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Abstract 

The anatomical structure of the human brain varies widely, as does individual cognitive 

behavior. It is important and interesting to study the relationship between brain structure 

and cognitive behavior. There has however been little previous work on the relationship 

between inhibitory control and brain structure. The goal of this study was to elucidate 

possible cortical markers related to inhibitory control using structural magnetic resonance 

imaging (sMRI) data. In this study, we analyzed sMRI data and inhibitory control behavior 

measurement values from 361 healthy adults from Human Connectome Project (HCP). 

Data of all subjects were divided into two datasets. In the first dataset, we first constructed 

individual brain morphometric similarity networks by calculating the inter-regional 

statistical similarity relationship of nine cortical characteristic measures (such as volume) 

for each brain area obtained from sMRI data. Areas that covary in their morphology are 

termed 'connected'. After that, we used a brain connectome-based predictive model (CPM) 

to search for 'connected' brain areas that were significantly related to inhibitory control. 

This is a purely data-driven method with built-in cross-validation. Two different 'connected' 

patterns were observed for high and low inhibitory control networks. The high inhibitory 

control network comprised 25 'connections' (edges between nodes), mostly involving 

nodes in the prefrontal and especially orbitofrontal cortex and inferior frontal gyrus. In the 

low inhibitory control network, nodes were scattered between parietal, occipital and limbic 

areas. Furthermore, these ‘connections’ were verified as reliable and generalizable on the 

second dataset. Two regions of interest, the right ventromedial prefrontal cortex including 

a part of medial area 10 (R.OFCmed) and left middle temporal gyrus (L.MTG) were crucial 

nodes in the two networks, respectively, which suggests that these two regions may be 

fundamentally involved in inhibitory control. Our findings potentially help to understand the 

relationship between areas with a correlated cortical structure and inhibitory control, and 

further help to reveal the brain systems related to inhibition and its disorders. 

 

Keywords: Inhibitory control; Right medial orbitofrontal cortex; Left middle temporal gyrus; 
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1. Introduction 

Inhibitory control (or response inhibition) is an executive function that permits an individual 

to inhibit their impulses and natural, habitual, or dominant behavioral responses to stimuli 

in order to select a more appropriate behavior that is consistent with completing their 

goals,including goals from the cognition domain (Diamond, 2013; Ilieva et al., 2015). An 

example of Inhibitory control is self-control, successfully suppressing the natural 

behavioral response to eat cake when one is craving it (Diamond, 2013). Many 

researchers believe that impaired inhibitory control is associated with brain disorders such 

as addiction and attention deficit hyperactivity disorder (Colzato et al., 2011; Fillmore & 

Rush, 2002; Dong et al., 2012; Koob & Volkow, 2010; Mostofsky et al., 2003; Liddle et al., 

2010). The discussion of human Inhibitory control mechanisms has been one of the most 

intriguing issues in contemporary developmental cognitive neuroscience (Morasch et al., 

2011; Watson & Bell, 2013; Pires et al., 2014; Maij et al.,2017). 

One of the goals of modern neuroscience is to study the relationship between brain 

structure and function and the behavior of the individual. Technological advances in the 

field of brain research have accelerated the study of the relationship between the human 

brain and behavior. For example, sMRI can provide useful information about the 

anatomical structure of the brain and its differences in different individuals (Giedd, 2004). 

Structural brain imaging can be used to search for reliable and stable structural 

biomarkers, and also to explore the changes of brain structure that may be produced by 

cognitive training such as learning (Durston et al.,2001; Sowell et al., 2007). There have 

been many studies using structural imaging data to explore the relationship between brain 

structure and cognitive function. For example, a structural imaging data study showed 

significant differences in gray matter volumes in some areas of the brain in developing 

children with different cognitive functions (Yokota et al. 2015). Another study showed that 

changes in gray matter volume in individual brain regions are related to their social 

cognitive abilities (Hoekzema et al., 2016). Geisler et al showed a significant correlation 

between several types of cognitive decline in patients with schizophrenia and specific 

patterns of structural changes in certain brain regions (Geisler et al., 2015). In addition, 

many studies provide evidence that many brain regions in people with cognitive 

impairment, such as Alzheimer's disease, have varying degrees of atrophy compared to 

normal controls (Lim et al., 2012; Shimoda et al., 2015; Qi et al., 2017).  

There has however been little previous work on structural correlates of inhibitory 

control, which is the aim of the present study. Measures of cerebral structure include 

regional volume, surface area, and curvature. Changes in these measures are usually 

related to each other, especially for surface area, the volume of gray matter, and mean 

cortical thickness (Rimol et al., 2012; Abé et al., 2016). Beyond this, Seidlitz et al 



proposed a novel method for realizing the construction of an individual-based 

morphometric similarity matrix through a combination of morphometric features. 

Inter-regional 'connections' (in fact, similarity of structure) are estimated using newly 

introduced feature vectors, namely, the Pearson correlation coefficient of the 

concatenation of morphometric features, instead of one or two anatomical features 

(Seidlitz et al., 2018). Brain regions in which the feature vectors correlate when measured 

across a large set of individuals are said to have 'high connectivity', though in fact this 

represents covariation of structure (Li et al, 2017). There is emerging evidence that the 

combined analysis of multiple indexes is more effective than that of a single index 

(Glasser et al., 2011; Sabuncu et al., 2016; Vandekar et al., 2016; Whitaker et al., 2017; 

Seidlitz et al., 2018). Further, this method of constructing individual-based morphometric 

similarity networks has successfully improved the accuracy of discriminant analysis (Yu et 

al., 2018). Based on the above evidence, we predicted that the relationship between 

human inhibitory control and brain structure could be well studied by the new network 

construction method.  

In this paper, we aimed to study whether individual inhibitory control is related to 

individual brain structure patterns. Inhibitory control ability was measured using scores on 

the flanker inhibitory control and attention test, as used in the HCP. The neuroanatomical 

features were measured by individual-based morphometric similarity networks 

constructed from nine cortical characteristic indexes between the brain regions as 

described by Li et al. (2017). We used a brain CPM to search for brain 'connections' 

significantly related to individual inhibitory control ability, which is a purely data-driven 

linear predictive model. It is important to note that this method uses cross-validation, 

which makes the inference of results more conservative and rigorous, thereby rendering 

our results more reliable. The results show that individual inhibitory control ability can be 

predicted by the morphometric similarity of brain regions in the prefrontal cortex, 

especially the orbitofrontal cortex and the inferior frontal gyrus. People with high inhibitory 

control were marked by a higher similarity measure for prefrontal cortical regions, 

especially the right medial orbitofrontal cortex (as defined in the Desikan-Killiany atlas 

(Desikan et al., 2006). These findings potentially help to understand the neuroanatomical 

basis of human inhibitory control, and further help to reveal the relationship between 

individual brain structure and inhibitory control ability.  

 

2. Materials and methods 

2.1 Participants and data acquisition 

Data from HCP were collected from 361 adult subjects (177 males and 184 females), 

released by the WU-Minn HCP consortium. Here, we divided all of subjects’ data into two 

datasets. The first dataset consisting of 214 subjects (112 males and 102 females, age 

mean±std: 28.7±3.8) was used to perform the main prediction analysis, while the second 



dataset consisting of 147 subjects (65 males and 82 females, age mean±std: 29.2±3.6)) 

was used for validation analysis. All subjects were healthy and had no history of mental or 

neurological diseases. The inclusion information is given in Van Essen et al. (2013). All 

HCP subjects were scanned on a customized Siemens 3T housed at Washington 

University, using a magnetization-prepared rapid gradient echo (MPRAGE) sequence to 

acquire high-resolution sMRI, with repetition time = 2400ms, echo time = 2.14ms, 

inversion time = 1000ms, flip angle = 8°, resolution matrix = 224 × 224, voxel size = 0.7 × 

0.7 × 0.7mm³. The HCP Consortium obtained informed consent from all participants, and 

research procedures and ethical guidelines were followed in accordance with the 

Institutional Review Boards.  

We used inhibitory control behaviour scores, which measure participants' attention 

and inhibitory control (Smid et al., 1996; Weintraub et al., 2013; Gershon et al., 2013). The 

flanker inhibitory control and attention test was designed and carried out by staff in the 

HCP and the test scores came from the HCP's release behavior data 

(https://db.humanconnectome.org/). Details on these scores and their interpretation are 

available in the NIH Toolbox Scoring and Interpretation Guide (Weintraub et al., 2013; 

Lerman et al., 2017). In brief, the flanker test was as follows. All of the instructions were 

displayed on a computer screen. The participants were told that there were five arrows 

and two buttons on the screen. These five arrows were in a row and pointed in the same 

or different directions. The participants were required to select the button with the same 

direction as the middle arrow (that is, the third arrow). Four practice trials were conducted 

during the preparatory phase. During the test phase, each participant took approximately 

3 minutes to accomplish 20 trials. The total test score was equal to the sum of accuracy 

score and reaction time score (http://www.healthmeasures.net/explore-measurement- 

systems/nih-toolbox), where the accuracy score was equal to the number of correct 

responses divided by eight, and the reaction time score was computed with the following 

formula (Weintraub et al., 2013), 

reaction time score 
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where t represents the reaction time for any experiment, minimum reaction time was 500 

ms and maximum reaction time was 3,000 ms. This measure has become established in a 

number of other investigations (Zelazo et al., 2013; Zelazo et al., 2014; Heaton et al., 

2014; Lerman et al., 2017; Wong et al., 2019). The inhibitory control ability score ranged 

from 71 to 121, and the median value was 99.04. Detailed information on the measured 

values of the participants is provided in Figure S1. 

 

2.2 Data pre-processing  

https://db.humanconnectome.org/
http://www.healthmeasures.net/explore-measurement-systems/nih-toolbox
http://www.healthmeasures.net/explore-measurement-systems/nih-toolbox


All subjects' sMRI data were pre-processed using FreeSurfer 5.3.0 (http://surfer. 

nmr.mgh.harvard.edu/), which is a magnetic resonance data processing software 

developed by MIT Health Sciences &Technology and Massachusetts General Hospital in 

the United States (Fischl, 2012). It provides a full processing stream for structural MRI 

data. First, skull stripping, B1 bias field correction, and gray-white matter segmentation 

were performed; then, cortical gray-white boundary surface and pial surface models were 

constructed. Next, regions on the cortical surface and subcortical brain structures were 

labeled. Finally, nonlinear registration of the cortical surface of an individual was 

performed with a stereotaxic atlas and the regional measurements (described in Dale et 

al., 1999). A total of nine brain morphological indexes were extracted, and each index 

depicted different cortical characteristics (Li et al., 2017). These were the number of 

vertices, the surface area, the volume of gray matter, the average and standard deviation 

of cortical thickness, the mean curvature, the Gaussian curvature, the curvature index, 

and the folding index. The number of vertices and the surface area were measured using 

the surface model. In the surface model, the cortical surface was divided into a small 

adjacent triangle; the number of vertices and the surface area were calculated by 

calculating the number of vertices and the area of triangles, respectively (Panizzon et al., 

2009). The volume of gray matter was measured using the volume model. In the volume 

model, the cortex is divided into a cube, each representing an individual element, and the 

volume of gray matter is calculated by calculating the number of voxels within the region. 

The mean cortical thickness was the average of the distance between the cortical inner 

surface and the white matter surface at all vertices. The folding index was calculated by 

calculating the ratio of the sulcus-occluded cortex to the apparent cortex (Schaer et al., 

2008, Schaer et al., 2012). The measurement of curvature represented the degree of 

curvature at a point in different directions (Pienaar et al., 2008; Li et al., 2014).  

 

2.3 Brain morphometric similarity network construction 

In this study, we used the Desikan-Killiany atlas (Desikan et al., 2006), which is based on 

the gyri and sulci and divides the brain into 68 brain regions (34 brain regions per 

hemisphere). For each subject’s brain imaging, we first obtained data from 68 brain 

regions applying the above template. After data pre-processing, we next obtained nine 

morphological indexes for each brain region. To construct the brain network, we also 

defined the brain region as the nodes and the Pearson correlation coefficient between 

these morphological indexes of two brain regions as edges. Specifically, let 

],,,[ 921 iiii AAAV  be a brain region with nine cortical 

indexes 921 ,,, iii AAA 
,

68,,2,1 i . What is worth mentioning is that each index was 

standardized to eliminate dimensions. Then, the bivariate correlation 

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/ftp/articles/fischl99b-recon2.pdf
http://surfer.nmr.mgh.harvard.edu/ftp/articles/fischl99b-recon2.pdf


coefficients ),( ji VV were calculated between each pair of brain regions, 
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where  ji VV ,cov denote the covariance between the indexes of brain 

region iV and jV
,

68,,2,1 j ; it reflects the variability among the indexes; 

)( iVVar denote the variance of the indexes of brain region iV . Finally, an individual brain 

morphometric similarity network consisting of 68 brain regions (nodes) and 2278 edges 

('connections') was obtained. We repeated the above steps and finally obtained each 

subject's individual brain morphometric similarity network. 

 

2.4 Predicting inhibitory control ability by the brain connectome 

In this study, we used the brain CPM, which is a data-driven approach to establish a 

brain-behavioral relationship prediction model from brain connection data using 

cross-validation (Shen et al., 2017). In the first dataset, the goal was to establish a linear 

relationship between brain connectivity data and behavioral measurements, which 

included five steps: 1) Data set partition: we used the leave-one-out cross-validation 

method. (To illustrate the stability of the method, we also used 10-fold cross-validation. 

Detailed descriptions are included in the supplemental material). For each iteration, one 

participant was cyclically retained as the test set, and the others were used as the training 

set. 2) Feature selection, which involved searching for all 2278 connections and selecting 

those connections associated with the behavioral measurements. To be specific, we first 

calculated the correlation coefficient between each connection and the behavioral score 

across the subjects in the training set. We selected those connections whose p-value was 

smaller than a given threshold. There has been no uniform standard for the selection of 

this threshold (Rosenberg et al., 2018; Shen et al., 2017; Beaty et al., 2018), so we 

decided to select a threshold range 0.01 to 0.05 with a step of 0.01, which was used to 

identify those connections significantly associated with the behavioral score. 3) Feature 

summation, which involved generalizing the magnitude of those connections significantly 

associated with the behavioral score and ensuring that the next step was modeled. For 

each morphometric similarity network in the training set, we summed the magnitude of 

those connections with significantly positive correlation and negative correlation, 

respectively. We used ixpos and ixneg to represent the summation of the significantly 

positive and negative correlation connection set of the i'th morphometric similarity network. 

4) Model building, which assumed that there was a linear relationship between the 



generalized value of the brain connection (independent variable, that is, ixpos and ixneg ) 

and the behavioral variable (dependent variable, we denoted it as iy that is the i'th 

subject’s behavioral score in the training set ). The linear regression model was as follows, 

which included the age and gender of each subject as covariates.  

 genderBageBXnegBXposBBY **** 43210        (A), 

where
T

nyyyY ],,,[ 21  , 
T

nxposxposxposXpos ],,,[ 21  , ixpos represented the 

sum of the magnitude of the positively correlated connections of the i'th subject; 

T

nxnegxnegxnegXneg ],,,[ 21  , ixneg represented the sum of the magnitude of the 

negatively correlated connections of the i'th subject; n  was the number of the subject in 

the training set. iB , 4,,0 i  were the regression coefficients to be estimated.  was 

the noise term. The regression coefficients of this multiple linear regression were 

estimated by a least squares method. We obtained the evaluation values iB̂ , 4,,0 i
.
 

5) Model assessment, which involved comparing the prediction values with the observed 

values. In the previous step, we obtained the linear prediction model, 

genderBageBXnegBXposBBY *ˆ*ˆ*ˆ*ˆˆˆ
43210       (B). 

We then applied this model to the test set. Firstly, we found those significantly positive and 

negative correlation connections in the morphometric similarity network of subjects in the 

test set and summed them, respectively. Then, we substituted them into the above 

regression equation to get the predicted behavioral scores Ŷ . To assess the prediction 

results, we calculated the correlation coefficient between the predicted behavioral scores 

and the observed behavioral scores )ˆ,( YY , and performed a hypothesis test of the 

correlation coefficient. Concurrently, the mean absolute percentage error (MAPE) of the 

prediction model was calculated (Tofallis, 2015), which was equal to the average of the 

absolute value of the residuals of real observation values and the predicted values of the 

model, and the formula is as follows, 







n

i i

ii

y

yy
MAPE

1
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n

1
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where n was the number of the model (that is, the number of all subjects because of the 



leave-one-out cross-validation ); iy was the observed behavioral score; and iŷ was the 

predicted behavioral score. Using each of the feature selection thresholds, we obtained a  

regression model and its predictive evaluation indicators, which were the correlation 

coefficient  YY ˆ, and MAPE of the model. Corresponding to five thresholds, we obtained 

a total of five prediction models. The optimal model was selected according to the 

predictive evaluation indicators. A flowchart of the process of constructing the prediction 

model from the raw data is shown in Figure S2. 

     Considering that there were two kinds of relationship between brain connections and 

inhibitory control ability, positive correlations and negative correlations, we also performed 

the above model construction and evaluation process by taking the summation of the 

positive or negative correlation connection set as an independent variable, respectively, 

under the optional feature selection threshold.  

     In addition, due to cross validation, it was possible to select a slightly different 

connection set in each iteration under the optimal feature selection threshold, but the 

connections most related to the behaviour measurement value should appear in different 

iterations, so we identified these connections selected in all iterations which formed a 

shared connection set. Similarly, the summarized values of the shared positive 

connections and shared negative connections were calculated and then used as 

independent variables to fit the linear prediction model, 

 genderBageBSXnegBSXposBBY **** 43210      (C), 

where 
T

nyyyY ],,,[ 21  , 
T

nsxpossxpossxposSXpos ],,,[ 21  , isxpos represented 

the sum of the magnitude of the shared positive connections of the i'th 

subject;
T

nsxnegsxnegsxnegSXneg ],,,[ 21  , isxneg represented the sum of the 

magnitude of the shared negative connections of the i'th subject; n was the number of the 

subject. iB , 4,,0 i were the regression coefficients to be estimated.  was the 

noise term. Subsequently, we used leave-one-out cross-validation to estimate the model 

parameters on the training set and predict the inhibitory control ability score on the test set. 

Finally, the prediction results were evaluated.  

 

2.5 Validation analysis on independent dataset 

We used the second independent dataset for verifying the reliability of the above model 

performing on the first dataset. Specifically, taking the first dataset as the training set, we 

fitted a brain connection prediction model using shared connections that identified in the 



previous section, with age and gender as covariables. After that, with the second data set 

as the testing set, we used the prediction model to predict the inhibitory control ability 

scores of all 147 subjects. We calculated the correlation coefficient between the predicted 

behavioral scores and the observed behavioral scores to assess the prediction results. 

 

2.6 Permutation test    

After calculating the correlation coefficient between the observed behaviour score and the 

predicted behaviour score obtained by any model, a non-parametric permutation test was 

performed to test whether the relationship was significantly better than random. 

Specifically, we first randomly redistributed the behavior scores across all subjects, which 

broke the real brain connection-behaviour relationship. We then used CPM to establish a 

linear relationship between brain connectivity data and random behavioral measurements. 

The process was repeated 1000 times and then we obtained the empirical distribution of 

the correlation coefficients, which were used to test the significance of the correlation 

coefficients. 

 

3. Results 

3.1 Prediction of inhibitory control ability with positive and negative connection 

sets  

Based on the purely data-driven method, we first calculated the correlation coefficient of 

each of the 2278 edges with the inhibitory control ability scores. Given the threshold, we 

next selected edges whose p values were smaller than the threshold value and then used 

the selected edges to construct the prediction model. Because there is no unified standard 

for the selection of the threshold value in the previous literature, we selected a threshold 

range from 0.01 to 0.05. The results showed that when the threshold value was 0.01, the 

correlation coefficient between the observed and predicted inhibitory control ability scores 

obtained by using prediction model B was 0.32 (
61031.1 p , Figure 1). After a 

non-parametric permutation test, it was observed that the real brain connection-inhibitory 

control ability relationship was significantly better than that of the random ones 

(permutation test, 1000n , 001.0p ). The MAPE of the prediction model was 8.5%, 

indicating that the accuracy of the model was 91.5%. When the threshold value was equal 

to 0.02, the correlation coefficient between the observed and predicted inhibitory control 

ability scores was 0.25 (
4109.2 p ), and the accuracy of the model was 91.1%. For 

the other threshold values, the prediction result of model B was slightly worse than the 

results when using 0.01 as the threshold. The detailed results are included in Figure S3. 



Our results show that the optimal threshold was equal to 0.01, that is, the connections 

selected by the optimal threshold were those most related to inhibitory control ability. 

Figure S4 showed the prediction results of the models obtained by using the positive or 

negative connection set under the optimal threshold. 

3.2 Results of the shared connections set 

Under the optimal feature selection threshold, we defined those edges that were selected 

using model A in all iterations of cross validation as shared connections. The results 

revealed that a total of 48 edges were defined as shared connections; 25 shared 

connections were positively correlated and 23 shared connections were negatively 

correlated with inhibitory control ability scores. They comprise what we term the high and 

low inhibitory control networks, respectively, which are shown in Figure 2 

https://bioimagesuiteweb.github.io/webapp/connviewer.htm. The network module in 

Figure 2 was defined by the Power atlas (Power et al. 2011), and by the Desikan-Killiany 

atlas (Desikan et al., 2006). In Table S2, we list all 68 brain regions and the networks to 

which each brain region belongs. In the high inhibitory control network, it was clear that 

R.OFCmed had the highest degree. Eight of the 25 connections were connected to 

R.OFCmed, which was mostly connected to the nodes in the prefrontal cortex. In the low 

inhibitory control network, we observed that L.MTG had the highest degree and 

R.OFCmed had the second highest degree. The nodes connected to R.OFCmed were 

scattered between parietal, occipital, and limbic modules. L.MTG was mostly connected to 

the nodes in the limbic module. The connection patterns were completely different 

between high and low inhibitory control networks. For clarity, we have drawn R.OFCmed 

and L.MTG on inflated surfaces (Figure 3). It is important to make it clear that OFCmed in 

the Desikan-Killiany atlas (Desikan et al., 2006) includes the gyrus rectus (area 14), the 

anterior cingulate cortex area 32 below the level of the genu of the corpus callosum but 

not 24, and cortex anterior to this including 10r, 10m and part of 10p according to the 

definition of Ongur, Ferry and Price (2003). These areas are sometimes described as the 

ventromedial prefrontal cortex. OFCmed in this atlas does not include any of the medial 

orbitofrontal cortex areas 11 and 13 (Rolls, 2019). Detailed information on shared 

connections is listed in Table S1. 

3.3 Prediction of inhibitory control ability with shared connections 

Using model C (of section 2.4) to explore the relationship between brain shared 

connections and inhibitory control ability, we found that the correlation coefficient between 

the observed and predicted scores was 0.54(
3010p , Figure 4). The results of the 

non-parametric permutation test showed that this relationship was significantly superior to 

random (permutation test, 1000n , 001.0p ). In addition, the MAPE of the prediction 

model was 7.3%. Compared with the prediction results of model A, we found that using 

https://bioimagesuiteweb.github.io/webapp/connviewer.htm.


shared connections as the predictor could improve the prediction accuracy. 

3.4 Results of validation analysis 

 We explored the generalization of the prediction model by predicting on the second 

dataset. The correlation coefficient between the observed and predicted scores was 

0.46(
9106.36 p ). The results of the non-parametric permutation test showed that 

this relationship was significantly superior to random (permutation test, 

1000n , 001.0p ). 

 

4. Discussion 

In this study, we have shown that morphometric similarity of brain regions is a good 

predictor of individual inhibitory control ability. This new network construction method 

provided us with a new perspective to study the relationship between brain and individual 

cognitive behavior. Using a recently developed and data-driven prediction method, we 

found that the score of individual inhibitory control ability increased as the increasing 

similarity of prefrontal cortex. As theoretically predicted, individual differences in inhibitory 

control ability are related to individual differences in the morphometric similarity network. 

4.1 Brain morphometric similarity network 

In this work, nine indexes for characterizing cortical properties were extracted from the 

standard structural T1-weighted MRI data. Then, for each individual, the covariance 

between brain regional morphometric features was calculated for each possible pair of 

brain regions. After that we obtained the individual morphometric similarity network. Most 

of the morphometric similarity networks constructed in previous studies were based on 

single index and group level. However, different indexes depict different characteristics of 

the cortex. It is necessary to consider the cortical features in an all-round way. Li et al. 

(2017) proposed that the morphometric similarity network can be constructed by the 

above nine indexes and verified the feasibility of the method and the stability of the 

network. In this paper, we compared the predictive power of a single morphometric feature 

to the combination of 9 features. By using a single measure (such as the volume of each 

region) instead of the above morphological combination of features as the independent 

variable in the regression model, we found that the predictive power of a single 

morphometric feature not quite as good as the combination. The number of vertices, the 

surface area and the volume of gray matter have similar predictive power 

( 27.0~26.0r ), which is a little less than the predictive power of the combination of 

nine features ( 32.0r ). The optimal prediction results for each measure are shown in 

Table S4. The results of this study showed that the combination of multiple indexes may 

be used as a new way to construct the individual morphometric similarity network. It also 



implies that the basic organizational principle of the anatomical networks of the human 

brain is consistent with previous research on functional networks (He et al., 2007; Seidlitz 

et al., 2018).  

4.2 High and low inhibitory control networks 

On the basis of the method of brain CPM, we used connections that were selected for all 

iterations in cross validation under the optional feature selection threshold to build a 

prediction model. The results showed that the prediction model based on shared 

connections was better than the model based on positive and negative connections. 

Similar to the independent variable selection, we believe that shared connections are the 

best independent variables; i.e., the inhibitory control ability of the subjects could be best 

explained by high and low inhibitory control networks. We emphasize here that 

'connections' refers here to correlations between the structure of different brain regions 

assessed across a group of participants. 

We interpret some of the findings as follows. The measure used here of the similarity 

of a pair of cortical regions is whether the nine morphometric features are correlated with 

each other when measured across a large group of individuals. A high correlation of 

morphometric features might reflect a shared contribution of heredity in organising a 

group of brain areas that develop together in evolution perhaps as parts of a processing 

system, or might reflect common experience-related plasticity of a set of brain areas. In 

most cases in this investigation, a positive correlation with inhibitory control measured in 

the flanker task reflected a high positive correlation between the covariation of 

morphometric features of two brain areas, and inhibitory control ability, and vice versa. An 

implication from the network with positive correlations with inhibitory control ability (Figure 

2) is that when parts of the orbitofrontal cortex and the cortex in the bank of the superior 

temporal sulcus (STS) covary and the middle temporal and middle frontal gyri, and some 

parietal areas and the posterior cingulate (PCC) covary in their morphology, then there is 

high inhibitory control ability. An implication from the network with negative correlations 

with inhibitory control ability (Figure 2) is that when parts of the orbitofrontal cortex have a 

negative covariation with the postcentral gurus (PoCG) and visual areas in their 

morphology, then there is high inhibitory control ability. That would imply that separation 

as a result of the effects of evolution or experience between these areas would facilitate 

inhibitory control.  

Previous studies have emphasized the importance of the prefrontal region in 

inhibitory control, especially the inferior frontal gyrus and lateral orbitofrontal cortex 

(Metzuyanim et al., 2016; Rolls, 2017; Deng et al., 2017; Rolls, 2018). In our study, most 

of the brain areas involved in high inhibitory control network are located in prefrontal 

regions. In particular, we found that 13 of the 25 connections in this network involved 

prefrontal nodes. On the other hand, we found that the brain regions involved in the low 

inhibitory control network are scattered between parietal, occipital, and limbic modules. 



The connection pattern of the low inhibitory control network is quite different from the high 

inhibitory control network. We can view these results as low inhibitory control ability may 

be marked by increased connections (covariation in morphology) between brain regions 

that do not support inhibitory control. According to previous studies based on functional 

imaging data, the prefrontal cortex is responsible for advanced cognitive function including 

working memory and attention (Luo et al., 2001; Rolls, 2016), and if a region within this 

module is damaged or cut off from other regions, cognition will be affected (Fuster, 2001). 

In a task-fMRI study, regions within the prefrontal cortex showed increased activation 

during inhibitory control tasks such as playing a violent game (Hummer et al., 2010). A 

meta-analysis of the various modules of functional connectivity networks found that the 

frontoparietal module focused on cognitive executive function (Crossley et al., 2013). The 

results provided evidence that high inhibitory control ability may be accompanied by highly 

developed prefrontal regions. In addition, prior functional connectivity MRI (fcMRI) studies 

have suggested that functional connectivity between the dorsolateral prefrontal cortex, 

inferior parietal lobule and dorsal anterior cingulate may have utility as a biomarker for 

individual differences in inhibitory control performance (Niendam et al., 2012; Stange et al., 

2017). There is also growing evidence to support the hypothesis that changed functional 

connectivity within inhibitory control networks is associated with impaired inhibitory control 

in cannabis-dependent users (Filbey & Yezhuvath, 2013) and major depressive disorder 

(Stange et al., 2017). The above fcMRI studies investigated the inhibitory control network, 

which mainly revealed functional connectivity between brain regions in the prefrontal 

cortex and other regions. These results are consistent with the morphometric findings in 

our paper. Thus, better understanding of neural connections and neural networks in the 

brain will help to understand the mechanisms underlying diseases caused by their 

changes (Rolls, 2016).   

4.3 The role of R.OFCmed and L.MTG in inhibitory control 

The findings in this work highlight that inhibitory control can reliably be related to certain 

brain regions. We found that 22 of all 48 shared connections were related to R.OFCmed 

and L.MTG. The region of interest, R.OFCmed, had the highest degree of connectivity in 

shared connections, suggesting that it may be the target area that we were looking for that 

was closely related to inhibitory control. Previous evidence suggests that the lateral frontal 

cortex is responsible for high-level cognitive activity, which was more connected to other 

regions of the brain and determined the transmission of information and execution of 

cognitive functions (Neubert et al., 2014). A number of studies have found that damage to 

R.OFCmed leads to an inability to inhibitory control (Szatkowska et al., 2007; Walton et al., 

2010; Izquierdo & Jentsch, 2012). An experimental study showed that the removal of 

gyrus rectus in the R.OFCmed cortex resulted in poor performance in tests that measured 

the inhibitory response and switching of stimulus and attention (Szatkowska et al., 2007). 

Another task-based study found that OFCmed cortex was necessary for evaluating and 

favouring future rewards to make a choice (Sellitto et al., 2010). Consistent with this, 



impaired OFCmed cortex rendered patients more likely to be distracted by unrelated 

choices (Noonan et al., 2017). This ventromedial prefrontal cortex region is also 

implicated in decision-making between different rewards (Rolls, 2017, 2019). Therefore, 

we conclude that R.OFCmed cortex and its morphological connections to other brain 

regions provide an anatomical basis of inhibitory control ability. Another region of interest 

is L.MTG. It is worth noting that there was no overlap between the regions connected to 

L.MTG and the regions connected to R.OFCmed (Table S1). This suggests that they deal 

with different aspects of inhibitory control. The results of this paper emphasize the 

importance of these two brain regions to inhibitory control, which are shown from two 

perspectives in Figure 3. The results of this study provide evidence for the role of L.MTG 

in inhibitory control. Dong et al. (2012) found that internet addiction disorder demonstrated 

significantly greater ‘Stroop’ effect-related activity in the anterior and posterior cingulate 

cortices, as well as L.MTG compared with their healthy peers, which may suggest 

diminished efficiency of response-inhibition processes in the internet addiction disorder 

group. Another study suggested that activation reductions were seen in bilateral MTG of 

patients with transitioning to heavy use of alcohol at baseline during response inhibition 

(Norman et al., 2011). A functional MRI study suggested that activation reductions were 

seen in bilateral MTG of patients transitioning to heavy use of alcohol at baseline during 

the task of inhibitory control (Norman et al., 2011). Moreover, Hampshire & Sharp (2015) 

reviewed that response inhibition is a broader class of control processes that are 

supported by the same set of frontoparietal networks and these domain-general networks 

exert control by modulating local lateral inhibition processes, which occur ubiquitously 

throughout the cortex. It suggested that inhibitory control requires functional integration or 

separation of different brain regions rather than a single region and we postulate that the 

two regions (i.e., R.OFCmed and L.MTG) found in our paper might be key regions 

involved in the process of inhibitory control and this deserves further investigation. 

5. Conclusions 

Two important results were obtained in this study. The first was that all connections of the 

high inhibitory control network involved prefrontal cortex regions, which suggests that the 

prefrontal cortex may be related to inhibitory control ability. Secondly, we were interested 

in shared connections. We found that R.OFCmed had the highest degree of connections. 

These results emphasize the localization of inhibitory control function in brain networks 

and imply that R.OFCmed may be involved in inhibitory control. It may also be a target 

area closely related to inhibitory control, and dysfunction in this region may underlie the 

pathology of cognitive disorders in for example Alzheimer's disease. 

 

6. Limitations 

The study has some limitations. First, theoretically speaking, each calculation method of 

morphometric features has a certain degree of measurement error, and there may be 



room for improvement in the algorithms used in the Freesurfer software. Second, we only 

considered a linear relationship between brain connections and behavioral values, but 

complex brain networks may require nonlinear explanations. Furthermore, in the process 

of feature combination, we adopted a simple summation calculation, which may affect the 

generalization value. Third, the use of the brain regions template by the Freesurfer 

software did not allow precise identification of which parts of the orbitofrontal cortex are 

related using this morphology measure to inhibitory control. 
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Figure 1. The result of predicting inhibitory control ability score with the positive and 

negative connection set under the optimal threshold. All subjects' observed and predicted 

inhibitory control ability scores are plotted in this figure. The correlation coefficient 

between the observed scores and the predicted scores was 0.32, which was significantly 

better than chance (permutation test, 1000n , 001.0p ).  



 

Figure 2. Visualization of shared connections. The positive shared connections are shown 

in red (A,C) (the negative shared connections in blue (B,D)). At the same time, these 

shared connections are shown in a 3D view (C,D). The two histograms show the degree 

of the brain regions in the high and low inhibitory control networks(E,F). See Table S4 for 

abbreviations. 

 



 

  

 

Figure 3. Visualization of the medial orbitofrontal cortex (OFCmed, green) and middle 

temporal gyrus (MTG, purple) on an inflated cortical surface. 



 

 

 

 

Figure 4. The result of predicting inhibitory control ability scores with shared connections. 

Shared connections are those connections selected in all iterations in cross-validation 

under the optional feature selection. All subjects' observed and predicted inhibitory control 

ability scores were plotted. The correlation coefficient between the observed scores and 

the predicted scores was 0.54, which was significantly better than random (permutation 

test, 1000n , 001.0p ).  
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