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Design and Analysis of an Acknowledgment-Aware
Asynchronous MPR MAC Protocol for Distributed

WLANs
Arpan Mukhopadhyay, Neelesh B. Mehta,Senior Member, IEEE, Vikram Srinivasan,Member, IEEE

Abstract—Multi-packet reception (MPR) promises significant
throughput gains in wireless local area networks (WLANs) by
allowing nodes to transmit even in the presence of ongoing
transmissions in the medium. However, the medium access
control (MAC) layer must now be redesigned to facilitate – rather
than discourage – these overlapping transmissions. We investigate
asynchronous MPR MAC protocols, which successfully accom-
plish this by controlling the node behavior based on the number
of ongoing transmissions in the channel. The protocols use the
backoff timer mechanism of the distributed coordination function
(DCF), which makes them distributed and practically appealing.
We first highlight a unique problem of acknowledgment (ACK)
delays, which arises in asynchronous MPR, and investigate a
solution that modifies the medium access rules to reduce these
delays and increase system throughput in the single receiver
scenario. We develop a general renewal-theoretic fixed-point
analysis of the solution and derive expressions for its saturation
throughput, packet dropping probability, and average head-of-
line packet delay. We also model and analyze the practical
scenario in which nodes may incorrectly estimate the number
of ongoing transmissions.

Index Terms—Cross-layer design, Medium access control,
Multi-packet reception, Wireless local area network, IEEE
802.11, Fixed-point analysis, Timer backoff

I. I NTRODUCTION

Conventional wireless local area networks (WLANs),
which use the IEEE 802.11 distributed coordination function
(DCF) [1] and its enhancements as medium access control
(MAC) protocols, are facing increasing demands for higher
data rates and higher system throughput. Conventionally, a
layered approach is adopted in designing the physical (PHY)
and MAC layers. For example, the DCF MAC uses carrier
sense multiple access (CSMA) with collision avoidance (CA)
to discourage time-overlapping transmissions by multipleusers
in the uplink channel from the nodes to the AP. This is
accomplished by making the nodes freeze their backoff timers
anytime they sense an ongoing transmission in the channel.

With the advent of advanced signal processing techniques
based on code division multiple access (CDMA), successive
interference cancellation (SIC), or multiple antennas, today’s
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wireless receivers are capable of decoding multiple simultane-
ous transmissions. This has been referred to as the multi-packet
reception (MPR) capability [2]–[9]. Instead of discouraging
overlapping transmissions, the MAC layer must now facilitate
their occurrence in order to benefit from MPR. At the same
time, the MAC should retain the distributed manner in which
nodes access the medium, as this is a key reason behind the
success of the IEEE 802.11 DCF MAC.

A. Related Literature

We now summarize some key papers on MPR and ascertain
their efficacy, distributed nature, and suitability for an IEEE
802.11-type DCF MAC. MPR was first considered in [8], [10]
for slotted ALOHA, but CSMA was not modeled. An adaptive
MAC protocol for MPR that maximizes the expected number
of successfully transmitted packets per slot and also takes
into account quality of service requirements was proposed
in [5]. A simpler variant based on collision resolution was
proposed in [11]. A similar objective was achieved in [4]
for space division multiple access systems (SDMA) that use
multiple antenna APs. However, these protocols require a
central controller that selects an optimal set of users thataccess
the channel in each slot.

MPR with CSMA was analyzed in [12], [13]. In [12], each
node uses channel sensing to determine whether or not the
channel can support more ongoing transmissions and then
transmits accordingly. However, neither acknowledgements
(ACKs) nor the timer-based backoff mechanism of IEEE
802.11 were modeled. In [6], [14], timer-based backoff pro-
tocols for IEEE 802.11 WLANs with MPR were considered.
However, asynchronous scenario, in which transmissions by
multiple nodes can only start simultaneously, is assumed.
This is achieved by modifying the request-to-send (RTS) and
clear-to-send (CTS) handshaking procedure of 802.11. A node
is not allowed to transmit once it senses the channel to
be busy regardless of the number of ongoing transmissions,
which limits the gains possible from using MPR. Further,
the overheads of the RTS/CTS procedure have led to its
limited adoption in practice, despite its ability to address the
hidden node problem. Therefore, it is worthwhile investigating
asynchronous MPR MAC protocols that allow overlapping
packet transmissions to start at different times. An MPR
MAC protocol, that encourages two asynchronous RTS packet
transmissions, was proposed in [15] and a two node network
was analyzed in it.
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A generic, distributed asynchronous MPR model, which
exploited the fact that a multiple antenna node can estimate
the number of ongoing transmissions, was recently analyzed
by Babich and Comisso in [16] using Markov chains. In it, a
node continues to decrement its backoff timer and eventually
transmits even when it senses the channel to be busy – so long
as the number of ongoing transmissions is less than or equal
to a threshold; else, it freezes its timer. The protocol was ana-
lyzed without any limitation on the number of receivers [17].
However, ACKs were not modeled; it was implicitly assumed
that a node knows whether its transmission has succeeded or
not immediately after transmitting its packet. Further, nodes
were assumed to perfectly estimate the number of ongoing
transmissions.

The use of MPR in an asynchronous set up can, in fact,
delay the transmission of an ACK by the AP. This is because
packet transmissions by different nodes can now start at differ-
ent time slots and overlap without any idle period in between.
Consequently, the AP will have to continue to receive packets
even after a particular node completes its transmission. Asa
result, the transmission of an ACK by the AP, which is a half-
duplex node, can get significantly delayed. Since the presence
or absence of an ACK makes a node update its backoff
parameters, ACK delays can degrade system throughput and
increase packet transmission delays.

B. Contributions

The paper makes several contributions on the following
aspects of asynchronous MPR MAC.

Protocol Design: The paper first points out that in an
asynchronous MPR MAC protocol, ACKs may get delayed.
This delay in the reception of ACKs, which is absent in con-
ventional DCF and synchronous MPR protocols, can degrade
the system performance. Thus, an asynchronous MPR MAC
protocol needs to be designed keeping ACK delays in mind.
To this end, we propose and compare two asynchronous MPR
MAC protocols both of which incorporate ACKs in the single
receiver scenario. The first protocol is our own interpretation of
how ACKs can be incorporated in the model analyzed in [16],
and serves as a benchmark. In the second protocol, the multiple
access rules, which determine when a node should freeze or
decrement its backoff timer, are modified to reduce the ACK
delays and increase system throughput. In it, nodes freeze
their backoff timers once the number of transmissions in the
channel reaches the MPR capability of the AP or once any
node completes the transmission of its packet. This ensures
that a node, which has just finished transmitting its packet,
waits for no more than one packet duration to receive an ACK.

Modeling imperfect estimation:Another important contri-
bution of the paper is a tractable modeling of the practical
scenario where the nodes incorrectly estimate the number
of ongoing transmissions in the channel. We show that the
first and the second protocols are quite robust to imperfect
estimation. Several MPR-specific implementation issues are
also discussed.

Analysis: Finally, the paper develops a general, renewal-
theoretic fixed-point analysis of the second asynchronous MPR

MAC protocol that explicitly takes ACKs into consideration.
The analysis can handle the ideal case with perfect estimates
and the practical case with imperfect estimates. Analytical
expressions for the saturation throughput, packet dropping
probability, and average head-of-line packet delay are derived.
Saturation throughput is an important performance measure
for a MAC protocol and has been extensively analyzed in the
literature on conventional 802.11 DCF and MPR. It gives a
limit on the system throughput in heavy traffic loads [6], [14],
[15], [18], [19]. In some cases, it also provides a sufficient
condition for stability of queues at the nodes [20]. The average
head-of-line delay is also an important performance measure
as it affects higher layers of the protocol stack and is the first
step in a queueing delay analysis for a non-saturated traffic
scenario [21], [22].

The renewal-theoretic approach developed in this paper is
different from the Markovian analysis used in [16], [18]. For
example, in our analysis, packet lengths need not follow the
memoryless geometric probability distribution, which breaks
down under heavy traffic load conditions when a packet suffers
many retransmissions [16]. The effect of packet dropping after
a finite number of retransmissions is also incorporated. Our
analysis also generalizes the renewal-theoretic analysisthat
was developed in [19] for conventional DCF.

Performance benchmarking:We also extensively bench-
mark the saturation throughput, head-of-line packet delay, and
packet dropping probability of the two asynchronous MPR
MAC protocols and conventional DCF. This is done for both
ideal and imperfect estimation.

The paper is organized as follows. Section II sets up the
system model and the asynchronous MPR MAC protocols,
which are then analyzed in Section III. Imperfect estimation
is modeled and analyzed in Section IV. Simulations results in
Section V are followed by our conclusions in Section VI.

II. SYSTEM MODEL

A. System Model

Consider the uplink of a WLAN, in which the AP acts as
the central node andn surrounding nodes need to transmit
packets directly to the AP. The following MPR data reception
model is assumed, along the lines of [6], [14], [16]. The AP
can successfully decode all the overlapping transmissionsas
long as the number of overlapping transmissions is less than
or equal toL. If more thanL overlapping transmissions occur,
then the AP fails to decode the transmissions and a collisionis
said to occur. Here,L is called the MPR capability.1 Further, it
is assumed that a node can correctly estimate whether the num-
ber of ongoing transmissions in the channel is0, 1, . . . , L−1,
or whether it is greater than or equal toL. Techniques to
estimate the number of ongoing transmissions and the effect
of imperfect estimates are discussed in Section IV.

Each node follows the timer-based binary exponential back-
off scheme of conventional DCF, and a packet is dropped
by a node afterK + 1 failed transmission attempts. Before
each transmission attempt, a node selects its backoff period in

1This MPR reception capability based model can also be expressed in terms
of MPR-matrix model of [2], [5], [8], and [9].
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Fig. 1. Protocol 1 forL = 2: Timing diagram showing a renewal interval in
which three overlapping asynchronous transmissions to theAP occur. NodeA
transmits first. NodesB andC continue to decrement their timers until node
B transmits. Thereafter,C freezes its timer. WhenA’s transmission ends,C
resumes decrementing its timer. Before the transmission byB ends, the timer
of C expires, which then starts transmitting. Thus,A can expect to receive
its ACK only afterC ’s transmission ends.

integer multiples of a slot durationδ. The multiple is uniformly
chosen from the set{0, 1, . . . , w − 1}, where w is called
the contention window. It depends on the number of failed
transmissions of a packet. In the first attempt,w is set as the
minimum contention window CWmin. After each unsuccessful
transmission,w is doubled, up to a maximum value of CWmax.

B. Protocol Design

We now describe two asynchronous MPR MAC protocols
without any assumption on the traffic model.

1) Protocol 1: This protocol is an asynchronous MPR MAC
protocol that is similar to the one in [16], but with ACKs
incorporated in it. We note that other ways of incorporating
ACKs also exist. A node having a packet first samples a
backoff timer duration and starts decrementing it once the
channel has remained idle for a distributed inter-frame space
(DIFS) of durationTDIFS. The node decrements the timer so
long as it senses the number of ongoing transmissions to be
1, 2, . . . , L − 1. It freezes its timer if the sensed number of
transmissions exceedsL − 1 or the channel becomes idle.
When the number of sensed transmissions again lies between
1 andL−1, the backoff timer decrement is resumed from the
last stored value. The node transmits its packet when its timer
becomes zero.

As in conventional DCF, after the channel becomes idle,
the AP waits for a short inter-frame space (SIFS) of duration
TSIFS and then sends a cumulative ACK of durationTACK,
which acknowledges all the successful transmissions together.
This is achieved by embedding in the MAC frame structure of
the ACK, the addresses of all nodes whose packets the AP has
successfully decoded [6], [14], [15]. SinceTDIFS > TSIFS, the
ACK gets priority over other transmissions when the channel
is idle. However, unlike conventional DCF, a node must wait
for all the other overlapping transmissions to end and only
then expect the ACK to arrive within a timeout duration of
TOUT = TDIFS. If an ACK does not arrive, the node times out,
updates its contention window, chooses a new backoff timer

Fig. 2. Protocol 2 forL = 2: Timing diagram that shows a renewal interval
in which two overlapping asynchronous transmissions to theAP occur. Node
A transmits first. WhileA is transmitting,B andC continue decrementing
their timers since there is only one ongoing transmission inthe channel. Once
B starts transmitting,C freezes its timer. Unlike Figure 1,C ’s timer remains
frozen even afterA’s transmission ends. Only after the ACK and an idle period
of durationTDIFS, do all the nodes resume decrementing their timers. Thus,
the ACK delay is reduced by restricting the number of successive overlapping
transmissions.

value, and starts decrementing it. Figure 1 illustrates several
aspects of this protocol forL = 2.

2) Protocol 2: We now propose a novel asynchronous MPR
MAC protocol that differs from Protocol 1 with respect to the
conditions under which a node freezes its backoff timer and
keeps it frozen, and shall be the focus of the analysis in the
paper. In it,a node freezes its backoff timer once the number
of ongoing transmissions sensed by it either exceedsL− 1 or
decreases. Thereafter, it resumes decrementing its timer only
when the channel has remained idle for a durationTDIFS. The
operation of the AP is the same as in Protocol 1, and is not
repeated here.

Thus, in Protocol 2, no new packet transmissions can occur
once the number of overlapping transmissions becomes greater
than or equal toL or once a node completes the transmission
of its packet. This reduces the delay incurred in receiving an
ACK compared to Protocol 1, in which new transmissions
can commence even after a node completes the transmission
of its packet. This leads to a lower average head-of-line packet
delay. As the saturation throughput and the head-of-line packet
delay are inversely related (cf. Section III-C), the saturation
throughput of the protocol exceeds that of Protocol 1. The
protocol is illustrated in Figure 2 forL = 2.

The finite state machines that characterize the behavior of
the AP and the nodes in Protocol 2 are shown in Figure 3 and
Figure 4, respectively, for saturated traffic conditions.

Remark As in conventional DCF, virtual carrier sensing using
the expected duration field in the packet header and the
network allocation vector (NAV) can also be implemented
in Protocol 2. When the number of ongoing transmissions
increases, a node updates its NAV table using the expected
duration field of the most recent packet that was transmitted.2

A node can stop sensing the channel once the number of
transmissions reachesL or it starts decreasing. Such virtual

2If multiple packet transmissions start at the same time, then the maximum
of the expected duration fields of the packets is used by the sensing node.
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carrier sensing is not as easy in Protocol 1, which allows
new packet transmissions to start anytime so long as the total
number of ongoing transmissions does not exceedL.

Remark In Protocol 2, channel estimation can be performed
at the AP using training symbols in the preambles of each
of the received data packets. The reader is referred to the
extensive survey of channel estimation issues and techniques
in [23] and to the discussion of MPR-specific channel estima-
tion issues in [2]. In [24], it was shown that the asynchronous
nature of the interference in the MPR MAC protocol even
affects the optimal placement of pilots inside a packet. How-
ever, modeling and analyzing the effect of imperfect channel
estimates is beyond the scope of the paper.

III. A NALYSIS

We now analyze Protocol 2 in saturated traffic conditions
in which the transmission queue at each node is always
non-empty. Data loss due to packet errors is assumed to be
negligible and a transmitted packet is assumed to be received
successfully unless it is involved in a collision.

To get compact analytical results, we assume that the
transmission duration of a data packet isλ slots, and that
the transmission rate is fixed atΩ, as has also been assumed
in [18], [19]. Notice that fixed length packets cannot be easily
analyzed using the Markovian approach of [16]. Extension to
the scenario where the packet lengths are random is discussed
at the end of this section. Further, we analyze theL = 2
case, as was also done in [15]. The analysis can be extended
to cover the generalL ≥ 2 case. However, the expressions
become more involved given the larger number of possible
transmission scenarios that can occur. Due to space constraints
and given the limited additional intuition provided by the
general scenario, we do not discuss it in this paper.

As all the nodes use the same backoff parameters, their
behaviors are statistically identical. Hence, we make the fol-
lowing decoupling approximations, which enable a fixed-point
analysis [18], [19]:

1) Each transmitted packet suffers a collision with a prob-
ability γ, which is independent of all other nodes and
does not depend on the number of its retransmissions.
We shall refer toγ as theconditional packet collision
probability.

2) Each node attempts a transmission in a slot in which it
can transmit with a probabilityβ, which is independent
of all other nodes. We shall refer toβ as theattempt rate.

Node-specific renewal process:Consider a given node,
which we henceforth call thetagged node. LetAj and Bj

respectively denote the number of attempts and total backoff
duration (in slots) needed by the tagged node to transmit itsj th

packet. Let us consider the process formed by extracting only
the times at which the tagged node is in its backoff phase,i.e.,
it is decrementing its backoff timer. From the first assumption
and the fact that the tagged node uses the same backoff param-
eters for all its packets, it can be inferred that the sequences
(Aj)j≥1, (Bj)j≥1, and (Aj , Bj)j≥1, are all independent and
identically distributed (i.i.d) [19]. Hence, the backoff process
of a tagged node is a renewal process with renewal lifetimes

Bj , j ≥ 1, and the renewal epochs are the time instants at
which the node starts the final transmission of itsj th packet.
If we considerAj , j ≥ 1, as the reward gained at thej th

renewal interval, then from the renewal reward theorem [25],
we haveβ =

E[Aj ]
E[Bj ]

, whereE [·] denotes expectation.
System-wide renewal process:Consider the aggregate at-

tempt process by all then nodes. Due to the decoupling
assumption, the aggregate attempt process is another renewal
process. As shown in Figure 2, the renewal epochs of this
process are the instants at which all the nodes start decre-
menting their backoff timers. For the rest of the paper, unless
mentioned otherwise, the term renewal interval shall referto
the renewal interval of the system-wide renewal process.

Unlike conventional DCF, more than one packet can get
transmitted in a renewal interval. We, therefore, first define the
following terminology.For j ∈ {1, 2}, a transmitted packet is
called thej th packet in a renewal interval if there are already
j − 1 ongoing packet transmissions in the channel when its
transmission commences.

Lemma 1: Given that a tagged node transmits in a renewal
interval, the probabilityα that its packet is the first packet in
the renewal interval isα = K1(β)

K1(β)+K2(β)
, whereKi(β) is the

unconditional probability that the tagged node transmits the
ith packet in a renewal interval. Further,

K1(β) =
β

1− (1− β)n
and (1)

K2(β) =
(n− 1)β2(1− β)n−1(1− (1− β)(λ−1)(n−1))

(1 − (1− β)n)(1− (1 − β)n−1)
.

(2)

Proof: The proof is relegated to Appendix A.
Thus, given that a tagged node has transmitted in a renewal
interval, the probability that its packet is the second packet in
the renewal interval is1− α.

Theorem 1: The conditional packet collision probability,γ,
as a function ofβ is given by

γ , Γ(β) = αP1(β) + (1− α)P2(β), (3)

wherePi(β), for i = 1, 2, denotes the probability that a packet
suffers a collision given that it is theith transmitted packet in
a renewal interval. Further,

P1(β) =

(

1− (1− β)n−1 − (n− 1)β(1− β)n−2
)

1− (1− β)n−1

×
(

1− (1− β)λ(n−1)
)

, (4)

P2(β) = 1− (1− β)n−2. (5)

The attempt rate,β, as a function of γ is given
by β , G(γ) = 1+γ+γ2+···+γK

b0+γb1+γ2b2+···+γKbK
, where bk =

1
2

(

2kCWmin − 1
)

, for 0 ≤ k ≤ K, denotes the mean backoff
duration (in slots) before the(k+1)th transmission attempt of
a packet.

Proof: The proof is relegated to Appendix B.
Hence, combining Lemma 1 and Theorem 1 results in the

following fixed-point equation:

γ = Γ(G(γ)). (6)



5

SinceΓ(G(γ)) is a continuous mapping inγ from the closed
set [0, 1] to itself, Brouwer’s fixed-point theorem [26] guaran-
tees the existence of a fixed-point in the range. Solving this
equation numerically yieldsγ. Then, Theorem 1 directly yields
β.3

A. Saturation Throughput

Let ζ denote the amount of successfully transmitted data at
the end of a renewal interval of durationT . From the renewal
reward theorem [25], the saturation throughput,S, is given by
S = E[ζ]

E[T ] . We now develop expressions forE [ζ] andE [T ].
As shown in Figure 2, a renewal interval of lengthT starts
with an idle period of durationTidle. It is followed by a busy
period of lengthTbusy, in which one or more packets and a
cumulative ACK (if success occurs) are transmitted. The busy
period ends once the channel has been idle for the duration
TDIFS.

Depending on whether a success or a collision has occurred
in the renewal interval, we refer to the busy time period
following the idle period as a success period of durationTsuc

or a collision period of durationTcol, respectively. Further, let
Tmin

col andTmin
suc denote the minimum values ofTcol andTsuc,

respectively. It can be seen thatTmin
col = λδ + TDIFS, which

occurs when at least three packets of lengthλδ are transmitted
simultaneously at the end of the idle period. Similarly, we have
Tmin

suc = λδ + TSIFS+ TACK + TDIFS.
Theorem 2: The expected duration of the renewal interval

is E [T ] = E [Tidle] + Dcol + Dsuc, whereDcol and Dsuc are
the contributions to the average busy period duration from the
collision and success events, respectively. Further,E [Tidle] =

1
1−(1−β)n ,

Dcol =

[

1− (1 − β)n − nβ(1− β)n−1

1− (1− β)n

−
n(n− 1)β2(1− β)n−2

2 (1− (1 − β)n)

]

Tmin
col

+
nβ (1− β)

n−1 (
1− (1− β)n−1 − (n− 1)β(1 − β)n−2

)

(1− (1− β)n) (1− (1− β)n−1)

×

[

(

1− (1− β)(λ−1)(n−1)
)

Tmin
col

+
1− (1− β)(λ−1)(n−1)

(

λ− (λ− 1)(1− β)n−1
)

(1− (1 − β)n−1)
δ

]

, (7)

Dsuc=
n(n− 1)β2(1− β)n−2 + 2nβ(1− β)λ(n−1)

2 (1− (1− β)n)
Tmin

suc

+
n(n− 1)β2(1− β)n−1(1− β)n−2

(1− (1− β)n) (1− (1− β)n−1)

×

[

(

1− (1− β)(λ−1)(n−1)
)

Tmin
suc

+
1− (1− β)(λ−1)(n−1)

(

λ− (λ− 1)(1− β)n−1
)

(1− (1 − β)n−1)
δ

]

. (8)

3In our simulations, we have observed that the fixed-point is unique for the
parameters of interest. However, proving uniqueness remains a challenging
task.

The expected number of bits transmitted in a renewal interval
is given by

E [ζ] = 2λδΩ

(

n(n− 1)β2(1− β)n−2

2 (1− (1− β)n)

+
n(n− 1)β2(1− β)n−2

[

(1− β)n−1 − (1− β)λ(n−1)
]

(1− (1− β)n−1)(1− (1 − β)n)

)

+ λδΩ
nβ(1 − β)λ(n−1)

1− (1− β)n
. (9)

Proof: The proof is relegated to Appendix C.
Hence, the expression for the saturation throughput follows

directly from Theorem 2.

B. Packet Dropping Probability

A packet is discarded by a node if it suffersK+1 collisions.
By our first decoupling approximation, a packet collides with
a probability γ, which is independent of the number of its
retransmission attempts. Consequently, the packet dropping
probability is simplyγK+1.

C. Average Head-of-line Packet Delay

The average time spent by a packet in the head-of-queue
position before it gets transmitted successfully or dropped after
K+1 failed transmission attempts is known as thehead-of-line
packet delayD.

To evaluateD, we first note that the packet dropping
probability, γK+1, is small unless the channel is heavily
congested. Therefore, almost all the packets are eventually
successfully transmitted. Hence,D is approximately equal to
the average time taken by a node to successfully transmit
a packet. SinceS is the saturation throughput (in bits) and
each packet carries a payload ofΩλδ bits, the number of
data packets that are successfully transmitted per unit time is
S

λδΩ . Thus, the number of successfully transmitted data packets
per unit time per node is S

nλδΩ . Therefore, the average time
required to successfully transmit a data packet isD ≈ nλδΩ

S
.

Remark The fixed-point analysis presented in this section
can be extended to handle the scenario where the packet
lengths are random variables. It can be shown that the general
expressions forK2(β) and P1(β) are obtained by taking
expectations of (2) and (5), respectively, with respect to the
distribution of the packet lengths. The expressions forDcol,
Dsuc, andE [ζ] can be derived similarly by summing over all
possible realizations of packet lengths of the first and second
packets in a renewal interval. All the other expressions remain
unchanged.

IV. EFFECT OF IMPERFECT CHANNEL ESTIMATION

Thus far, we have assumed that the nodes know the actual
number of ongoing transmissions in the channel while going
through their backoff phases. However, this needs to be
estimated in practice. Several techniques have been developed
in the literature for this purpose [27]. We discuss below a
technique based on the eigen-decomposition of the correlation
matrix of the signal received by the antenna array of a node.
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The technique can be used if a node is equipped with an array
of at leastL antennas, which is easily feasible in WLANs
today [28], [29].

Let a node be equipped withV ≥ L antennas and let
there beU ongoing transmissions in the channel. Also, let
yj(t), for j = 1, . . . , V , denote the signal received at the
j th antenna of the node. Noises at different array elements
are assumed to be uncorrelated with varianceσ2

n. The cor-
relation matrixR associated with the received signal vector
ȳ(t) = [y1(t), . . . , yV (t)]

T is defined asR = E
[

ȳ(t)ȳ†(t)
]

,
where T and † denote transpose and Hermitian transpose,
respectively. It can be shown that ifU < V then the smallest
eigenvalue ofR is σ2

n and it has an algebraic multiplicity of
V − U . WhenU ≥ V (≥ L), R has no eigenvalues equal to
σ2
n. Thus, by evaluating the multiplicity of the eigenvalue ofR

that is equal to the noise variance, a node can estimate whether
the number of ongoing transmissions is0, 1, 2, . . . , L − 1 or
greater than or equal toL.

In practice, sinceR itself is estimated by averaging a finite
number of samples taken from the output of the antenna array,
its smallestV − U eigenvalues need not be exactly equal to
the noise variance. Several papers in the literature, e.g.,[30]–
[32], solve this problem using approaches based on nested
sequence of hypothesis tests, information-theoretic criteria for
model selection, and ranking and selection theory.

Imperfect estimation model:A key thing to take away from
this discussion is that the presence of noise and channel
propagation effects can occasionally make a node incorrectly
estimate the number of ongoing transmissions in the channel.
This clearly affects the performance of the asynchronous MPR
protocols, whose multiple access rules use this estimate. We
model imperfect estimation as follows. With probabilitypi,j ,
a node estimates that therej ongoing transmissions while
there actually arei.4 We make the following simplifying
assumptions: (1) A node makes an error independent of the
other nodes. This is justifiable since the channel fades and
noise encountered by the different nodes are independent.
(2) Once a node estimates the number of transmissions in
a slot, its estimate does not change until the transmitters or
the number of transmissions actually change. This captures
the fact that deep fades are primarily responsible for incorrect
estimation. (3) A node perfectly estimates whether the channel
is idle or not, i.e., p0,j = pj,0 = 0, for all j ≥ 1. Similarly,
the odds that a node’s estimate of the number of ongoing
transmissions is incorrect by more than one are assumed to
be negligible,i.e., pi,j = 0 if |j − i| ≥ 2 for all i ∈ Z

+.
We shall also assume thatpL−1,L = 0. This intuitive model,
while not general, provides a tractable method to analyze the
effect of imperfect estimates, while capturing the essenceof
the problem.

As before, we analyze below theL = 2 case. The main
problem that now arises is that a node can erroneously estimate
the number of ongoing transmissions to be one, while there
are actually two. It, therefore, will continue to decrementits

4This abstraction presents a refined probabilistic model forthe classical
hidden nodes problem that arises in conventional DCF, in which the nodes
that incorrectly estimate that the number of ongoing transmissions is zero are
treated as hidden nodes.

Fig. 3. Protocol 2: Finite state machine for the access point.

timer and eventually it may transmit and cause a collision.

A. Analysis with Imperfect Estimation of Number of Transmit-
ters

As in Section III, we use the two classical decoupling
approximations. To distinguish from the perfect estimation
case, we shall denote the attempt rate byβ̃ and the condi-
tional packet collision probability bỹγ. It can be shown that
β̃ = G(γ̃), whereG(·) is as defined in Theorem 1.

We now consider the system-wide renewal process. Due to
imperfect estimation, a third, and, in general, aj th packet, for
j ≥ 3, can be transmitted in a renewal interval. Thej th packet
in a renewal interval, forj ≥ 3, is defined as a packet whose
transmission commences erroneously whenj − 1 nodes have
already commenced transmission in the interval.

The erroneous third packet transmission can start, for exam-
ple, when the previous two transmissions are still ongoing in
the channel. It can also start after the number of transmissions
decreases from two to one. This is because the nodes, which
had erroneously estimated two transmissions to be one, cannot
detect this decrease and continue to decrement their timers.
However, the latter scenario is less probable because for it
to happen the erroneous node must have a sufficiently large
backoff timer value to decrement even after the completion
of the first packet’s transmission. In Protocol 2, when the
estimation error is small, collisions occur rarely, which makes
it less likely for a node to have a large enough contention
window. Therefore, we ignore this case and all cases that
involve more than one erroneous packet transmissions in a
renewal interval.

In order to write compact analytical expressions, we first
define the functionΘ : Z

+ → R
+ as Θ(t) = p2,1(1 −

β̃)t + 1 − p2,1. It denotes the probability that a node does
not transmit during thet slots in which there are already two
ongoing transmissions in the channel.

Lemma 2: Given that a tagged node transmits in a renewal
interval, the probabilitỹαi that the packet transmitted by the
tagged node is theith packet in the interval is given by

α̃i =
K̃i(β̃)

K̃1(β̃) + K̃2(β̃) + K̃3(β̃)
, (10)



7

whereK̃i(β̃), for i = 1, 2, 3, is the unconditional probability
that a tagged node transmits theith packet in a renewal interval.
Furthermore,K̃1(β̃) = K1(β̃), K̃2(β̃) = K2(β̃), and

K̃3(β̃) =
n(n− 1)β̃3(1− β̃)n−2

2
(

1− (1− β̃)n
)

λ−2
∑

i=0

p2,1(1− β̃)iΘn−3(i)

+
(n− 1)(n− 2)β̃3(1 − β̃)2n−3

1− (1 − β̃)n

×

λ−3
∑

i=0

λ−i−3
∑

j=0

(1 − β̃)i(n−1)+jp2,1Θ
n−3(j). (11)

Recall thatK1(·) andK2(·) are defined in Lemma 1.
Proof: The proof is relegated to Appendix D.

Theorem 3: The packet collision probability,̃γ, in terms of
the attempt rate,̃β, is given by

γ̃ , Γ̃(β̃) = α̃1P̃1(β̃) + α̃2P̃2(β̃) + α̃3P̃3(β̃), (12)

where α̃i, for i = 1, 2, 3, are given by Lemma 2. Here,
P̃i(β̃) denotes the probability that a packet suffers a collision
given that it is theith transmitted packet in a renewal interval.
Further,

P̃1(β̃) = P1(β̃) + (n− 1)β̃(1− β̃)n−2

×

λ−1
∑

i=0

(1− β̃)i(n−1)
(

1−Θn−2(λ− i− 1)
)

, (13)

P̃2(β̃) = P2(β̃) +
(1 − (1− β̃)n−1)(1− β̃)n−2

1− (1− β̃)(λ−1)(n−1)

×

λ−2
∑

i=0

(1− β̃)i(n−1)
(

1−Θn−2(λ− i− 2)
)

, (14)

and P̃3(β) = 1. Recall thatP1(·) and P2(·) are defined in
Theorem 1.

Proof: The proof is relegated to Appendix E.
Hence, by combining (12) and̃β = G(γ̃), we obtain

the desired fixed-point equation inγ. As in ideal channel
estimation, the existence of a solution in[0, 1] is guaranteed by
the Brouwer’s fixed-point theorem [26]. A proof of uniqueness
again remains a challenging problem.

B. Throughput

As in Section III-A, it can be shown that the saturation
throughput with imperfect estimation isS = E[ζ]

E[T ] . We now
evaluateE [T ] andE [ζ].

1) EvaluatingE [T ]: Recall from Lemma 2 thatE [T ] =
E [Tidle] + Dcol + Dsuc. As before,E [Tidle] =

1

1−(1−β̃)n
. We

now derive expressions forDsuc andDcol.
Evaluating Dsuc: Clearly, Tbusy = Tmin

suc when: (i) only
one node transmits in the renewal interval, or (ii) exactly
two nodes start transmitting simultaneously at the end of the
idle period and no other transmissions occur subsequently.
Exactly two nodes can do so only when each of the remaining
n − 2 nodes either does not make an error, or makes an
error but does not transmit during the remainingλ − 1 slots
of the first two packets. The probability of this event is

(

p2,1(1− β̃)λ−1 + 1− p2,1

)n−2

= Θn−2(λ − 1). We then
have

Pr
[

Tbusy= Tmin
suc

]

=
nβ̃(1− β̃)λ(n−1)

1− (1− β̃)n

+

(

n
2

)

β̃2(1− β̃)n−2

1− (1− β̃)n
Θn−2(λ− 1). (15)

The denominator term1 − (1 − β̃)n arises because of condi-
tioning on the event that the idle period has already ended.
Similarly, Tbusy = Tmin

suc + kδ when the first and second
transmissions in a renewal interval start1 ≤ k ≤ λ − 1 slots
apart and no other transmission occurs subsequently. It canbe
shown that

Pr
[

Tsuc= Tmin
suc + kδ

]

=
n(n− 1)β̃2(1 − β̃)k(n−1)

1− (1− β̃)n

× (1 − β̃)n−2Θn−2(λ− 1− k). (16)

EvaluatingDcol: Along similar lines,Tbusy = Tmin
col when at

least three amongn nodes start transmitting simultaneously at
the end of the idle period. The probability of this event is

Pr
[

Tbusy= Tmin
col

]

=
1− (1 − β̃)n − nβ̃(1− β̃)n−1

1− (1 − β̃)n

−

(

n
2

)

β̃2(1− β̃)n−2

1− (1− β̃)n
. (17)

Again, Tbusy = Tmin
col + kδ when: (i) Exactly two of then

nodes transmit the first packet in a renewal interval and the
third packet is transmitted erroneously afterk slots by at least
one of the remainingn−2 nodes, which can be shown to occur
with probabilityΘn−2(k−1)−Θn−2(k); or (ii) the first packet
is transmitted by a single node, and afterk slots at least two
of the remaining nodes transmit simultaneously; or (iii) the
first and second packets are transmittedl slots (1 ≤ l ≤ k−1)
apart, and the third erroneous transmission occursk slots after
the first transmission. The probabilities of these events can be
calculated in a manner similar to that discussed above. It can
be shown that

Pr
[

Tbusy= Tmin
col + kδ

]

=

(

n
2

)

β̃2(1− β̃)n−2

1− (1− β̃)n

×
(

Θn−2(k − 1)−Θn−2(k)
)

+
n(n− 1)β̃2(1− β̃)n−2

1− (1− β̃)n

×

[

k−1
∑

l=1

(1− β̃)l(n−1)
(

Θn−2(k − l− 1)−Θn−2(k − l)
)

]

+
nβ̃(1− β̃)k(n−1)

1− (1− β̃)n
(1−(1− β̃)n−1−(n−1)β̃(1− β̃)n−2).

(18)

Combining the above results yields the expressions forDsuc

andDcol, and, hence,E [T ].
2) Evaluating E [ζ]: As in ideal channel estimation,ζ

equals0, λδΩ, or 2λδΩ when 0, 1 or 2 packets, respectively,
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If the number 

of sensed 

transmissions

becomes

greater than or

equal to L 

or decreases

Fig. 4. Protocol 2: Finite state machine for a node under saturated traffic
condition.

are successfully transmitted in a renewal interval. The proba-
bilities of these events are given in (15) and (16). Hence,

E [ζ] = λδΩ
nβ̃(1− β̃)λ(n−1)

1− (1− β̃)n
+ 2λδΩ

×

(

n
2

)

β̃2(1− β̃)n−2

1− (1− β̃)n
Θn−2(λ− 1)

+ 2λδΩ

λ−1
∑

k=1

n(n− 1)β̃2(1 − β̃)k(n−1)(1− β̃)n−2

1− (1− β̃)n

×Θn−2(λ − 1− k). (19)

V. NUMERICAL RESULTS

TABLE I
SIMULATION PARAMETERS

Parameter Notation Values
Slot duration δ 20 µs
DIFS duration TDIFS 50 µs
SIFS duration TSIFS 10 µs
Minimum contention window size CWmin 32
Maximum contention window size CWmax 1024
Maximum number of transmissions K + 1 8
Packet length λ 400 slots
ACK duration (with PHY header) TACK 304 + 48(L − 1) µs

We now present the results obtained from Monte Carlo
simulations that use 50000 samples. An event-driven plat-
form written in the C programming language was built for
simulating the MPR protocols, and provides an independent
verification of the analytical results. The platform implements
the finite state machines of the AP and the nodes that are

shown in Figures 3 and 4, respectively. Virtual carrier sensing
is not implemented since it does not affect the performance
metrics under consideration. The parameter values used in the
simulations are listed in Table I. The ACK frame length is
increased by 6-bytes for each extra receiver address field to
incorporate MPR. We shall vary some of the parameters over
a wide range to investigate the sensitivity of the asynchronous
MPR MAC protocols to them.

A. Ideal Estimation

Figure 5 plots the saturation throughput,S/Ω, as a function
of the number of nodes,n, for conventional DCF, Protocol 1,
and Protocol 2. The results are shown for different values
of L. We observe a good match between the analysis and
simulation results for theL = 2 case. We also see that the
saturation throughput of Protocol 2 is close toL times that of
conventional DCF and is10-30% more than that of Protocol 1.
Allowing for variable packet lengths in the model could make
MPR even more rewarding. Similar results are obtained in
Figure 6, which plots the average head-of-line packet delay
of the protocols as a function ofn for variousL. This figure
shows that the head-of-line packet delay,D, increases almost
linearly with the number of nodes,n. This can be explained by
the relation derived in Section III-C and the fact that saturation
throughput varies slowly withn. We see that the head-of-
line packet delay decreases asL increases. This is because,
for larger L, more transmission opportunities are available
for a node. This more than compensates for the additional
delay caused by more overlapping transmissions in a renewal
interval.

To investigate the effect of packet lengths on the perfor-
mance of the protocols, we plot in Figure 7 the saturation
throughputs of Protocols 1 and 2 as a function of the packet
length,λ, for different values ofL. We again see that Pro-
tocol 2 outperforms Protocol 1 for a wide range of packet
lengths and for allL. We also observe that for large packet
lengths, the saturation throughputs of both protocols become
almost constant. This can be explained from (7), (8), and (9)as
follows: As λ becomes large the exponential terms containing
λ in the expressions forDcol, Dsuc, andE [ζ] become negli-
gible. Hence, bothE [T ] and E [ζ] increase linearly withλ.
Thus, their ratio, which is the saturation throughput, becomes
almost constant.

We delve into the inner workings of the protocols in
Figure 8, which plots the conditional packet collision prob-
ability, γ, as a function ofn for Protocol 1, Protocol 2
and conventional DCF. As expected,γ increases withn. We
observe that the collision probability of Protocol 2 is lessthan
that of Protocol 1 and conventional DCF for alln. Notice
that the analysis and simulation results for Protocol 2 match
each other well, which validates the fixed-point analysis. As
n increases, the relative error between analysis and simulation
decreases. This is in consonance with the results in mean field
interaction theory [33].

Figure 9 plots the packet dropping probability of Protocol 2
as a function of the number of nodes for different values
of K and for L = 2. For fixed n, the packet dropping
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probability decreases asK increases. This is because for fixed
n the collision probabilityγ remains constant. Hence, asK
increases, the packet dropping probabilityγK+1 decreases.
Note that forK ≥ 4, the packet dropping probability is less
than 5% even with 50 nodes.

B. Imperfect Estimation

To investigate the effect of imperfect estimation of number
of transmitters, we setp2,1 = p3,2 = . . . = pL,L−1 = p. In
Figure 10, we plot the saturation throughput of Protocol 1,
Protocol 2, and the synchronous MPR MAC protocol as
a function of p for different values ofL. Notice that the
saturation throughput of Protocol 2 decreases by only 9%
whenp increases ten-fold from 0.001 to 0.01. Thus, Protocol 2
is robust to estimation errors. Protocol 1 also shows a similar
sensitivity levels to the estimation errors. Further, forL = 2,
we see a good match between the analysis and simulation
results. The saturation throughput of the synchronous protocol
does not depend on thep because in it a node does not need to
estimate the number of ongoing transmissions. Eventually,for
large enoughp, the saturation throughput of Protocol 2 falls
below that of the synchronous protocol. The cross-over point
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values ofL. Analysis results forL = 2 for Protocol 2 are shown using circles
(◦).
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increases withL.
Figure 11 focuses onL = 2 and plots the attempt rate,

β̃, as a function ofn for different values ofp2,1. We again
observe a good match between the analytical and simulation
results. We see that the attempt rate deceases asp2,1 increases,
which happens because the collision probability,γ̃, increases
and the contention window size increases. The increase in
the contention window size also explains the minor mismatch
between the analytical and simulation results in the above two
figures arises for largerp for L = 2.

VI. CONCLUSIONS

We saw that an asynchronous MPR MAC protocol that
uses carrier sensing in conjunction with the backoff timer
mechanism is inherently distributed in nature and harnesses
the MPR capability well. However, ACK delays degrade the
performance of such an asynchronous protocol because the
nodes determine their contention window sizes depending on
whether they have received an ACK or not. We showed that
the conditions under which a node should freeze its timer
affect the ACK delays, and proposed a rule that reduces the
delay and increases the overall system throughput. We also
developed a renewal-theoretic fixed-point analysis of the MPR
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protocol. The analysis was generalized to the practical scenario
where a node may incorrectly estimate the number of ongoing
transmissions. We saw that the asynchronous MPR protocols
are quite robust to such errors.

Several interesting avenues for future work exist such as
characterizing the non-saturation behavior of the protocol and
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Fig. 11. Imperfect estimation scenario: Attempt rate as a function of the
number of nodes (L = 2).

its impact on the performance of higher layers of the protocol
stack. While we focused primarily on the single receiver
scenario, extension of the protocols to the scenario where
multiple transmitter-receiver pairs are simultaneously active,
is also an interesting topic for future research. In this case, the
ACK handling depends on the physical layer and is affected by
antenna systems, channel rank, coding, and network topology.

APPENDIX

A. Proof of Lemma 1

Expression forK1(β): Let the tagged node’s transmission
in slot t (t ≥ 1) of the renewal interval be the first trans-
mission in the renewal interval. This occurs with probability
(1− β)n(t−1)β, since none of then nodes should have trans-
mitted in the slots1, . . . , t − 1 and the tagged node should
transmit in slott. Hence,K1(β) =

∑∞
t=1 β(1 − β)n(t−1) =

β
1−(1−β)n .

Expression forK2(β): Let the first transmission from a node
other than the tagged node begin in slott1 of the renewal
interval, wheret1 ≥ 1, and let the tagged node transmit
in slot t1 + t2 + 1. Clearly, 0 ≤ t2 ≤ λ − 2, since the
Protocol 2 does not permit any node to transmit once the
channel becomes idle. The probability of this individual event
is (1− β)n(t1−1)(n− 1)β(1− β)n−2(1− β)(1− β)(n−1)t2β.
Summing the probabilities overt1 and t2 yields the desired
expression forK2(β).

The expression forα in terms ofK1(β) andK2(β) then
follows from Baye’s rule.

B. Proof of Theorem 1

1) Evaluation ofΓ (β): The expression forγ follows di-
rectly from the definitions ofα, P1(β), andP2(β), and the
law of total probability.

EvaluatingP1(β): Let the packet transmitted by a tagged
node be the first packet in a renewal interval. It suffers
a collision only if, in any of itsλ transmission slots, at
least two among the remainingn − 1 nodes transmit. In
our protocol, this can happen only when these nodes com-
mence transmissions in the same slot. The probability that
the first i slots, 0 ≤ i ≤ λ − 1, of the transmitted packet
are free of collision is(1 − β)i(n−1). And, the probability
that two or more nodes transmit in the(i + 1)th slot is
1− (1−β)n−1− (n−1)β(1−β)n−2. Thus, we haveP1(β) =
∑λ−1

i=0 (1−β)i(n−1)
(

1− (1− β)n−1 − (n− 1)β(1− β)n−2
)

,
which simplifies to (5).

EvaluatingP2(β): If the packet transmitted by a tagged
node is the second packet in a renewal interval, then it suffers
a collision only if at least one among the remainingn−2 nodes
transmits in the same slot as the tagged node. The probability
of this event isP2(β) = 1− (1− β)n−2.

2) Evaluation ofG(γ): The expression forG(γ) is based
on the node-specific renewal process and follows directly from
the equationβ =

E[Aj]
E[Bj ]

. Its derivation is along lines similar to
that in [19] for conventional DCF. It is, therefore, skippedin
order to conserve space.
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C. Proof of Theorem 2

1) Evaluation ofE [T ]: A renewal interval of lengthT
consists of an idle period of durationTidle followed by
a busy period, which is either a collision or a success.
Therefore,E [T ] = E [Tidle] + Dcol + Dsuc. Here, Dcol =
E [TbusyI [Tcol > 0]] and Dsuc = E [TbusyI [Tsuc> 0]], where
I [ω] denotes an indicator function that equals 1 ifω is true
and is 0 otherwise.

Expression forE [Tidle]: A slot is idle with a probability
(1 − β)n as none among then nodes should transmit in it.
Thus, Pr[Tidle > t] = (1− β)nt, for t = 0, 1, . . .. Hence,

E [Tidle] =

∞
∑

t=0

Pr[Tidle > t] =

∞
∑

t=0

(1 − β)nt =
1

1− (1− β)n
.

(20)
Expression forDcol: Clearly, Tbusy = Tmin

col when at least
three nodes commence transmissions simultaneously at the end
of the idle period and, thus, collide. This occurs with proba-

bility
1−(1−β)n−nβ(1−β)n−1−(n2)β

2(1−β)n−2

1−(1−β)n . The denominator
is due to the conditioning on the fact that the idle period has
already ended and, therefore, at least one node has transmitted.
Now, Tbusy= Tmin

col +kδ, for 1 ≤ k ≤ λ−1, when one among
n nodes starts transmitting after the idle period, none among
the remainingn−1 nodes transmit in the nextk−1 slots, and
then at least two among thesen−1 nodes simultaneously com-
mence transmission in the next slot. This occurs with proba-
bility nβ(1−β)n−1(1−β)(k−1)(n−1)(1−(1−β)n−1−(n−1)β(1−β)n−2)

1−(1−β)n .
Combining the terms for the collision events yieldsDcol =
∑λ−1

k=0 Pr
[

Tbusy= Tmin
col + kδ

]

(Tmin
col + kδ), which simplifies

to (8).
Expression forDsuc: Similarly, Tbusy= Tmin

suc when: (i) ex-
actly one node transmits in the renewal interval and none of the
n− 1 nodes transmit thereafter, which occurs with probability
nβ(1−β)n−1

1−(1−β)n (1 − β)(n−1)(λ−1), or (ii) exactly two nodes start
transmitting simultaneously just after the idle period is over,

which occurs with probability
(n2)β

2(1−β)n−2

1−(1−β)n .
Now, Tbusy = Tmin

suc + kδ, for 1 ≤ k ≤ λ − 1, when
exactly one amongn nodes starts transmitting after the
idle period, during the nextk − 1 slots none among the
n − 1 nodes transmit, and finally exactly one among the
n − 1 nodes transmits in the next slot. This happens
with probability nβ(1−β)n−1(1−β)(k−1)(n−1)(n−1)β(1−β)n−2

1−(1−β)n .
Combining the above success terms, we get
Dsuc =

∑λ−1
k=0 Pr

[

Tbusy= Tmin
suc + kδ

]

(Tmin
suc + kδ), which

simplifies to (8).
2) Evaluation ofE [ζ]: In a renewal interval,ζ = 0 if a

collision occurs,ζ = λδΩ if exactly one node successfully
transmits, andζ = 2λδΩ when exactly two nodes successfully
transmit. The probabilities of these events were derived while
computingE [T ] above. Hence,

E [ζ] =
nβ(1 − β)λ(n−1)

1− (1− β)n
λδΩ +

(

(

n
2

)

β2(1− β)n−2

1− (1 − β)n

+

λ−1
∑

k=1

n(n− 1)β2(1− β)n−2(1− β)k(n−1)

1− (1 − β)n

)

2λδΩ. (21)

This upon simplification results in (9).

D. Brief Proof of Lemma 2

The derivations of̃K1(β̃) andK̃2(β̃) are the same as that for
K1(β) andK2(β), respectively, in Appendix A. For evaluating
K̃3(β̃), we consider the following two cases that may arise
when the tagged node transmits the third packet in a renewal
interval while the previous two transmissions are still ongoing
in the channel. As mentioned, the probability of the case where
the third packet transmission commences after the first packet
transmission has ended is smaller and is neglected.

Case 1:Two nodes, excluding the tagged one, start trans-
mitting simultaneously the first two packets in the renewal

interval, which occurs with probability(
n−1
2 )β̃2(1−β̃)n−2

1−(1−β̃)
n . Then,

in the subsequent slots, the tagged node andx other nodes
(0 ≤ x ≤ n − 3) that have not yet transmitted, er-
roneously estimate the number of ongoing transmissions
in the channel to be one, which occurs with probability
(

n−3
x

)

px+1
2,1 (1− p2,1)

n−3−x. None of thesex+1 nodes trans-
mits for i slots (0 ≤ i ≤ λ − 2) and, finally, the tagged
node transmits the third packet in the next slot. This oc-
curs with a probabilityβ̃(1 − β̃)i(x+1). Hence, the proba-

bility of this case is
(n−1

2 )β̃2(1−β̃)n−2

1−(1−β̃)n
∑n−3

x=0

(

n−3
x

)

px+1
2,1 (1 −

p2,1)
n−3−x

∑λ−2
i=0 β̃(1 − β̃)i(x+1). This simplifies to the first

term in the expression for̃K3(β̃) in Lemma 2.
Case 2: Exactly one among then nodes excluding the

tagged node transmits the first packet in the renewal interval,
say in slot t1, with probability (n−1)β̃(1−β̃)n−1

1−(1−β̃)n
. Then in

slot t1 + i + 1 another node, excluding the tagged node,
transmits the second packet, which occurs with probability
(n − 2)β̃(1 − β̃)n−2(1 − β̃)i(n−1), where0 ≤ i ≤ λ − 3.
Thereafter, the tagged node andx nodes from among the
n− 3 other nodes incorrectly estimate the channel occupancy,
which occurs with probability

(

n−3
x

)

px+1
2,1 (1−p2,1)

n−3−x. No
transmissions occur forj slots (0 ≤ j ≤ λ− i−3), and in slot
t1 + i+1+ j +1, the tagged node transmits the third packet,
which occurs with probabilitỹβ(1− β̃)j(x+1). Summing over
all the possible values ofi, j, andx yields the second term
in the expression forK2(β̃) in Lemma 2.

The expression for̃αi in terms of K̃i(β̃) in (10) follows
from Baye’s rule.

E. Proof of Theorem 3

The expression for̃γ follows directly from the law of total
probability. Also, if a tagged node erroneously transmits when
already there are two ongoing transmissions in the channel,
then a collision is inevitable.5 Hence,P̃3(β̃) = 1.

Expression forP̃1(β̃): Let the packet transmitted by the
tagged node be the first packet in a renewal interval. The
events that contribute to the expression forP̃1(β̃) are the
same as those that contribute toP1(·) in Appendix B except
that the following additional event can occur due to incorrect
estimation: None of the remainingn−1 nodes transmit during
the first i slots (0 ≤ i ≤ λ − 1) of the packet transmitted by

5This is because, as mentioned, we ignore the unlikely event where the
tagged node’s transmission erroneously commences after the number of
ongoing transmissions has decreased from two to one.
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the tagged node, which occurs with probability(1− β̃)i(n−1).
Then, in slot i + 1, exactly one among then − 1 nodes
transmits, which occurs with a probability(n−1)β̃(1−β̃)n−2.
Finally, in the remainingλ − i − 1 slots of the first packet,
at least one of the remainingn − 2 nodes erroneously trans-
mits, which occurs with probability1 − Θn−2(λ − i − 1).
Hence, the probability of this additional collision event is
(1 − β̃)i(n−1)(n − 1)β̃(1 − β̃)n−2

(

1−Θn−2(λ− i − 1)
)

.
Summing it overi and adding it to the expression forP1(β̃)
yields the expression in (13).

Expression forP̃2(β̃): The collision event that contributes
to the expression forP2(·) in Appendix B also contributes
to the expression forP̃2(β̃). Incorrect estimation can lead
to the following additional event, in which the tagged node
transmits the second packet in a renewal interval and a
collision occurs subsequently due to a third transmission.
Say the tagged node transmits in the(i + 2)th slot (0 ≤
i ≤ λ − 2) of the first packet transmitted by one node
among the othern − 1 nodes. Given that the tagged node
has transmitted the second packet, the probability of this
event is (n−1)β̃(1−β̃)n−1(1−β̃)i(n−1)β̃(1−β̃)n−2

(1−(1−β̃)
n
)K̃2(β̃)

. In the remain-

ing λ − i − 2 slots of the first packet, at least one of
the remainingn − 2 nodes erroneously transmits a third
packet to cause the collision, which occurs with probability

1−
(

p2,1(1− β̃)λ−i−2 + 1− p2,1

)n−2

= 1−Θn−2(λ−i−2).

Summing the probabilities overi and adding them toP2(β̃)
yields (14).
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