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ABSTRACT: A range of TsDPEN catalysts containing heterocyclic groups on the amine nitrogen atom were prepared and evaluat-

ed in the asymmetric transfer hydrogenation of ketones. Bidentate and tridentate ligands demonstrated a mutual exclusivity directly 

related to their function as catalysts. A broad series of ketones were reduced with these new catalysts, permitting the ready identifi-

cation of an optimal catalyst for each substrate, and revealing the subtle effects that changes to nearby donor groups can exhibit.     

 

The [(arene)Ru(TsDPEN)Cl] class of precatalyst (1) for asymmet-

ric transfer hydrogenation (ATH) of ketones and imines, first 

reported by Noyori et al.,1 are now established reagents for syn-

thetic chemists.2 Although the parent compounds contain a 

TsDPEN ligand with a primary amine bound to the Ru(II), it is 

known that one substituent can be added to the amine atom, i.e. in 

complexes 2, without causing lack of activity (Figure 1),3-13 and in 

some cases a higher activity, notably to C=N reduction, is ob-

served.5,6,11-13 Functional groups on the amine atom of TsDPEN 

can also provide a means for tuning the structures of complexes to 

particular substrates,6,11-13 and to modify the properties of the 

complexes e.g. to improve their water solubility or assist extrac-

tion from a mixture.9,10,14 

 

Figure 1. [(arene)Ru(TsDPEN)Cl] ATH precatalyst derivatives. 

 

However, very little work has been reported on the functionaliza-

tion of Ru/TsDPEN catalysts with heterocyclic functionality on 

the amine atom, which would offer further possibilities for wider 

synthetic applications. We previously reported that TsDPEN de-

rivatives 4 and 5, containing a triazole or pyridine group respec-

tively, form active complexes for ATH with Ru3(CO)12 which are 

capable of ATH of ketones in IPA (Figure 2).15,16 However these 

have not been investigated as components of 

[(arene)Ru(TsDPENR)Cl] precatalysts, and neither has the wider 

applications of these ligands. 

 

Figure 2. Reported ligands for ATH using Ru3(CO)12. 

 

In order to gain a further understanding of the effect of functional-

izing the TsDPEN ligand with a heterocyclic group on catalysis 

with both [(arene)Ru(TsDPENR)Cl] and Ru3(CO)12 we prepared a 

diverse series of derivatives (R,R)-6-16 which contain alternative 

donor groups (Figure 3). Ligand 6, 7, 9 and 11-16 were prepared 

through the reductive amination of (R,R)-TsDPEN with the corre-

sponding aldehyde. Ligand 8 was prepared by the cycloaddition 

of the nitrile oxide PhCNO with an propargyl-substituted 

TsDPEN. Ligand 10 was prepared by the reaction of TsDPEN 

with t-butylbromoacetate. 
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Figure 3. New ligands investigated in this project. 

 

We first evaluated the new ligands in the ATH reaction with 

Ru3(CO)12 (Table 1), along with tests of 4 and  5 as control reac-

tions. We were surprised to fund that ligands 6 - 11 did not form 

active catalysts, whereas all of ligands 12-16 did. The unreactive 

ligands all contain weaker donor atoms (6 - 10) or more distal 

heteroatoms (11) and cannot form strong tridentate complexes 

with Ru3(CO)12. We had previously found that a benzyl group on 

the TsDPEN was also not an effective catalyst, and these results 

align with this observation.15 It can be concluded that, for this 

application, a ligand requires a third heteroatom containing a 

strong donor atom which can form a tridentate complex (Figure 4) 

which acts as the catalyst in the reaction. As previously described, 

the hydrogen transfer mechanism is likely to involve a bifunction-

al catalysis mechanism15,16 similar to that reported for complex 

1.17   

 

Table 1. Application of ligands in Figure 3 to ATH of acetophe-

none using Ru3(CO)12
a 

ligand conv /% ee /%b 

4 98 92 

5 87 92 

Ts/Thia 12 

le 

90 83 

Ms/Py 13 55 82 

Tris/Py 14 79 73 

Tf/Py 15 95 93 

6Me/py 16 49 76 
a. 1 mol% ligand, 0.33 mol% Ru3(CO)12, iPrOH, 80 oC, 48h, [S] = 

0.1M. b. R-configuration product formed. 

 

Figure 4. A. Likely active complex formed between tridentate 

ligands and Ru3(CO)12.15,16  B/C. Inert tridentate complexes 22 

and 23 formed by reaction of ligands 4 and 5 respectively with 

[(benzene)RuCl2]2 

 

Since the results suggested that the non N-donating heterocycles 

were weak donors, we examined the preparation of derivatives of 

the catalysts with [(benzene)RuCl2]2 in the anticipation that, pro-

vided the heterocycle did not co-ordinate to the metal, that it 

would not hinder the generation of an active catalyst. The use of 

benzene as the 6-ligand in the complex is important as we have 

previously found that the use of a more substituted arene in the 

complex can reduce its activity.5 In all cases of ligands 6-10, we 

were pleased to find that complexes, 17-21 respectively, were 

formed in the reactions (Figure 5), the spectroscopic data for 

which indicated the formation of [(benzene)Ru(TsDPENR)Cl]. 

Each of these complexes also proved to be effective at the asym-

metric ketone hydrogenation of acetophenone in good ee (Table 

2). Ligand 11 did not form a stable complex.  

 

 

Figure 5. Complexes 17-21 prepared from weak donor heterocy-

cle derivatives of TsDPEN and isolated. 

 

Table 2. Application of catalysts in Figure 5 to ATH of acetophe-

none in [(benzene)Ru(TsDPENR)Cl] complexes. 

Ligand [S]/M time/h conv /% ee /% b 

Ts/Furan 17 

Furan  

1 72 95 90 

Ts/Thio 18 1 72 56 93 

Ts/Isox 19 1 72 99 95 

Ts/ester 20 1 95 60 96 

Ts/BrFuran 21 1 86 73 95 

Ts/Furan 17 

Furan  

2 24 99 92 

Ts/Thio 18 2 24 98 92 

Ts/Isox 19 2 72 96 90 

Ts/ester 20 2 156 90 93 
a. 1 mol% 17-21, 5:2 HCO2H/Et3N, rt. b. R-configuration product 

formed. 

Ligands 4 and 5 were combined with [(benzene)RuCl2]2 but nei-

ther formed an active ATH complex. Analysis of the spectroscop-

ic data for the resulting complexes indicated the formation of inert 

tridentate cationic species 22 and 23 instead, both of which were 

stable and inert (Figure 4). In view of the observations, the for-

mation of complexes with closely related ligands 12-16 was not 

investigated. A recently-reported series of TsDPEN-derived, tri-

dentate ligand-containing (arene)Ru(II) complexes have been 

demonstrated to be effective ATH catalysts, with reversible for-

mation of one of the Ru-N bonds being important for reactivity.18  

Having established which structural features of a substituted lig-

and are essential for formation of specific catalyst types, the ap-

plication of both systems (specifically ligands 4 and 5 with 

Ru3(CO)12, and complexes 17-20) was extended to a range of 

substituted ketone substrates (Figure 6, Table 3). In these exam-

ples, due to lower solubility in FA/TEA, the reactions with 17-20 

were run at [S] = 1M with DCM as a cosolvent, and the reactions 
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with 4/5 employed 5 mol% of the catalyst to ensure full conver-

sion of these more hindered ketones. The range of results allowed 

the identification of the best catalyst for each substrate. In several 

cases where ligands 4 and 5 were used, full conversions were 

observed even though the reaction in IPA is reversible, presuma-

bly due to evaporation of the acetone side product at the elevated 

reaction temperature.2d 

Figure 6. Products of ATH of substituted ketones using 4 or 

5/Ru3(CO)12 and complexes 17-20 (Table 3). 

 

Table 3. Application of catalysts to ATH for the synthesis of 

products 24-35. 

Reduction  

product/catalyst 
Time/h Conv/% Yield/% ee /% R/S 

24/ 4/Ru3(CO)12 

Furan  

Nrb,c - - - - 

24/ 5/Ru3(CO)12 Nrb,c - - - - 

24/ Furan 17 120 - 84 94 S 

24/ Thio 18 120 - 41 91 S 

24/ Isox 19 144 - 74 92 S 

24/ Ester 20 

Furan  

168 82 79 91 S 

25/ 4/Ru3(CO)12 

Fran  

72 100 94 81 S 

25/ 5/Ru3(CO)12 

Fran  

72 100 96 53 S 

25/ Furan 17 72 100 71 92 S 

25/ Thio 18 120 98 89 94 S 

25/ Isox 19 96 100 91 90 S 

25/ Ester 20 

Furan  

144 100 97 92 S 

26/ 4/Ru3(CO)12 

Furan  

Nrb,c - - - - 

26/ 5/Ru3(CO)12 Nrb,c - - - - 

26/ Furan 17 96 99 91 90 S 

26/ Thio 18 96 100 79 89 S 

26/ Isox 19 96 99 87 91 S 

26/ Ester 20 

Fran  

168 94 86 91 S 

27/ 4/Ru3(CO)12 

F7ran  

72 100 99 97 S 

27/ 5/Ru3(CO)12 72 100 92 94 S 

27/ Furan 17 120 100 94 95 S 

27/ Thio 18 120 100 95 96 S 

27/ Isox 19 120 100 95 93 S 

27/ Ester 20 

Furan  

168 98 91 95 S 

28/ 4/Ru3(CO)12 

Furan  

72 100 95 99 R 

28/ 5/Ru3(CO)12 72 100 96 99 R 

28/ Furan 17 120 80 70 89 R 

28/ Thio 18 132 52 45 92 R 

28/ Isox 19 120 87 73 94 R 

28/ Ester 20 

Furan  

168 55 41 96 R 

29/ 4/Ru3(CO)12 

F9ran  

72 100 98 86 R 

29/ 5/Ru3(CO)12 72 100 96 90 R 

29/ Furan 17 120 98 94 91 R 

29/ Thio 18 120 50 41 87 R 

29/ Isox 19 144 100 93 91 R 

29/ Ester 20 

Furan  

168 72 70 90 R 

30/ 4/Ru3(CO)12 

Furan  

72 - 95 92 R 

30/ 5/Ru3(CO)12 72 - 88 91 R 

30/ Furan 17 120 95 88 91 R 

30/ Thio 18 120 52 41 91 R 

30/ Isox 19 144 85 84 92 R 

30/ Ester 20 

Furan  

144 96 92 96 R 

31/ 4/Ru3(CO)12 

Furan  

72 99 91 83 R 

31/ 5/Ru3(CO)12 

Furan  

72 71 66 92 R 

31/ Furan 17 144 89 70 88 R 

31/ Thio 18 144 55 49 84 R 

31/ Isox 19 168 66 57 90 R 

31/ Ester 20 

Furan  

168 71 66 92 R  

32/ 4/Ru3(CO)12 

Furan  

72 100 98 90 R 

32/ 5/Ru3(CO)12 72 95 89 89 R 

32/ Furan 17 72 93 93 90 R 

32/ Thio 18 168 - 61 87 R 

32/ Isox 19 144 100 96 89 R 

32/ Ester 20 

Furan  

168 50 48 93 R 

 33/ 4/Ru3(CO)12 

Furan  

72 100 99 92 R 

33/ 5/Ru3(CO)12 72 100 92 91 R 

33/ Furan 17 80 100 92 93 R 

33/ Thio 18 144 55 45 88 R 

33/ Isox 19 144 77 73 76 R 

33/ Ester 20 

Furan  

168 50 45 90 R 

34/ 4/Ru3(CO)12 

Furan  

 

48 98 - 94 R 

34/ 5/Ru3(CO)12 48 99 - 88 R 

34/ Furan 17 96 100 81 93 R 

34/ Thio 18 144 94 74 92 R 

34/ Isox 19 144 94 86 93 R 

34/ Ester 20 

Furan  

96 99 87 90 R 

 

 

 

 

 

35/ 4/Ru3(CO)12 

F5ran  

Nrb,c - - - - 

35/ 5/Ru3(CO)12 Nrb,c - - - - 

35/ Furan 17 96 - 80 86 R 

35/ Thio 18 120 - 57 89 R 

35/ Isox 19 120 - 65 86 R 

35/ Ester 20 

Furan  

120 56 45 84 R 
a. either 5 mol% ligand 4 or 5, 1.67 mol% Ru3(CO)12, iPrOH, 80 
oC, 48h, [S] = 0.1M or 1 mol% 17-20, 5:2 HCO2H/Et3N, DCM,, 

[S] = 1M rt. B. Nr= no reduction.cb. Catalyst inhibition observed.  

 

The furan-substituted catalyst 17 proved to be the most versatile, 

giving products of good ee for most substrates, although the other 

catalysts gave products in excellent yield and ee in some cases. 

For example for product 26, catalysts 19 and 20 gave excellent 

results. For product 27 and 28, the Ru3(CO)12 system worked very 

well. Ester-containing catalyst 20 also gave reduction products 30 

and 31 in the highest ees. The thiophene-containing catalyst 18 

was the least versatile overall but gave one of the best results for 

product 27. It was interesting to note that both -chloro- and -

methoxyacetophenone inhibited the catalysis by 4 and 5, which 

was confirmed by a test using a 1:1 mixture of 

PhCOCH2Cl:PhCOMe in which neither ketone was reduced. This 

may be due to competing co-ordination of the Ru(II) by the sub-
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strate. However the other heteroatom-substituted reagents were 

compatible with all the catalysts tested. The attempted reduction 

of the triple bond-containing ketone 35 was also not successful 

with 4 or 5. The alcohols in Figure 7 are novel ATH products in 

many cases and add to the utility of ATH for the preparation of 

asymmetric alcohols, hence the catalyst set described herein rep-

resents a valuable toolkit for identification of suitable catalysts for 

ATH of diverse substrates.  

 

In an further demonstration of the value of the new bidentate lig-

ands, it was also found that catalysts 17-21 could be formed in 

situ by combination of the precursor ligands 6-9 with [(ben-

zene)RuCl2]2. The complexes generated in this way proved to be 

effective for the ATH of simple acetophenone derivatives to give 

products 36-41 (Figure 8, Table S2) that have previously been 

reported as substrates for 4/5/Ru3(CO)12.15,16 The use of the in situ 

catalysts in these cases gave products in good conversion and ees 

similar to those previous reported for ATH catalysis, noting that 

ortho-substituted acetophenone derivatives are challenging sub-

strates that often give lower ees than less hindered ketones.1-3,19  

 

 

Figure 7. Products of ATH of substituted ketones using in situ-

generated complexes 17-20. Conditions; 1 mol% ligand 6-9/0.5 

mol% [(benzene)RuCl2]2, 5:2 FA:TEA, DCM, [S]=1M, rt. 

 

In conclusion, we have established that the selection of the heter-

ocyclic functional group on ‘TsDPENR’ ligands will determine 

whether they are suited as tridentate ligands in complexes with 

Ru3(CO)12 or as bidentate ligands in complexes with [(ben-

zene)Ru(TsDPENR)Cl] precatalysts, both of which appear to be 

mutually exclusive. In both cases, effective catalysts for ATH of a 

range of functionalised ketones, some reported for the first time, 

can be generated from each ligand. The complexes can be gener-

ated in situ or isolated before use, depending on the class of sub-

state under study. 
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