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Ischemic stroke is a major cause of disability and mortality worldwide, but effective

restorative treatments are very limited at present. Regenerative medicine research

revealed that stem cells are promising therapeutic options. Dental pulp stem cells

(DPSCs) are autologously applicable cells that origin from the neural crest and exhibit

neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of

increasing interest since they are relatively easy to obtain, exhibit a strong proliferation

ability, and can be cryopreserved for a long time without losing their multi-directional

differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such

as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide

a tempting prospect for stroke treatment.
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The past decade has witnessed intense advancement and tremendous therapeutic achievements
in the ability to diagnose and treat stroke, a cerebrovascular disease of which 87% is ischemic
in nature. Nevertheless, stroke remains a major cause of disability, morbidity, and mortality
worldwide, and constitutes a major socioeconomic problem (1, 2). Ischemic stroke, due to partially
or completely blocked blood flow in a cerebral artery, causes ischemic necrosis of brain tissue
seriously impairing the health of affected individuals. The main therapeutic strategy for ischemic
stroke is timely recanalization. This can either be achieved by tissue-type plasminogen activator
application or mechanical thrombectomy. Particularly the latter can be applied up to 24 h after
stroke in patients exhibiting a penumbra, and has revolutionized acute stroke treatment. However,
the absolute number of patients qualifying for recanalization remains very low (3, 4). Hence,
additional treatment approaches being effective beyond the first hours after stroke onset are
urgently required.

Stem cell transplantation is a promising strategy to restore neurological function after stroke
(5). Experimental stem cell transplantation in animals showed that numerous cell populations
can improve functional recovery by a broad spectrum of mechanisms (6–8). Several kinds of
stem cells are currently considered for therapy. These include embryonic stem cells (ESCs),
fetal stem/progenitor cells, induced pluripotent stem cells (iPSCs), and adult stem cells. While
embryonic or induced pluripotent stem cells exhibit a tremendous differentiation potential, they
may also inherit a risk for tumor formation (9). The use of embryonic stem cells or fetal
stem/progenitor cells raises ethical concerns. Adult stem cells show a limited proliferation and
differentiation potential, but can still be beneficial after stroke due numerous mechanisms beyond
tissue restoration. They are further believed to be safer in clinical application and their use is
ethically less challenging (9–13).

Recent systematic reviews and meta-analyses on the most prominent adult stem cell therapy
candidates, mesenchymal stem cells (MSCs), presented evidence that MSCs improve the outcome
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after stroke in animals (14) and patients, and confirmed the
safety and feasibility of the approach (15). Nevertheless, there
is still a lack of adult (stem) cells that can be derived from an
autologous source, and may exhibit therapeutic abilities beyond
those of MSCs.

DENTAL PULP STEM CELLS (DPSCs): A
NEW SOURCE OF ADULT STEM CELLS

The dental pulp is a soft tissue located in the center of teeth.
It comprises blood vessels, neural fibers, and connective tissue.
The dental pulp contains both mesenchymal and ectodermal
tissue as well as neural crest cells (16). Limited dentinal
repair in the postnatal organism relies on specialized precursor
cell populations residing in the dental pulp tissue. Gronthos
et al. first reported the isolation and characterization of stem
cells from dental pulp tissue of the third molar in 2000
(17). DPSCs are ectoderm-derived stem cells, originating from
migrating neural crest cells (Figure 1). They are a subpopulation
among dental pulp cells (DPCs) which possess MSC properties,
such as a fibroblast-like morphology, adherence to a plastic
surface, as well as surface marker expression, proliferation and
colony forming behavior similar to that of MSCs (18, 19).
It is not clear whether or not DPSCs are a kind of MSC
population. Given their differentiation abilities as reviewed
below, it might be assumed that DPSCs are a more naïve
stem cell population that also, but not exclusively, exhibits
MSC properties. A major benefit of DPSCs is that they can be
isolated during routine dental procedures such as the eruption
of deciduous teeth or extraction of impacted wisdom teeth
(20) in simple and autologous fashion without ethical concerns.
Another primary advantage of DPSCs is their potential for cell
banking. Several studies have demonstrated that DPSCs retain
their stem cell properties after long cryopreservation (21, 22).
This is essential as cryopreservation can impact therapeutic
capacities of other adult stem cell-containing populations in
stroke (23). In addition, DPSC cultures can be established from
extracted human molars with high efficiency, even after the
whole tooth has been cryopreserved for up to 1 month (24).
DPSCs also exhibit a multilineage differentiation potential into
chondrocytes, adipocytes, odontoblasts, and potentially even
neural-like cells (25–28).

Currently, there are no specific markers that uniquely define
DPSCs. In general, DPSCs, as a heterogeneous population,
express a variety of markers similar toMSCs (Table 1) (Figure 1),
and do not express hematopoietic markers such as CD14, CD19,
CD34, and CD45 (18, 26, 29–32). DPSCs isolated by their high
proliferative potential tend to include a large population of
cells expressing CD44+, CD90+, and CD166+. However, DPSCs
also express stemness-related markers similar to ESCs such as
Oct-3/4, Nanog, and Sox-2, as well as the cytoskeleton-related
markers nestin and vimentin (Figure 1) (33–35). They further
express insulin-like growth factor 1 receptor (IGF1R) which is
regarded as a pluripotency marker in ESCs. DPSC-secreted IGF1
interacts with IGF1R through an autocrine signaling pathway to
maintain self-renewal and proliferation potential (36).

In addition, DPSCs (as neural crest-derived stem cells) not
only express a number of neural stem cell (NSC) associated
markers including nestin (26, 37) and Sox2 (38) (Figure 1),
but also express low basal levels of markers associated with
mature central nervous system cell types, including the neuronal
markers βIII-tubulin, microtubule-associated protein 2 (MAP2),
neurofilaments (NF) (33, 39), NeuN (40), the astrocytic
marker glial fibrillary acidic protein (GFAP) (26, 33), and
oligodendrocyte-associated CNPase (33). Taken together, this
suggests that DPSCs can indeed differentiate into neuron-like
cells under appropriate conditions, and differentiated cells even
exhibit typical electrophysiological properties after neuronal
differentiation (41, 42).

DPSCs AS A POTENTIAL CANDIDATE FOR
THERAPY OF NEUROLOGICAL DISEASES

Brain-derived NSCs are considered a promising population
for stroke treatment due to their ability to self-renew and
to differentiate into neural cells types (neurons, astrocytes,
oligodendrocytes) (43). However, autologous harvest of adult
human NSCs requires neurosurgical procedures due to their
brain parenchymal residence (44), while allogeneic or even
xenogenic NSCs grafting imposes the risk of graft rejection and
additional immunological damage. Only a limited number of
clinical trials currently explore the potential of NSCs for stroke
treatment because of these limitations.

Adult stem cells or stem cell-containing populations are
more frequently applied in translational research. As stated
above, DPSCs share many biological characteristics with MSCs
including bone marrow MSCs (BM-MSCs), adipose tissue-
derived stem cells (ADSCs) and umbilical cord MSCs (UC-
MSCs) but there are some variations in their proliferation
potential (17, 27, 45), differentiation potential (17, 27, 46),
immunomodulatory activity (27), secretome characteristics, and
secretory capacity (47–49). Specifically, DPSCs have a higher
proliferation rate and a greater clonogenic potential than MSCs
(17, 45). Next to DPSCs, the DPC population also contains a
higher number of stem/progenitor cells as compared to bone
marrow (50). This may be attributed to the developmental state
of the respective tissues. All teeth, even the permanentmolars, are
generated early in individual development and rest in the jar until
they erupt. Abilities and capacities of stem cells may be much
better preserved in tissue with a slow turnover such as the dental
pulp when compared to BM, which exhibits a tremendous turn-
over throughout life apart from some niches. DPSCs maintain
their high rate of proliferation even after extensive subculturing.

Like MSCs, DPSCs can differentiate into cells of mesenchymal
and non-mesenchymal tissues in vitro and in vivo. However,
DPSCs exhibit stronger odontogenesis and neurogenesis
capabilities, in turn being not as potent to produce adipogeneic,
osteogeneic and chondrogeneic tissue than BM-MSCs (51) and
ADSCs (46). Besides, DPSCs also have immunomodulatory
capacities exceeding those of BM-MSCs, for example a higher
suppression rate of T lymphocyte growth (17, 27).

DPSCs exhibit superior neuroprotective and neuro-
supportive properties in neurological injuries and pathologies as
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FIGURE 1 | DPSCs origin, isolation, and marker expression. DPSCs originate from migrating neural crest cells, coming to rest in dental pulp, and express markers

overlapping with MSCs, ESCs, and NCSs.

TABLE 1 | Characteristics of DPSCs.

Marker expression overlapping with In vitro

multipotency

Secretomes

MSCs ESCs NSCs Mature cells

CD29, CD44, CD59,

CD73, CD90, CD105,

CD146, CD166, CD

271, STRO-1

Oct-3/4,

Nanog, Sox-2

Nestin,Sox-2 MAP2, NF, βIII-tubulin,

NeuN (neurons),

GFAP, S100

(astrocytes),

CNPase (oligodendrocytes)

Adipo, chondro,

myo, osteo, neuro,

odonto

Neuroprotective effect: BDNF, GDNF,

VEGF, NGF, IGF-1, PDGF, CNTF,

RANTES, GM-CSF;

Anti-apoptotic effect: MCP-1,

FRACTALKINE; Immunomodulation effect:

FLT-3, TGF-β, IL-6

MAP2, microtubule associated protein 2; NF, Neurofilament; GFAP, glial fibrillary acidic protein; adipo, adipocyte; chondro, chondrocyte; myo, myoblast; neuro, neuronal cell; odonto,

odontoblast; osteo, osteoblast. BDNF, brain-derived neurotrophic factor; GDNF, glial cell-derived neurotrophic factor; VEGF, vascular endothelial growth factor; NGF, nerve growth

factor; PDGF, platelet derived growth factor; CNTF, ciliary neurotrophic factor, FLT-3, fms-related tyrosine kinase 3; GM-CSF, granulocyte-macrophage colony-stimulating factor; MCP-1,

monocyte chemotactic protein 1; TGF-β, transforming growth factor-β; IL-6, interleukin-6.

compared with BM-MSCs and ADSCs (52). This might be related
to a higher expression of trophic factors including brain derived
neurotrophic factor (BDNF), glial cell-derived neurotrophic
factor (GDNF), nerve growth factor (NGF), vascular endothelial
growth factor (VEGF), and platelet derived growth factor
(PDGF) in DPSCs as compared to BM-MSCs (47, 48), although
the spectrum of growth and trophic factors secretion is similar
(53). DPSCs also express higher quantities of CXCL14 and
monocyte chemoattractant protein 1 (MCP-1) than ADSCs (49).
Besides, the DPSC secretome contains higher concentrations
of RANTES, FRACTALKINE, fms-related tyrosine kinase 3
(FLT-3), granulocyte-macrophage colony-stimulating factor
(GM-CSF), and MCP-1 than the BM-MSCs secretome (54).
DPSCs show higher angiogenic and neurogenic potentials
in ectopic transplantation models compared to BM-MSCs
and ADSCs, and exhibit the highest migration capacity.
Transplantation of DPSCs in a mouse hindlimb ischemia

model produced higher blood flow and capillary density than
transplantation of BM-MSCs and ADSCs, which being associated
with superior recovery of limb movement abilities and reduction
of ischemic hindlimb damage (55). DPSCs also mediate stronger
anti-apoptotic effects in a microenvironment challenged by
oxidative and serum deprivation than BM-MSCs, ADSCs and
UC-MSCs (45).

Cell size and diameter are important for safety after
intravascular delivery as they are the major, but not the only,
determinants of vascular obstruction and complications (56)
(Table 2). Previously reported studies showed that the cell
diameter of human DPSCs is around 15–16µm (59), which is
comparable to NSCs (57, 58) but slightly smaller than for most
MSC populations (57, 60) including human BM-MSCs (61). Still
this means that one has to expect a considerable pulmonary
passage filtering effect after intravenous delivery, as well as a
risk for microembolism after intraarterial administration (62).
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TABLE 2 | Overview of cell size of cell populations.

Cell population Cell

diameter

Cell source

NSCs (57, 58) 16µm Human fetal brain

DPSCs (59) 15–16µm Human dental pulp

MSCs (57, 60) 17–18µm Bone marrow; adipose tissue;

human umbilical cord blood

Hematopoietic

stem/progenitor cells (57)

6–10µm Bone marrow; peripheral

blood; cord blood

Mononuclear cells (57, 60) 7µm Bone marrow; peripheral

blood; cord blood

Hence, thorough investigations identifying the optimal route of
DPSC administration by considering safety and efficacy aspects
are recommended in DPSC translational research.

DPSCs FOR ISCHEMIC NEURONAL
DAMAGE: IN VITRO EFFECTS

Treatment with immunosorted IGF1R+ DPSCs significantly
modulates neurite regeneration and anti-inflammation in
primary cortical cultures subject to oxygen/glucose deprivation
(OGD) (36). DPSCs cultivated on adult mouse hippocampal
slices were able to stimulate neurogenesis in both the CA1 zone
and at the edges of the hippocampal slices through neurotrophic
support in vitro (41). Besides, DPSCs can protect primary
hippocampal, mesencephalic (63) and dopaminergic neurons
(64) from β-amyloid peptide and 6-OHDA induced toxicity,
respectively. Furthermore, DPSCs and conditioned medium
fromDPSCs show superior protective, migratory, and angiogenic
effects in OGD-injured astrocytes as compared to BM-MSCs (52,
65). Reducing reactive gliosis, reactive oxygen species production
and inflammatory mediators might contribute to this protective
effect (52).

DPSCs EFFECTS AFTER ISCHEMIC
STROKE IN VIVO

Human DPSCs can differentiate toward functionally active
neurons under appropriate culture conditions (66–68). This
comes on top of their bystander effects, indicating that DPSCs
might provide enhanced therapeutic capacities in neurological
diseases including stroke, Parkinson’s disease, Alzheimer’s
disease, and spinal cord injury (52, 63, 69). To date, there
are several preclinical studies demonstrating that DPSCs exert
neuroprotective effect resulting in improved functional outcome
and reduced infract volumes in rodent stroke models (Table 3)
(52, 66, 68, 70–76). No obvious deleterious effects were observed
in these studies (66, 68, 71–73, 75), but have not been always
explicitly looked for.

A number of remarkable improvements were seen in
behavioral tests (Table 3), underpinning the considerable effect
DPSCs may exert after ischemic stroke. However, many of the
behavioral tests used are known for a tendency to overestimate

true functional recovery in standard rodent models so future
research may also include the use of highly specific behavioral
readout systems (77).

During ischemia, neurons are unable to maintain normal
transmembrane ion gradient and balance, resulting in cell
death by apoptosis, excitatory toxicity, and oxidative stress.
Inflammatory reactions contribute to cell death in subacute and
even chronic stages what can be exacerbated in the presence of
important stroke risk factors (78, 79). These pathophysiological
processes are interrelated and can trigger each other, forming
a vicious cycle (80, 81). Indeed, neuroinflammation and
immune response after stroke have been recognized as key
factors contributing to overall brain damage and the extent
of neurological deficit (82). The administration of DPSCs
during the acute phase of stroke dampens inflammation in vivo,
and can promote recovery from in post-ischemia/reperfusion
brain injury (70). Moreover, intracerebral transplantation
of DPSCs or immunosorted IGF1R+ DPSCs into the
ischemically injured neonatal murine brain significantly
increases immunomodulation, enhances poststroke recovery,
and promotes neuroplasticity (36, 67). Further, intravenous
transplantation of DPSCs or DPSC-derived neurosphere cells
significantly ameliorates the impact of global cerebral ischemia,
decreases neuronal cell death in the hippocampal CA1 region,
improves neuromotor and cognitive function as well as overall
survival rates in stroke animals (73). Moreover, intracerebral
transplantation of DPSCs also enhanced poststroke functional
recovery after brain injury through increasing expression of the
anti-apoptotic protein Bcl-2 (67).

Transplanted DPSCs can migrate into the boundary of
ischemic areas, and express neural cell and NSC markers
such as βIII tubulin, doublecortin (DCX), nestin, and NF
(72). The cells’ beneficial effects may even be exerted after
xenogeneic transplantation as evidenced by a study showing that
porcine DPSCs (CD31−/CD146− side population cells) injection
promotes recovery form motor impairment and reduced infarct
volume, promoted migration and differentiation of endogenous
NSCs, and finally induced vasculogenesis after stroke in rats (66).

DPSC EXOSOMES—GREAT
OPPORTUNITIES FOR CELL THERAPY
WITHOUT CELLS

The limited survival, differentiation and integration of DPSC-
derived cells into the ischemically lesioned brain implies that
the functional improvement is more likely mediated through
bystander effects rather than cell replacement and differentiation
(33). It has been well-documented that the MSC secretome
contains a variety of cytokines, chemokines, and growth factors,
along with extracellular vesicles (EVs). The most important
EVs in MSC-conditioned medium are exosomes, which are of
“nano” size (30–100 nm in diameter) (83, 84). EVs play an
important role in intercellular communication because they can
transfer RNA, micro-RNA, proteins, membrane receptors and
even organelles (mitochondria) between cells (85, 86). MSC-
derived EVs are of increasing interest since they may have
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TABLE 3 | Overview of DPSCs therapy for ischemic stroke animal models.

Cell type and dose Delivery

method

Delivery time Animal model Transplantation

paradigm

Function and mechanisms Primary endpoint and effect sizes

Human DPSCs; 6 ×

105 in 4 µl (68)

Intracerebral

(striatum and

cortex)

24 h after MCAO Rat MCAO (2 h) Xenogeneic Improved functional recovery; Differentiation into

astrocytes; Paracrine effects.

Neuroscore: 35% improve (p < 0.05)*

Human DPSCs; 4 ×

106 in 500 µl (52)

Intravenous

(tail vein)

24 h after MCAO Rat MCAO (2 h) Xenogeneic Improved functional recovery and reduced infarct

volume; Differentiated into astrocytes and

neuron-like cells; Promoted angiogenesis and

inhibited astrogliosis.

Infract volume: 44% decrease, (p < 0.05); mNSS:

38% improve (p < 0.05)*

Human DPSCs; 1 ×

106 in 1ml (70)

Intravenous

(tail vein)

immediately after

MCAO

Rat MCAO

(90min)

Xenogeneic Reduced the infarct volume and improved the

neurological recovery;

Inflammation modulation;

BBB permeability modulation;

Promoted angiogenesis.

Infract volume: 23% decrease (p < 0.01); Rotarod

test: 108% improve (p < 0.01) *; Forelimb grip

strength: 54% improve (p < 0.05)*

Rat DPSCs; 3 × 106

in 300 µl (71)

Intravenous

(tail vein)

24 h after MCAO Rat MCAO (2 h) Allogeneic

Homologous

Enhanced sensorimotor functional recovery;

Differentiation into neuronal progenitor cells and

neuron-like cells, and triggered neurogenesis.

mNSS: 52% improve (p < 0.05)*; Adhesive-removal

test: 38% improve (p < 0.05)*

Rat DPSCs; 1 × 106

in 500 µl (72)

Intravenous

(tail vein)

24 h after MCAO Rat MCAO (2 h) Allogeneic

Homologous

Reduced infarct volume and cerebral edema;

Differentiated into neuron-like cells

Infract volume: 31% decrease (p < 0.05)

Rat DPSCs and

dental pulp-derived

neurospheres;

1×106 in 1ml (73)

Intravenous

(tail vein)

3 h after brain

ischemia

Rat severe

forebrain

ischemia model

(11min)

Allogeneic

Homologous

Improved survival rate and cognitive function;

Reduced the dead neurons of hippocampus CA1.

Survival rate: 36% improve (p < 0.05); Water-maze

test: 62% improve (p < 0.05)*

Human DPSCs; 1 ×

106 in 1ml (74)

Intravenous

(tail vein)

immediately and

3 h after MCAO

Rat MCAO

(90min)

Xenogeneic Reduced ischemic damage and improved

functional recovery; Inflammation modulation

Infract volume: 30% decrease (p < 0.05); Rotarod

test: 97% improve (p < 0.01)*; Forelimb grip

strength: 40% improve (p < 0.01)*

*Compare with vehicle-treated stroke animals.
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a comparable therapeutic potential to MSCs themselves, but
are relatively safer in application, and can pass through the
BBB far more easily than cells (87). Studies demonstrated that
administration of BM-MSC or ESC-derived exosomes could
significantly increases neurogenesis and vasculogenesis, and
promotes functional recovery in stroke animal (88, 89).

Likewise, accumulating evidence demonstrated the potent
neuroprotective properties of DPSC-derived EVs. An in vitro
study showed that DPSC-EVs which were grown on laminin-
coated microcarriers display neuroprotective properties in 6-
OHDA-exposed human dopaminergic neurons (90). DPSC-EVs
also reduce cytotoxicity through anti-apoptotic mechanism by
upregulating endogenous Bcl-2, and decrease the expression of
the pro-apoptotic regulator Bax in Aβ peptide-exposed human
neuroblastoma (SH-SY5Y) cells (54). An in vivo study showed
that exosomes derived from DPSCs have beneficial effects after
focal cerebral ischemia in the rat by stimulating angiogenesis
and neurogenesis (91). In addition, the therapeutic potential
of DPSC-derived conditioned medium (CM) was found to
be similar to that of the injection of living cells in animal
model of stroke, leading to motor function improvement and
infarct volume reduction (76). Moreover, CM from human
DPSCs also induced significant neuroprotection, enhanced
neuronal sprouting, and reduced neuroinflammation in a mouse
model of Alzheimer disease (92). DPSC-derived exosomes were
further shown to exert strong anti-inflammatory effects at levels
comparable to those of glucocorticoids. They also suppress
cathepsin B andmatrix metalloproteinase (MMP) activities at the
site of inflammation in mice, likely mediated by the transport of
annexin A1, phospholipases, and lipid mediators to the site of
inflammation (93). Taken as a whole, these studies showed the
potential of DPSC-derived exosomes for the treatment of central
nervous system disorders.

Investigation of molecules within EVs provides new insight
to EV-mediated beneficial mechanism, although determining
the exact composition and content of the exosomal content
(cargo) produced by different cell types is hard to establish due
to inevitable differences regarding the conditions in which the
cells are prepared and processed (83). High-throughput mass
spectrometry-based analysis of proteins revealed some surface
receptors (CD105, CD73, CD29, CD81, and CD44), signaling
molecules (many of which are involved in controlling of TGF-
β, BMP, MAPK, and PPAR recipient cell signaling pathways),
adhesion molecules and MSC-associated markers which may
account for the therapeutic potential of MSC-derived EVs (94,
95). Baglio et al. (96) reported a substantial similarity between the
most representedmiRNAs in ADSC and BM-MSC exosomes, but
their relative proportions are different. The top 5 most abundant
miRNAs (accounted for 50 % of the total miRNA reads) in ADSC
exosomes were miR-486-5p, miR-10a-5p, miR-10b-5p, miR-191-
5p, and miR-222-3p, while miR-143-3p, miR-10b-5p, miR-486-
5p, miR-22-3p, and miR-21-5p were among the most abundant
for BM-MSC exosomes. Besides, exosome libraries were highly
enriched in the class of tRNAs, which represented >50 % of
total small RNAs in ADSC exosomes and 23–35% in BM-MSC
exosomes. However, since the studies of DPSC exosomes are
just at the initial stage, there is no exactly content of these
exosomes reported.

POSSIBLE MECHANISMS OF DPSC
THERAPY FOR ISCHEMIC STROKE

Previous studies suggested that human DPSCs potentially
differentiate into functional neural progenitors or neurons which
may integrate into the brain (64, 97, 98). Similarly, studies
showed that grafted DPSCs survive, migrated to infarct boundary
zones, and differentiate into neurons and astrocytes in the rat.
The cells also express neuron-specific markers including βIII
tubulin and NF (52, 72). However, only a very small part of
transplanted DPSCs (2.3 ± 0.7%) survived in the post-stroke
brain, migrated to the peri-infarction areas, and differentiated
into astrocytes (51.0 ± 8.6% GFAP+) in preference to neurons
(8.7 ± 6.1% NeuN+) (68). Hence, the therapeutic potential of
DPSCs is believed to be mainly exerted by their bystander effects
(Figure 2) (76).

DPSCs have the potential to improve the microenvironment
and enhancing neurogenesis (47, 64, 99, 100). DPSCs also have
been shown to exert potent immune-modulatory properties via
inhibition of activated T cell responses (27) and peripheral blood
mononuclear cell proliferation (101), regulating the expression
of inflammatory factors such as TGF-β and interleukin (IL)-
6 (102), and the induction of Fas ligand-mediated T cell
apoptosis (103). Although the suppression of T cell proliferation
seen in in vitro studies is now established, this property of
DPSCs may not be the sole mechanism of action in vivo,
particularly since blood circulation increases the number of
T cells perpetually. More studies are therefore warranted
to further understand the interaction between DPSCs and
the immune system because this cross talk has important
therapeutic implications.

LIMITATIONS OF DPSCs AND
CHALLENGES RELATED TO THEIR USE

Though DPSCs have a higher proliferation rate than MSCs,
it still needs at least 1 to 2 months to acquire enough cells
for therapy from primary isolation (104) (Table 4), which may
limit their use at the acute stage of acute onset diseases. The
long-term side effects associated with the use of DPSCs also
have not been sufficiently studied so far. Further studies are
warranted to clarify possible long-term risks associated with the
use of these cells, as well as optimal cell preparation, storage
and application procedures including routes and time points
of application. Tailored potency assays for clinical trials are
also lacking, and the optimal route of delivery awaits detailed
investigation. Moreover, clinical investigation of the cells has
just started (105) so appropriate double-blinded, randomized
clinical trials have not yet been reported, currently preventing
any conclusion on a potential clinical efficacy of these cells. In
addition, further studies thoroughly assessing efficacy, safety and
also the content of DPSC-derived EVs are required since EVs
are highly promising therapeutic tools for regenerative medicine,
but a thorough proof of concept is still missing. Additional
research is also needed to capitalize on the DPSC differentiation
potential. This might require specialized stroke models, for
instance mimicking lacunar stroke, that may be more permissible
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FIGURE 2 | The mechanisms of DPSC therapy for ischemic stroke. The therapeutic effects of DPSCs in stroke are attributed to (1) paracrine or autocrine production

of cytokines and growth factors, (2) neural replacement through differentiation into neuronal progenitor cells, astrocytes and neuron-like cells, (3) immuno-modulation

with mitigation of pro-inflammatory cytokine expression, of microglial activation, inhibition of activated T-cell response, and peripheral blood mononuclear cell (PBMC)

proliferation. (1) and (3) are believed to be the main therapeutic effects of DPSCs.

TABLE 4 | The comparison of DPSCs with other stem cells.

DPSCs ESCs NSCs MSCs

BM-MSCs ADSCs UC-MSCs

Basic abilities

Proliferation potential ++ ++ +/– + + ++

Neurogenic differentiation + ++ ++ +/– +/– +/–

Migration abilities ++ ++ + + + +

Autologous application abilities ++ −− – ++ ++ –

Required cultivation time to achieve sufficient cell numbers 1–2 months 1–2 months >2 months 1–2 months 1–2 months 1–2 months

Cryopreservation abilities + + +/– + + +

Cell banking opportunities for adults + +/– – +/– +/– +/–

General amount of information available about cell properties – + + ++ + +

(++) very high, (+) high, (+/–) average, (–) low, (−−) very low.

for tissue restoration, and/or the use of biomaterials to support
cell engraftment and survival (106).

CONCLUSIONS

This review summarizes the main DPSC characteristics including
surface marker expression, proliferation and differentiation
potential, cytokine and trophic factor secretion ability, as well
as therapeutic effects in in vitro and in vivo stroke models. It
also elucidates important underlying therapeutic mechanisms.
DPSCs express a variety of markers that are found on MSCs,
ESCs, and NSCs. Although they can differentiate into different
types of neuronal cells, bystander effects are believed to be
their predominant therapeutic mechanism. DPSCs are widely
available, easily accessible, and can support well-established
stroke therapies, thereby potentially extending the therapeutic
time window and/or augmenting the therapeutic impact. DPSCs
differ from the other adult stem cell populations due to their
embryonic origin from the neural crest and are of special interest
because of their neurotropic character, which makes DPSCs and

their exosomes particularly attractive as a new therapeutic tool
for the alleviation of symptoms of stroke and, potentially, other
neurodegenerative diseases. Besides, DPSCs exhibit a higher
proliferation rate, higher expression of trophic factors, stronger
neuroprotective effects and neuro-supportive properties in vitro
and in vivo than MSC populations (Table 4), which provide a
tempting prospect for stroke treatment.
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