while for turn-based stochastic parity games almost-sure and limit-sure winning
coincide, we show that in contrast, while ensuring one parity condition surely, limit-sure
winning does not coincide with almost-sure winning even for MDPs. However, we show
that all the above complexity results established for combination of sure and almost-sure
winning also carry over to sure and limit-sure winning.

Our main results are summarized in Table 1. In addition to our main results, we also argue
that our results complete the picture of all possible conjunctions of two qualitative winning
criteria as follows: (a) conjunctions of sure (or almost-sure) winning with conditions ψ1 and ψ2
is equivalent to sure (resp., almost-sure) winning with the condition ψ1 ∧ψ2 (the conjunction
of the conditions); (b) by determinacy and since almost-sure and limit-sure winning coincide
for ω-regular conditions, if the conjunction of ψ1 ∧ ψ2 cannot be ensured almost-surely, then
the opponent can ensure that at least one of them is falsified with probability bounded
away from zero; and thus conjunction of almost-sure winning with limit-sure winning, or
conjunctions of limit-sure winning coincide with conjunction of almost-sure winning. This
is illustrated in Table 2 and shows that we present a complete picture of conjunctions of
two qualitative winning criteria in MDPs and turn-based stochastic games. Full proofs are
available in a technical report [18].
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6:4 Combinations of Qualitative Winning for Stochastic Parity Games

Related work. We have already mentioned the most important related works above. We
discuss other related works here. MDPs with multiple Boolean as well as quantitative
objectives have been widely studied in the literature [17, 24, 26, 6, 16]. For non-stochastic
games combination of various Boolean objectives is conjunction of the objectives, and such
games with multiple quantitative objectives have been studied in the literature [36, 11].
For turn-based stochastic games, the general analysis of multiple quantitative objectives is
intricate, and they have been only studied for special cases, such as, reachability objectives [20]
and almost-sure winning [4, 10]. However none of these above works consider combinations
of qualitative winning criteria. The problem of beyond worst-case synthesis has been studied
for MDPs with various quantitative objectives [7, 34], such as long-run average, shortest
path, and for parity objectives [5]. In particular [5] studies the problem of satisfying one
parity objective surely and maximizing the probability of satisfaction of another parity
objective in MDPs with infinite-memory strategies. We extend the literature of the study
of beyond worst-case synthesis problem for parity objectives by considering combinations
of qualitative winning in both MDPs and turn-based stochastic games, and the distinction
between finite-memory and infinite-memory strategies. Thus in contrast to [5] we do not
consider optimal probability of satisfaction, but consider turn-based stochastic games as well
as finite-memory strategies.

2 Background

For a countable set S let D(S) = {d : S → [0, 1] | ∃T ⊆ S such that |T | ∈ N,∀s /∈ T . d(s) =
0 and Σs∈T d(s) = 1} be the set of discrete probability distributions with finite support over
S. A distribution d is pure if there is some s ∈ S such that d(s) = 1.

A stochastic turn-based game is G = (V, (V0, V1, Vp), E, κ), where V is a finite set of
configurations, V0, V1, and Vp form a partition of V to Player 0, Player 1, and stochastic
configurations, respectively, E ⊆ V × V is the set of edges, and κ : Vp → D(V ) is a
probabilistic transition for configurations in Vp such that κ(v, v′) > 0 implies (v, v′) ∈ E.
If either V0 = ∅ or V1 = ∅ then G is a Markov Decision Process (MDP). If both V0 = ∅
and V1 = ∅ then G is a Markov Chain (MC). If Vp = ∅ then G is a turn-based game
(non-stochastic). For an MC M , an initial configuration v, and a measurable set of paths
W ⊆ V ω, let ProbMv

(W ) denote the measure of W .
A set of plays W ⊆ V ω is a parity condition if there is a parity priority function

α : V → {0, . . . , d}, with d as its index, such that a play π = v0, v1, . . . is in W iff
min{c ∈ {0, . . . , d} | ∃∞i . α(vi) = c} is even. A parity condition with d = 1 is a Büchi
condition identified with the set B = α−1(0). A parity condition with d = 2 and α−1(0) = ∅
is a co-Büchi condition identified with the set C = α−1(1).

A strategy σ for Player 0 is σ : V ∗ · V0 → D(V ), such that σ(w · v)(v′) > 0 implies
(v, v′) ∈ E. A strategy π for Player 1 is defined similarly. A strategy is pure if it uses
only pure distributions. Let w range over V ∗ and v over V . A strategy for Player 0
uses memory m if there is a domain M of size m with an initial value m0 ∈ M and
two functions σs : M × V0 → D(V ) and σu : M × V → M such that for v ∈ V0 we have
σ(v) = σs(m0, v0) and σ(w ·v) = σs(mw, v), wheremv0 = σm(v0,m0) andmw·v = σm(mw, v).
Two strategies σ and π for both players and an initial configuration v ∈ V induce a Markov
chain v(σ, π) = (S(v), (∅, ∅, S(v)), E′, κ′), where S(v) = {v} · V ∗, E′ = {(w,w · v)}, and if
v ∈ V0 we have κ′(wv) = σ(wv), if v ∈ V1 we have κ′(wv) = π(wv) and if v ∈ Vp then for
every w ∈ V ∗ and v′ ∈ V we have κ′(wv,wvv′) = κ(v, v′). We denote the set of strategies
for Player 0 by Σ and the set of strategies for Player 1 by Π.
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For a game G, an ω-regular set of plays W , and a configuration v, the value of W from
v for Player 0, denoted val0(W, v), and for Player 1, denoted val1(W, v), are val0(W, v) =
sup
σ∈Σ

inf
π∈Π

Probv(σ,π)(W ) and val1(W, v) = sup
π∈Π

inf
σ∈Σ

(
1− Probv(σ,π)(W )

)
.

We say that Player 0 wins W surely from v if ∃σ ∈ Σ . ∀π ∈ Π . v(σ, π) ⊆ W , where
by v(σ, π) ⊆W we mean that all paths in v(σ, π) are in W . We say that Player 0 wins W
almost surely from v if ∃σ ∈ Σ . ∀π ∈ Π . Probv(σ,π)(W ) = 1. We say that Player 0 wins W
limit surely from v if ∀r < 1 . ∃σ ∈ Σ . ∀π ∈ Π . Probv(σ,π)(W ) ≥ r. In a given setup (e.g,
almost-sure) if Player 0 cannot win we say that Player 1 wins. A strategy σ for Player 0 is
optimal if val0(W, v) = inf

π∈Π
Probv(σ,π)(W ). Optimality for Player 1 is defined similarly.

A game with condition W is determined if for every configuration v we have val0(W, v) +
val1(W, v) = 1.

3 Sure-Almost-Sure MDPs

Berthon et al. considered the case of MDPs with two parity conditions and finding a strategy
that has to satisfy one of the conditions surely and satisfy a given probability threshold with
respect to the other [5]. Here we consider the case that the second condition has to hold
with probability 1. We consider winning conditions composed of two parity conditions. The
goal of Player 0 is to have one strategy such that she can win surely for the sure winning
condition and almost-surely for the almost-sure winning condition. The authors of [5] show
that optimal strategies exist in this case and that it can be decided whether Player 0 can
win. Here we revisit their claim that Player 0 may need infinite memory in order to win
in such an MDP. We then show that checking whether she can win using a finite-memory
strategy is simpler than deciding if there is a general winning strategy.

Given a set of configurations V , a sure-almost-sure winning condition is W = (Ws,Was),
where Ws ⊆ V ω and Was ⊆ V ω are two parity winning conditions. A sure-almost-sure (SAS)
MDP is G = (V, (V0, Vp), E, κ,W), where all components are as before and where W is a
sure-almost-sure winning condition. Strategies for Player 0 are defined as before. We say
that Player 0 wins from configuration v if the same strategy σ is winning surely with respect
to Ws and almost-surely with respect to Was.

I Theorem 1 ([5]). In a finite SAS parity MDP deciding whether a configuration v is winning
for Player 0 is in NP ∩ co-NP. Furthermore, there exists an optimal infinite-state strategy
for the joint goal.

There exist SAS MDPs where Player 0 wins but not with finite-memory.

I Theorem 2 ([5]). For SAS MDPs finite-memory strategies do not capture winning.

In the proof (in [18]) we revisit the MDP in Figure 1 (due to [5]) and repeat their argument
showing that there is an infinite-memory strategy that can win both the sure (visit {l, r}
infinitely often) and almost-sure (visit {r} finitely often) winning conditions. Intuitively,
longer and longer attempts to reach l at c ensure infinitely many visits to {l, r} and finitely
many visits to r with probability 1. We present a detailed proof that every finite-memory
strategy winning almost-surely is losing with respect to the sure winning condition.

The following theorem is proven by a chain of reductions (see proof in [18]). First, reduce
the winning in an SAS MDP to the winning in an SAS MDP where the almost-sure winning
condition is a Büchi condition. Second, we reduce the winning in an SAS MDP with a Büchi
almost-sure winning condition to the winning in a (non-stochastic) game with the winning

CONCUR 2019
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l
(0, 2)

p

(1, 2)
c

(1, 2)
r

(0, 1)1
2

1
2

Figure 1 An SAS MDP where Player 0 requires infinite memory to win [5]. Configuration p is
probabilistic and configurations l, c, and r are Player 0 configurations. The parity is induced by
the following priorities αs(l) = αs(r) = 0, αs(p) = αs(c) = 1, and αas(r) = 1 and αas(l) = αas(c) =
αas(p) = 2.

condition a conjunction of parity and Büchi. This is a special case of Theorem 8. Third, we
reduce the winning in a game with a winning condition that is the conjunciton of parity and
Büchi to winning in a parity game. Formally, we have the following.

I Theorem 3. In order to decide whether it is possible to win an SAS MDP with n locations
and indices ds and das with finite memory it is sufficient to solve a (non-stochastic) parity
game with O(n · ds · das) configurations and index ds. Furthermore, ds is a bound on the size
of the required memory in case of a win.

I Corollary 4. Consider an SAS MDP with n configurations, sure winning condition of
index ds, and almost-sure winning condition of index das. Checking whether Player 0 can
win with finite-memory can be computed in quasi-polynomial time. In case that ds ≤ logn it
can be decided in polynomial time.

Proof. This is a direct result of Theorem 3 and the quasi-polynomial algorithm for solving
parity games in [8, 30]. J

4 Sure-Almost-Sure Parity Games

We now turn our attention to sure-almost-sure parity games.
A sure-almost-sure (SAS) parity game is G = (V, (V0, V1, Vp), E, κ,W), where all com-

ponents are as before and W consists of two parity conditions Ws ⊆ V ω and Was ⊆ V ω.
Strategies and the resulting Markov chains are as before. We say that Player 0 wins G from
configuration v if she has a strategy σ such that for every strategy π of Player 1 we have
v(σ, π) ⊆Ws and Probv(σ,π)(Was) = 1. That is, Player 0 has to win for sure (on all paths)
with respect to Ws and with probability 1 with respect to Was. Otherwise, Player 1 wins.

4.1 Determinacy
We start by showing that SAS parity games are determined.

I Theorem 5. SAS parity games are determined.

In the proof (in [18]) we use a reduction similar to Martin’s proof that Blackwell games
are determined [31]. We reduce SAS games to turn-based two-player games in a way that
preserves winning.

4.2 General Winning
We show that determining whether Player 0 has a (general) winning strategy in an SAS
parity game is co-NP-complete and that for Player 1 memoryless strategies are sufficient and
that deciding her winning is NP-complete.
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v
pas(v)

(ṽ, 0)pas(v) (ṽ, 2)
pas(v)

(v̂, 0)0 (v̂, 1) 1 (v̂, 2) 2 (v̂, 3) 3 (v̂, 4)
4

(ṽ, 4)
pas(v) · · ·

· · ·

(ṽ, p
pas(v)

as(v)+1)

(v̂, p
pas(v)

as(v))

succ(v) succ(v) succ(v) succ(v) succ(v) succ(v)

Figure 2 Gadget replacing probabilistic configurations for a configuration with odd parity.

I Theorem 6. In an SAS parity game Player 1 has optimal memoryless strategies.

The proof (in [18]) is by an inductive argument over the number of configurations of
Player 1 (similar to that done in [28, 27, 10]).

I Corollary 7. Consider an SAS parity game. Deciding whether Player 1 wins is NP-complete
and whether Player 0 wins is co-NP-complete.

Proof. Consider the case of Player 1. The optimal strategy for Player 1 is memoryless.
Fixing Player 1’s strategy in the game results in an SAS MDP. According to Theorem 1, the
winning for Player 0 in SAS MDPs is in NP∩co-NP. The NP algorithm is as follows: it guess
the memoryless strategy of Player 1 in the game, and the required polynomial witness of the
SAS MDP, and use the polynomial-time verification procedure of the SAS MDP given the
witness.1 Hardness is by considering SAS games with no stochastic configurations [13].

Consider the case of Player 0. Membership in co-NP follows from dualizing the previous
argument about membership in NP and determinacy. Hardness follows from considering
SAS games with no stochastic configurations [13]. J

4.3 Winning with Finite Memory
We show that in order to check whether Player 0 can win with finite memory it is enough to
use the standard reduction from almost-sure winning in two-player stochastic parity games
to sure winning in two-player parity games [15].

I Theorem 8. In a finite SAS parity game with n locations and das almost-sure index
deciding whether a node v is winning for Player 0 with finite memory can be decided by a
reduction to a two-player (non-stochastic) game with O(n · das) locations, where the winning
condition is the intersection of two parity conditions of indices ds and das.

The proof has the following steps: Given an SAS parity game G, we construct a non-
stochastic game G′ with conjunction of two objectives with a mapping between configurations
of G and G′. We show that we can win from a configuration in G if and only if we can

1 Note that we do not require a general NP algorithm with NP ∩co-NP oracle (such algorithms can
make polynomially many queries to the oracle, as well as adaptive queries where queries can depend
on answers of previous queries). Instead we have a NP algorithm with a single query to a NP∩co-NP
oracle, and outputs the answer of the oracle, and thus can be implemented by a single NP algorithm.
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win from its mapped configuration in G′. In one direction, we show that given winning
strategy in G′, we can construct winning strategy in G (from the mapped configurations).
The construction of the winning strategy is based on the translation of a ranking function in
G′ to an almost-sure ranking function in G. Such a ranking function ensures winning the
SAS objective in G. In the other direction, we show that given a winning strategy in G, we
can construct a winning strategy in G′ (from the mapped configurations). As before, the
construction of the winning strategy is based on the translation of a ranking function in G
to a ranking function in G′.

Proof. Let G = (V, (V0, V1, Vp), E, κ,W). Let pas : V → [0..das] be the parity priority
function that induces Was and ps : V → [0..ds] be the parity priority function that induces
Ws. Without loss of generality assume that both ds and das are even.

Given G we construct the game G′ where every configuration v ∈ Vp is replaced by the
gadget in Figure 2. That is, G′ = (V ′, (V ′0 , V ′1), E′, κ′,W ′), with the following components:

V ′0 = V0 ∪
{

(ṽ, 2i), (v̂, 2j − 1)
∣∣∣∣ v ∈ Vp, 2i ∈ [0..pas(v) + 1],
and 2j − 1 ∈ [1..pas(v)]

}
V ′1 = V1 ∪ {v, (v̂, 2i) | v ∈ Vp and 2i ∈ [0..pas(v)]}
E′ = {(v, w) | (v, w) ∈ E ∩ (V0 ∪ V1)2} ∪ {(v, w) | (v, w) ∈ E ∩ (V0 ∪ V1)× Vp} ∪
{((v̂, j), w) | (v, w) ∈ E ∩ Vp × (V0 ∪ V1)} ∪ {((v̂, j), w) | (v, w) ∈ E ∩ V 2

p } ∪
{(v, (ṽ, 2i)) | v ∈ Vp} ∪ {((ṽ, 2i), (v̂, j)) | v ∈ Vp and j ∈ {2i, 2i− 1}}
W ′ = W ′s ∩W ′as, where W ′s and W ′as are the parity winning sets that are induced by the
following priority functions.

p′as(t) =


pas(t) t ∈ V0 ∪ V1
pas(v) t ∈ {v, (ṽ, 2i)}
j t = (v̂, j)

p′s(t) =
{
ps(t) t ∈ V0 ∪ V1
ps(v) t ∈ {v, (ṽ, 2i), (v̂, j)}

We show that Player 0 surely wins from a configuration v ∈ V0 ∪ V1 in G′ iff she wins
from v in G with a pure finite-memory strategy and she wins from v ∈ V ′ in G′ iff she wins
from v in G with a pure finite-memory strategy.

The game G′ is a linear game whose winning condition (for Player 0) is an intersection of
two parity conditions. It is known that such games are determined and that the winning
sets can be computed in NP ∩ co-NP [13]. Indeed, the winning condition for Player 0
can be expressed as a Streett condition, and hence her winning can be decided in co-NP.
The winning condition for Player 1 can be expressed as a Rabin condition, and hence her
winning can be decided in NP. It follows that V ′ can be partitioned to W ′0 and W ′1, the
winning regions of Player 0 and Player 1, respectively. Furthermore, Player 0 has a pure
finite-memory winning strategy for her from every configuration in W ′0 and Player 1 has a
pure memoryless winning strategy for her from every configuration in W ′1. Let σ′0 denote
the winning strategy for Player 0 on W ′0 and π′1 denote the winning strategy for Player 1
on W ′1. Let M be the memory domain used by σ′0. As σ′0 is pure, we can think about it as
σ′0 ⊆ V ′ ×M → V ′ ×M , where for every m ∈M and v ∈ V ′0 there is a unique w ∈ V and
m′ ∈M such that ((v,m), (w,m′)) ∈ σ′ and for every m ∈M and v ∈ V ′1 and w such that
(v, w) ∈ E′ there is a unique m′ such that ((v,m), (w,m′)) ∈ σ′0. We freely say σ′0 chooses v′
from (v,m) for the unique v′ such that (v,m, v′,m′) ∈ σ′0 for some m′ and σ′0 updates the
memory to m′. Similarly, a pure strategy in G can be described as σ ⊆ (V ×M)2 where
stochastic configurations are handled like Player 1 configuration in term of memory update
for all successors as above. By abuse of notation we refer to the successor of a configuration
v in G′ and mean either w or w according to the context.
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⇐ We show that every configuration v ∈ W ′0 that is winning for Player 0 in G′ is in the
winning region W0 of Player 0 in G. Consider the strategy σ′0 ⊆ (V ′×M)2. We construct
a winning strategy σ0 ⊆ (V ×M)2, induced by σ′0 as follows:

For a configuration-memory (cm) pair (v,m) ∈ V0 ×M there is a unique cm pair
(v′,m′) such that (v,m, v′,m′) ∈ σ′0. We set (v,m, v′,m′) ∈ σ0.
For a cm pair (v,m) ∈ V1×M and for every successor w of v there is a unique memory
value m′ such that (v,m,w,m′) ∈ σ′0. We set (v,m,w,m′) ∈ σ0.
Consider a cm pair (v,m) ∈ Vp ×M . As v is a Player 1 configuration in G′, for every
configuration (ṽ, 2i) there is a uniqye m′ such that (v,m, (ṽ, 2i),m′) ∈ σ′0.
∗ If for some i we have that the choice from (ṽ, 2i) according to σ′0 is (v̂, 2i− 1). Then,

let i0 be the minimal such i and let w0 be the successor of v such that the choice of
σ′0 from (v̂, 2i0− 1) is w0. We update in σ0 the tuple (v,m,w0,m

′), where m′ is the
memory resulting from taking the path v, (ṽ, 2i0), (v̂, 2i0− 1), w0 in G′ based on σ′0.
We update in σ0 the tuple (v,m,w′,mw′) for w′ 6= w0, where mw′ is the memory
resulting from taking the path v, (ṽ, 2i0 − 2), (v̂, 2i0 − 2), w′. Notice that as i0 is
chosen to be the minimal the choice from (ṽ, 2i0 − 2) to (v̂, 2i0 − 2) is compatible
with σ′0, where 2i0 − 2 could be 0.

∗ If for all i we have that the choice from (ṽ, 2i) according to σ′0 is (v̂, 2i). Then,
for every w successor of v we update in σ0 the tuple (v,m,w,m′), where m′ is the
memory resulting from taking the path v, (ṽ, pas(v)), (v̂, pas), w.

Notice that if pas(v) is odd then the first case always holds as the only successor of
(ṽ, pas(v) + 1) is (v̂, pas(v)).

The resulting strategy σ0 includes no further decisions for Player 0. Consider the winning
condition Ws. Every path in G that is consistent with σ0 (with proper memory updates)
corresponds to a path in G′ that is consistent with σ′0 (with the same memory updates)
and agrees on the parities of all configurations according to ps. Indeed, every configuration
of the form (ṽ, 2i) or (v̂, j) in G′ has the same priority according to ps as v (and v in
G). As every path consistent with σ′0 is winning according to W ′s then every path in G
consistent with σ is winning according to Ws.
We turn our attention to consider only the parity condition pas in both G′ and G. We
think about G′ as a parity game with the winning condition W ′as and about G as a
stochastic parity game with the winning condition Was. As σ′0 is winning, all paths in G′
(with proper memory updates) are winning for Player 0 according to W ′as.
We recall some definitions and results from [15]. For k ≤ das, let k denote k if k is odd and
k − 1 if k is even. A parity ranking for Player 0 is ~r : V ′ ×M → [n]das/2 ∪ {∞} for some
n ∈ N, where [n] denotes {0, . . . , n}. For a configuration v, Let ~r(v) = (r1, . . . , rd) and
~r(v′) = (r′1, . . . , r′d), where d = das/2. For v, we denote by ~rk(v) the prefix (r1, r3, . . . , rk)
of ~r(v). We write ~r(v) ≤k ~r(v′) if the prefix (r1, . . . rk) is at most (r′1, . . . , r′k) according
to the lexicographic ordering. Similarly, we write ~r(v) <k ~r(v′) if (r1, . . . rk) is less than
(r′1, . . . , r′k) according to the lexicographic ordering.
A parity ranking is good if (i) for every vertex v ∈ V0 and memory m ∈ M there is
a vertex w ∈ succ(v) and m′ ∈ M such that ~r(w,m′) ≤p(v) ~r(v,m) and if p(v) is odd
then ~r(w,m′) <p(v) ~r(v,m) and (ii) for every vertex v ∈ V1, memory m ∈M , and vertex
w ∈ succ(v) it holds that there is a m′ ∈ M such that ~r(w,m′) ≤p(v) ~r(v,m) and if
p(v) is odd then ~r(w,m′) <p(v) ~r(v,m). It is well known that in a parity game (here
G′ combined with the strategy σ′0) there is a good parity ranking such that for every
v ∈ W ′0 and memory m ∈ M we have ~r(v,m) 6= ∞ [29]. Let ~r be the good parity
ranking for G′. Consider the same ranking for G with the same memory M . For a cm
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6:10 Combinations of Qualitative Winning for Stochastic Parity Games

pair (v,m) ∈ Vp ×M , we write Probv,m(~r≤k
) for the probability (according to κ) of

successors w of v such that for some memory values mw we have ~r(w,mw) ≤k ~r(v,m)
and Probv,m(~r<k

) for the probability of successors w of v such that for some memory
values mw we have ~r(w,mw) <k ~r(v,m).
I Definition 9 (Almost-sure ranking [14]). A ranking function ~r : V ×M → [n]das/2∪{∞}
for Player 0 is an almost-sure ranking if there is an ε ≥ 0 such that for every pair (v,m)
with r(v,m) 6=∞, the following conditions hold:

If v ∈ V0 there exists a successor w and memory m′ such that ~r(w,m′) ≤p(v) ~r(v,m)
and if p(v) is odd then ~r(w,m′) <p(v) ~r(v,m).
If v ∈ V1 then for every successor w of v there is a memory m′ such that ~r(w,m′) ≤p(v)
~r(v,m) and if p(v) is odd then ~r(w,m′) <p(v) ~r(v,m).
If v ∈ Vp and p(v) is even then either Probv,m(~r≤p(v)−1) = 1 or∨

j=2i+1∈[1..p(v)]

(Probv,m(~r≤j−2) = 1 ∧ Probv,m(~r<j
) ≥ ε)

If v ∈ Vp and p(v) is odd then
∨

j=2i+1∈[1..p(v)]

(
Probv,m(~r≤j−2) = 1 ∧ Probv,m(~r<j

) ≥ ε
)

I Lemma 10 ([14]). A stochastic parity game has an almost-sure ranking iff Player 0
can win for the parity objective with probability 1 from every configuration v such that for
some m we have ~r(v,m) 6=∞.
The following lemma specializes a similar lemma in [14] for our needs.
I Lemma 11. The good ranking of G′ with M induces an almost-sure ranking of G
with M .

Proof. Let ε be the minimal probability of a transition in G. As G is finite ε exists.
For configurations in V0 ∪ V1 the definitions of good parity ranking and almost-sure
ranking coincide.
Consider a configuration v ∈ Vp a memory m ∈M and the matching configuration v. Let
p = pas(v). Consider the pair (v,m) in V ×M and (v,m) in V ′ ×M . We consider the
cases where p is even and when p is odd.

Suppose that p is even. If there is some minimal i such that the choice of σ′0 from
((ṽ, 2i),m′) in G′ is ((v̂, 2i− 1),m′′). Then, there is some w ∈ succ(v) and some m′′′
such that ~r(w,m′′′) <2i−1 ~r((v̂, 2i − 1),m′′) ≤p ~r((ṽ, 2i),m′) ≤p ~r(v,m). It follows
that Probv,m(~r<2i−1) ≥ ε. Furthermore, as i is minimal it follows that i 6= 0 and that
the choice of σ′0 from ((ṽ, 2i−2), n) is ((v̂, 2i−2), n′) and (ṽ, 2i−2) belongs to Player 1
in G′. Then, for every successor w of (v̂, 2i− 2) and for every memory value n′ there
is a memory value n′′′ such that

~r(w, n′′′) ≤2i−2 ~r((v̂, 2i− 2), n′′) ≤p ((ṽ, 2i− 2), n′) ≤p (v,m).

It follows that Probv,m(~r≤2i−2) = 1.
If there is no such i, then the choice of σ′0 from ((ṽ, p),m′) in G′ is ((v̂, p),m′′) and for
every w ∈ succ(v) there is some m′′′ such that

~r(w,m′′′) ≤p ~r((v̂, p),m′′) ≤p ~r((ṽ, p),m′) ≤p ~r(v,m).

If follows that Probv,m(~r≤p) = 1.
Suppose that p is odd. In this case there must be some minimal i such that the choice
of σ′0 from ((ṽ, 2i),m′) is ((v̂, 2i− 1),m′′). We can proceed as above. J
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As Player 0 has no further choices in G, it follows that the strategy σ0 defined above is
winning in G. That is, sure winning w.r.t. Ws and almost-sure winning w.r.t. Was.

⇒ In the proof (in [18]) we show how to use a winning finite-memory strategy in G to induce
a strategy in G′ and use a ranking argument to show that this strategy is winning. J

I Corollary 12. Consider an SAS turn-based stochastic parity game. Deciding whether
Player 0 can win with finite-memory is co-NP-complete. Deciding whether Player 1 can win
against finite-memory is NP-complete.

Proof. Upper bounds follow from the reductions to Streett and Rabin winning conditions.
Completeness follows from the case where the game has no stochastic configurations [13]. J

I Remark 13. The complexity established above in the case of finite-memory is the same as
that established for the general case in Corollary 7. However, this reduction gives us a clear
algorithmic approach to solve the case of finite-memory strategies. Indeed, in the general
case, the proof of the NP upper bound requires enumeration of all memoryless strategies, and
does not present an algorithmic approach, regardless of the indices of the different winning
conditions. In contrast our reduction for the finite-memory case to non-stochastic games
with conjunction of parity conditions and recent algorithmic results on non-stochastic games
with ω-regular conditions of [8] imply the following:

For the finite-memory case, we have a fixed parameter tractable algorithm that is
polynomial in the number of the game configurations and exponential only in the indices
to compute the SAS winning region.
For the finite-memory case, if both indices are constant or logarithmic in the number of
configurations, we have a polynomial time algorithm to compute the SAS winning region.

5 Sure-Limit-Sure Parity Games

In this section we extend our results to the case where the unsure goal is required to be met
with limit-sure certainty, rather than almost-sure certainty.

Sure-limit-sure parity games. A sure-limit-sure (SLS) parity game is, as before, G =
(V, (V0, V1, Vp), E, κ,W). We denote the second winning condition with the subscript ls, i.e.,
Wls. We say that Player 0 wins G from configuration v if she has a sequence of strategies
σi ∈ Σ such that for every i for every strategy π of Player 1 we have v(σi, π) ⊆ Ws and
Probv(σi,π)(Wls) ≥ 1− 1

i . That is, Player 0 has a sequence of strategies that are sure winning
(on all paths) with respect to Ws and ensure satisfaction probabilities approaching 1 with
respect to Wls.

5.1 Limit-Sure vs Almost-Sure
In MDPs and stochastic turn-based games with parity conditions almost-sure and limit-sure
winning coincide [9]. In contrast to the above result we present an example MDP where
in addition to surely satisfying one parity condition limit-sure winning with another parity
condition can be ensured, but almost-sure winning cannot be ensured. In other words, in
conjunction with sure winning, limit-sure winning does not coincide with almost-sure winning
even for MDPs. Such a result was established in [5] for MDPs with infinite-memory strategies.
We show the same holds for finite-memory strategies.
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(1, 1)
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Figure 3 An MDP where Player 0 can ensure sure winning and win limit-surely but cannot
win almost-surely. Configuration p is probabilistic and configurations l, c, and r are Player 0
configurations. The winning conditions are induced by the following priorities αs(l) = αs(r) = 0,
αs(p) = αs(c) = 1, and αls(r) = 0 and αls(l) = αls(c) = αls(p) = 1.

I Theorem 14. While satisfying one parity condition surely, the almost-sure winning set
for another parity condition is a strict subset of limit-sure winning set, even in the context
of MDPs with finite-memory strategies.

Proof. Consider the MDP in Figure 3. Clearly, Player 0 wins surely with respect to both
parity conditions in configuration r and Player 0 cannot win the condition Wls on l. In order
to win Ws the cycle between p and c has to be taken finitely often. Then, the edge from
c to l must be taken eventually. However, l is a sink that is losing with respect to Wls. It
follows, that Player 0 cannot win almost-surely with respect to Wls while winning surely
with respect to Ws.

On the other hand, for every ε > 0 there is a finite-memory strategy that is sure winning
with respect to Ws and wins with probability at least 1 − ε with respect to Wls. Indeed,
Player 0 has to choose the edge from c to p at least N times, where N is large enough such
that 1

2N < ε, and then choose the edge from c to l. Then, Player 0 wins surely with respect
to Ws (every play eventually reaches either l or r) and with probability more than 1− ε with
respect to Wls.

To summarize, Player 0 wins surely w.r.t. Ws and limit-surely w.r.t. Wls from both c
and p but cannot win almost-surely w.r.t. Wls from c and p. J

5.2 Solving SLS MDPs and Games
We first note that Player 1 has optimal memoryless strategies similar to the SAS case. The
proof (in [18]) reuses the proof of Theorem 6.

I Theorem 15. In an SLS parity game Player 1 has optimal memoryless strategies.

SLS MDPs. We now present the solution to winning in SLS MDPs. Given an SLS MDP G

with winning conditions Ws and Wls, we call the induced SAS MDP the MDP with winning
conditions Ws and Wls, where the latter is interpreted as an almost-sure winning condition.
We use the induced SAS MDP in the solution of the SLS MDP. The memory used in the
SLS part has to match the memory used for winning in the SAS part. That is, if Player 0 is
restricted to finite-memory in the SLS part of the game she has to consider finite-memory
strategies in the induced SAS MDP.

I Theorem 16. In a finite SLS parity MDP deciding whether a node v is winning for
Player 0 can be reduced to the limit-sure reachability while maintaining sure-parity. The
target of the limit-sure reachability is the winning region of the induced SAS partiy MDP.

Proof. SAS winning region A. Consider an MDP G = (V, (V0, Vp), E, κ,W), where W =
(Ws,Wls). Consider G as an SAS MDP and compute the set of configurations from which
Player 0 can win G. Let A ⊆ V denote this winning region and B = V \A be the complement
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region. Clearly, A is closed under probabilistic moves. That is, if v ∈ Vp ∩A then for every
v′ such that (v, v′) ∈ E we have v′ ∈ A. Furthermore, under Player 0’s winning strategy,
Player 0 does not use edges going back from A to B. It follows that we can consider A
as a sink in G.
Reduction to limit-sure reachability. We present the argument for finite-memory strategies for
Player 0, and the argument for infinite-memory strategies is similar. Consider an arbitrary
finite-memory strategy σ ∈ Σ, and consider the Markov chain that is the result of restricting
Player 0 moves according to σ.

Bottom SCC property. Let S be a bottom SCC (SCC that is only reachable from itself)
that intersects with B in the Markov chain. As explained above, it cannot be the case
that this SCC intersects A (since we consider A as sink due to the closed property). Thus
the SCC S must be contained in B. Thus, either S must be losing according to Ws or
the minimal parity in S according to Wls is odd, as otherwise in the region S Player 0
ensures sure winning wrt Ws and almost-sure winning wrt Wls, which means that S
belongs to the SAS winning region A. This contradicts that S is contained in B.
Reachability to A. In a Markov chain bottom SCCs are reached with probability 1,
and from the above item it follows that the probability to satisfy the Wls goal along
with ensuring Ws while reaching bottom SCCs in B is zero. Hence, the probability to
satisfy Wls along with ensuring Ws is at most the probability to reach A. On the other
hand, after reaching A, the SAS goal can be ensured by switching to an appropriate SAS
strategy in the winning region A, which implies that the SLS goal is ensured. Hence it
follows that the SLS problem reduces to limit-sure reachability to A, while ensuring the
sure parity condition Ws. J

I Remark 17. Note that for finite-memory strategies the argument above is based on
bottom SCCs. The SAS region for MDPs wrt to infinite-memory strategies is achieved by
characterizing certain strongly connected components (called Ultra-good end-components [5,
Definition 5]), and hence a similar argument as above also works for infinite-memory strategies
to show that SLS for infinite-memory strategies for two parity conditions reduces to limit-sure
reachability to the SAS region while ensuring the sure parity condition (however, in this case
the SAS region has to be computed for infinite-memory strategies).

Limit-sure reachability and sure parity in games. We consider the problem of Player 0
ensuring limit-sure reachability to target set A while preserving sure parity. We present the
solution for games (which subsumes the case of MDPs).

I Theorem 18. Consider an SLS Game, where the limit-sure condition is to reach a target
set A that is also winning for the sure condition. Player 0’s winning region is the limit-sure
reachability region to A within the winning region of the sure parity condition.

In one direction, in the limit-sure reachability to A within the sure winning region, the
limit-sure reachability strategy can be played to enforce high probability of winning for the
limit-sure winning condition and then revert to the sure-winning strategy. The combination
delivers an arbitrarily high probability of reaching A as well as sure winning. In the other
direction, a strategy that wins limit-sure reachability to A and sure-winning with respect
to the sure condition is clearly restricted to the sure-winning region. At the same time, it
ensures limit-sure reachability to A. Hence, the analysis of such games is simplified into two
steps; first compute the sure winning region for the sure objective, and in this subgame only
consider reachability to the limit-sure target set.
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Proof. WLOG we replace the region A by a single configuration t with a self loop and an
even priority with respect to Ws. Consider an SLS game, with a configuration t of sink
target state, such that the limit-sure goal is to reach t, and t has even priority with respect
to Ws. We now present solution to this limit-sure reachability with sure parity problem. The
computational steps are as follows:

First, compute the sure winning region w.r.t the parity condition in the game. Let X be
this winning region. Note that t ∈ X as t is a sink state with even priority for Ws.
Second, restrict the game to X and compute limit-sure reachability region to t, and let
the region be Y . Note that the game restricted to X is a turn-based stochastic game
where almost-sure and limit-sure reachability coincide.

Let us denote by Z the desired winning region (i.e., from where sure parity can be ensured
along with limit-sure reachability to t). We argue that Y computes the desired winning
region Z as follows:

First, note that since the sure parity condition Ws must be ensured, the sure winning
region X must never be left. Thus without loss of generality, we can restrict the game to
X. By definition Y is the region in X to ensure limit-sure reachability to t. As Z ensures
both limit-sure reachability to t as well as sure parity, it follows that Z is a subset of Y .
Second, for any ε > 0, there is a strategy in Y to ensure that t is reached with probability
at least 1− ε within Nε steps staying in X (since in the subgame restricted to X, almost-
sure reachability to t can be ensured). Consider a strategy that plays the above strategy
for Nε steps, and if t is not reached, then switches to a sure winning strategy for Ws

(such a strategy exists since X is never left, and parity conditions are independent of
finite prefixes). It follows that from Y both limit-sure reachability to t as well as sure
parity condition Ws can be ensured. Hence Y ⊆ Z.

Thus, Y = Z as required. J

I Corollary 19. Consider an SLS turn-based stochastic parity game. Deciding whether
Player 0 wins is co-NP-complete. Deciding whether Player 1 wins is NP-complete. Consider
an SLS turn-based MDP with n locations and indices ds and dls. Checking whether Player 0
can win with finite-memory can be computed in quasi-polynomial time. In case that ds ≤ logn
it can be decided in polynomial time.

Proof. It follows from above that to solve SLS MDPs, the following computation steps are
sufficient: (a) solve SAS MDP, (b) compute sure winning region for parity condition, and (c)
compute almost-sure (=limit-sure) reachability in MDPs. The second step is a special case
of the first step, and the third step can be achieved in polynomial time [12, 19]. Hence it
follows that all the complexity and algorithmic upper bounds we established for the SAS
MDPs carry over to SLS MDPs. For games, since Player 1 has memoryless optimal strategies
(Theorem 15) and the complexity of SAS MDPs and SLS MDPs coincide, the complexity
upper bounds for SAS games carry over to SLS games. Finally, since the complexity lower
bound results for SAS parity games follow from games with no stochastic transitions, they
apply to SLS parity games as well. J

6 Conclusions and Future Work

In this work we consider MDPs and turn-based stochastic games with two parity winning
conditions, with combinations of qualitative winning criteria. In particular, we study the
case where one winning condition must be satisfied surely, and the other almost-surely (or
limit-surely). We present results for MDPs with finite-memory strategies, and turn-based
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stochastic games with finite-memory and infinite-memory strategies. Our results establish
complexity results, as well as algorithmic results for finite-memory strategies by reduction to
non-stochastic games. Some interesting directions for future work are as follows. First, while
our results establish algorithmic results for finite-memory strategies, whether similar results
can be established for infinite-memory strategies is an interesting open question. Second,
the study of the synthesis problem for turn-based stochastic games with combinations of
quantitative objectives is another interesting direction of future work. If we consider more
than two conjuncts with only two types, i.e., sure and almost-sure, or sure and limit-sure, then
solution of the game reduces to a conjunction of two conditions. The problem of conjunctions
with more than two types and general Boolean combinations of winning conditions are
interesting directions for future work.
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