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A new approach to understanding the interaction between cortical areas is provided

by a mathematical analysis of biased competition, which describes many interactions

between cortical areas, including those involved in top-down attention. The analysis

helps to elucidate the principles of operation of such cortical systems, and in particular

the parameter values within which biased competition operates. The analytic results are

supported by simulations that illustrate the operation of the system with parameters

selected from the analysis. The findings provide a detailed mathematical analysis of the

operation of these neural systems with nodes connected by feedforward (bottom-up)

and feedback (top-down) connections. The analysis provides the critical value of the

top-down attentional bias that enables biased competition to operate for a range of

input values to the network, and derives this as a function of all the parameters in

the model. The critical value of the top-down bias depends linearly on the value of the

other inputs, but the coefficients in the function reveal non-linear relations between the

remaining parameters. The results provide reasons why the backprojections should not

be very much weaker than the forward connections between two cortical areas. The

major advantage of the analytical approach is that it discloses relations between all the

parameters of the model.

Keywords: biased competition, attention, cerebral cortex, mathematical analysis, neural networks, top-down

connections, bottom-up connections

1. INTRODUCTION

Biological systems employ a selection processing strategy for managing the enormous amount
of information resulting from their interaction with the environment. This selection of relevant
information is referred to as attention. One type of visual attention is the result of top-down
influences on the processing of sensory information in the visual cortex, and therefore is
intrinsically associated with neural interactions within and between cortical areas. Thus, elucidating
the neural basis of visual attention is an excellent paradigm for understanding some of the basic
mechanisms for interactions between cortical areas.

Observations from a number of cognitive neuroscience experiments have led to an account
of attention termed the “biased competition hypothesis,” which aims to explain the computational
processes governing visual attention and their implementation in the brain’s neural circuits and
neural systems. According to this hypothesis, attentional selection operates in parallel by biasing an
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underlying competitive interaction between multiple stimuli
in the visual field toward one stimulus or another, so that
behaviorally relevant stimuli are processed in the cortex while
irrelevant stimuli are filtered out (Chelazzi et al., 1993; Duncan,
1996; Chelazzi, 1998; Reynolds and Desimone, 1999). Thus,
attending to a stimulus at a particular location or with a particular
feature biases the underlying neural competition in a certain
brain area in favor of neurons that respond to the location, or
the features, of the attended stimulus. This attentional effect is
produced by generating signals in areas outside the visual cortex
which are then fed back to extrastriate visual cortical areas,
where they bias the competition such that when multiple stimuli
appear in the visual field, the cells representing the attended
stimulus win, thereby suppressing the firing of cells representing
distracting stimuli (Duncan and Humphreys, 1989; Desimone
and Duncan, 1995; Duncan, 1996; Reynolds et al., 1999).
According to this line of work, attention appears as a property
of competitive/cooperative interactions that work in parallel
across the cortical modules. Neurophysiological experiments are
consistent with this hypothesis in showing that attention serves
to modulate the suppressive interaction between the neuronal
firing elicited by two or more stimuli within the receptive field
(Miller et al., 1993; Motter, 1993; Chelazzi, 1998; Reynolds and
Desimone, 1999; Reynolds et al., 1999). Further evidence comes
from functional magnetic resonance imaging (fMRI) in humans
(Kastner et al., 1998, 1999) which indicates that when multiple
stimuli are present simultaneously in the visual field, their cortical
representations within the object recognition pathway interact
in a competitive, suppressive fashion, which is not the case
when the stimuli are presented sequentially. It was also observed
that directing attention to one of the stimuli counteracts the
suppressive influence of nearby stimuli.

Neurodynamical models providing a theoretical framework
for biased competition have been proposed and successfully
applied in the context of attention and working memory (Rolls
and Deco, 2002; Rolls, 2016). In the context of attention,
Usher and Niebur (1996) introduced an early model of biased
competition to explain the attentional effects in neural responses
observed in the inferior temporal cortex, and this was followed
by a model for V2 and V4 by Reynolds et al. (1999) based
on the shunting equations of Grossberg (1988). Deco and Zihl
(2001) extended Usher and Niebur’s model to simulate the
psychophysics of visual attention by visual search experiments
in humans. Their neurodynamical formulation is a large-scale
hierarchical model of the visual cortex whose global dynamics
is based on biased competition mechanisms at the neural level.
Attention then appears as an effect related to the dynamical
evolution of the whole network. This large-scale formulation
has been able to simulate and explain in a unifying framework
visual attention in a variety of tasks and at different cognitive
neuroscience experimental measurement levels, namely: single-
cells (Deco and Lee, 2002; Rolls and Deco, 2002), fMRI (Corchs
and Deco, 2002, 2004), psychophysics (Deco et al., 2002; Deco
and Rolls, 2004), and neuropsychology (Deco and Rolls, 2002;
Heinke et al., 2002). In the context of working memory, further
developments (Deco and Rolls, 2003; Deco et al., 2004; Szabo
et al., 2004) managed to model in a unifying form attentional

and memory effects in the prefrontal cortex integrating single-
cell and fMRI data, and different paradigms in the framework of
biased competition.

A detailed dynamical analysis of the synaptic and spiking
mechanisms underlying biased competition was produced by
Deco and Rolls (2005). However, the parameter regions within
which biased competition operates were identified by a mean
field analysis, which consisted of testing a set of parameters until
effective regions in the state spaces were identified.

Here we treat the biased competition system analytically
for the first time. This mathematical analysis complements
previous numerical results and improves our understanding of
the principles of operation of the system. Although the results
are presented in the context of attention, they apply more
generally to interactions between cortical areas. The dynamics
of cortical attractor networks, and the dynamical interactions
between cortical areas and the strength of the connections
between them that enable them to interact usefully for short-
termmemory and attention yet maintain separate attractors have
been analyzed with the rather different approaches of theoretical
physics elsewhere (Treves, 1993; Battaglia and Treves, 1998;
Renart et al., 1999a,b, 2000, 2001; Panzeri et al., 2001; Rolls, 2016).

2. METHODS

2.1. The Biased Competition Network
The network to be analyzed is shown in Figure 1, and
has the same general architecture used by Deco and Rolls
(2005) to investigate the mechanisms of biased competition
in a range of neurophysiological experiments. The system has
forward connections Jf and Kf , and top-down backprojection
connections Jb and Kb, as shown in Figure 1. The top-down
connections are weaker, so that they can bias the bottom up
inputs, but not dominate them, so that the system remains
driven by the world. The top-down connections in the model
correspond to the backprojections found between adjacent
cortical areas in a cortical hierarchy, and in the area of
memory recall, to the backprojections from the hippocampus
to the neocortex (Kesner and Rolls, 2015; Rolls, 2016, 2018).
The anatomical arrangement that facilitates this is that the
backprojections end on the apical dendrites of cortical pyramidal
cells far from the cell body, where their effects can be shunted
by forward inputs that terminate on the parts of the dendrite
that are electrically closer to the cell body (Rolls, 2016). In
both top-down attention, and in memory recall, it is important
that any bottom-up inputs from the world take priority, so
that the organism is sensitive to events in the world, rather
than being dominated by internal processing (Rolls, 2016).
Interestingly, there is evidence that this situation is less the case
in schizophrenia, in which some key forward connections are
reduced in magnitude relative to the backprojections (Rolls et al.,
2019). The type of neurophysiological experiment for which this
model was designed is described by Deco and Rolls (2005), with
one of the original neurophysiological investigations performed
on object-based attention in the inferior temporal visual cortex
(IT) by Chelazzi et al. (1993). The overall operation of this
architecture is conceptualized as follows [see Deco and Rolls
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(2005)]. Activity in neuron or population of neurons L1 have
a strong driving effect on H1 (via Jf ), as stimulus 1 acting via
λ1 is the preferred (i.e., most effective) stimulus, and a weaker
effect on H2 (via the crossed connection Kf ) for which stimulus
1 is the less preferred stimulus. There are weaker corresponding
backprojections Jb and Kb. Correspondingly, L2 has a strong
driving effect on H2 (via Jf ) as stimulus 2 acting via λ2 is the
preferred stimulus, and a weaker effect on H1 (via the crossed
connectionKf ) for which stimulus 2 is the less preferred stimulus.
L1 is in competition with L2 (with strength cL), and H1 is in
competition with H2 (with strength cH). The present model does
not imply that L1 and L2 are in different areas in a topographical
map, but that can be easily implemented by decreasing the
strength of cL if L1 and L2 are not close together in the map,
and the same general results hold (see Deco and Rolls, 2005).
It is noted that convergence in topographically mapped systems
from stage to stage is important in providing one of the bases
for translation invariant visual object recognition as modeled in
VisNet (Rolls, 2012, 2016), and that the dendritic morphology at
different stages of processing in the visual cortical hierarchy may
facilitate this (Elston, 2002; Elston and Fujita, 2014).

The nodes L correspond to V4, and the nodes H to inferior
temporal visual cortex, in the neurophysiological experiment
of Chelazzi et al. (1993) on object-based top-down attention.
The lower nodes are L1 and L2, and receive inputs λ1 and
λ2. L1 has forward connections of strength Jf to higher node
H1, and L2 has forward connections of strength Jf to higher
node H2. The corresponding backprojections have strength Jb.
In addition, there are crossed connections Kf and Kb shown
with dashed lines. The rationale for this connectivity is that the
preferred stimulus for L1 has strong effects on H1, but weaker
effects on H2 for which it is not the preferred stimulus. In a
corresponding way, the preferred stimulus for L2 has strong
effects on H2, but weaker effects on H1 for which it is not
the preferred stimulus. This is implemented as follows. L1 has
forward connections of strength Kf to higher node H2, and
L2 has forward connections of strength Kf to higher node H1.
The corresponding backprojections have strength Kb. The K
connections are weaker that the J connections. A top-down
attentional bias signal λH2 can be applied to node H2, and
can bias the network to emphasize the effects of λ2 even if
λ2 is less than or equal to λ1. There is competition within
a level, with H1 and H2 competing with strength cH , and
L1 and L2 competing with strength cL. The conditions for
these effects to occur and for the network to be stable are
analyzed. In addition, all four of the nodes can have recurrent
collateral connections that produce self-excitatory effects, but
the effects of these in the simulations do not affect the generic
results obtained, and are not included for simplicity in the
mathematical analyses.

The network can operate as follows. If a weaker than λ1 input
λ2 is applied to L2, then neural populations L1 and H1 win the
competition. However, if a top-down biased competition input
λH2 is applied to H2, then this can bias the network so that H2

wins the competition overH1, but also L2 has higher activity than
L1. Here we analyse the relation between the parameters shown
in Figure 1 that enable these effects to emerge and to be stable.

FIGURE 1 | Model architecture. The lower nodes are L1 and L2, and receive

inputs λ1 and λ2. L1 has forward connections of strength Jf to higher node

H1 for which stimulus 1 acting via λ1 is the preferred input, and L2 has forward

connections of strength Jf to higher node H2 for which stimulus 2 acting via

λ2 is the preferred input. The corresponding backprojections have weaker

strength Jb. In addition, there are crossed connections shown with dashed

lines. In particular, L1 has forward connections of weak strength Kf to higher

node H2 as stimulus 1 is not the preferred stimulus for H2, and L2 has forward

connections of strength Kf to higher node H1 as stimulus 2 is not the preferred

stimulus for H1. The corresponding backprojections have weaker strength Kb.

A top-down attentional bias signal λH2 can be applied to node H2, and can

bias the network to emphasize the effects of λ2 even if λ2 is less than or equal

to λ1. There is competition within a level, with H1 and H2 competing with

strength cH, and L1 and L2 competing with strength cL. The conditions for

these effects to occur and for the network to be stable are analyzed. In

addition, all four of the nodes can in the simulations have recurrent collateral

connections that produce self-excitatory effects, consistent with cortical

architecture, and these produce the expected effects, but are not considered

further here because the mathematical analysis focusses on the tractable case

in which they are not present. The nodes L correspond to V4, and the nodes H

to inferior temporal visual cortex, in the neurophysiological experiment of

Chelazzi et al. (1993) on object-based top-down attention.
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A feature of the model described here and also by Deco and
Rolls (2005) is that local attractor dynamics are implemented
within each of the neuronal populations, as recurrent collateral
connections are a feature of the cerebral neocortex, and are one
way to incorporate non-linear effects into the operation of the
system. The new results are derived here analytically, and are
illustrated with simulations with the parameters originating from
the formulas obtained.

2.2. The Attentional Effects to be Modeled:
Investigation 1
One top-down biased competition effect to be considered is as
follows. If λ1 is greater than λ2, then the activity of L1 will
be greater than the activity of L2. But if we apply a top-down
biased competition input λH2 to H2, then at some value of λH2
the top-down bias will result in L2 having as much activity as
L1. We seek to analyse the exact conditions under which this
biased competition effect occurs, in terms of all the parameters
of the system.

This system has been studied previously as follows, but with
a mean-field analysis to search the parameter space, rather than
the analytic approach described here. Figure 1 shows a design
associated with a prediction that can be made by setting the
contrast-attention interaction study in the framework of the
experimental biased competition design of Chelazzi et al. (1993)
involving object attention. Deco and Rolls (2005) modeled this
experiment by measuring neuronal responses from neurons in
neuronal population (or pool) H1 in the inferior temporal cortex
(IT) to a preferred and a non-preferred stimulus simultaneously
presented within the receptive field. They manipulated the
contrast or efficacy of the stimulus that was non-preferred for
the neurons H1. They analyzed the effects of this manipulation
for two conditions, namely without object attention, or with
top-down object attention on the non-preferred stimulus 2
that produced input λ2, implemented by adding an extra
bias λH2 to H2. In the previous integrate-and-fire simulations
(Deco and Rolls, 2005), top-down biased competition was
demonstrated, and it was found that the attentional suppressive
effect implemented through λH2 on the responses of neurons
H1 to the competing non-preferred stimulus (2) was higher
when the contrast of the non-preferred stimulus (2) was at
intermediate values. However, the operation of this type of
network was not examined analytically, which is the aim of the
present investigation.

2.3. The Attentional Effects to be Modeled:
Investigation 2
A second top-down competition effect might be considered
as follows. If λ1 is greater than λ2 and both are applied
simultaneously, then the activity of H1 will be greater than the
activity of H2. However, if we apply top-down bias λH2 to H2,
then we can influence the activity of H2 and H1 (through all
the connections in the system) until H2 and H1 have the same
activity (and at the same time there will be an effect on L1 and
L2). We wish to quantify these effects analytically in terms of all
the parameters of the system.

3. DYNAMICS

We shall use the notation that [x]+ = max{x, 0} for any rational
value of x. We assume that L1(t), L2(t),H1(t),H2(t) are defined
by the following system of recurrent equations in discrete time
t = 0, 1, . . .:

Li(t + 1) =


Li(t)+ λi(t)+

∑

k=1,2

wb
ikHk(t)− cLLj(t)− βLLi(t)

+ I{Li(t) > TL}(TL − αLLi(t))



+

,

(3.1)

Hi(t + 1) =


Hi(t)+ λHi (t)+

∑

k=1,2

w
f

ik
Lk(t)− cHHj(t)− βHHi(t)

+ I{Hi(t) > TH}(TH − αHHi(t))



+

,

(3.2)

i = 1, 2, i 6= j.

One can also use here any time step t = 0, τ , 2τ , . . . , treating τ as
another parameter. Here I denotes the indicator function, i.e.,

I{Hi(t) > TH} =

{
1, if Hi(t) > TH ,
0, otherwise,

and similarly for I{Li(t) > TL}. This means that the terms in
(3.1) and (3.2) which involve these indicator functions for the
recurrent dynamics are present only if the activity in Li(t) or
Hi(t) is greater than the corresponding threshold TL or TH . In
the analysis described here, we assumed that TL and TH were
infinity, so that the recurrent dynamics were not in operation,
but the recurrent dynamics were tested in the simulations.

The constants w
f
ij represent the synaptic weight of the

connection from node Lj to node Hi, while wb
ij is the synaptic

weight of the connection from node Hj to node Li. We shall
assume that

wb
ii = Jb, w

b
ij = Kb, w

f
ii = Jf , w

f
ij = Kf ,

for all i = 1, 2, i 6= j, where indexes b and f correspond to
“back" and “forward”. Furthermore, we assume that for some
non-negative coefficient q (typically 0 ≤ q < 1, see more
comments below)

Jb ≥ Kb, Jf ≥ Kf , and Jb = qJf , Kb = qKf . (3.3)

Functions λi(t), λ
H
i (t) represent the external inputs.

All the remaining constants in the system (3.1), (3.2) are
free parameters; they are assumed to be non-negative, as they
represent the following characteristics:
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βL is the decay term for the L nodes,
cL is the competition between the L nodes,
TL is the threshold at which an L node enters its attractor

dynamics as was explained above,
αL is the gain factor for self-excitation in an L node for

attractor dynamics,
βH is the decay term for the H nodes,
cH is the competition between the H nodes,
TH is the threshold at which an H node enters its attractor

dynamics,
αH is the gain factor for self-excitation in an H node for

attractor dynamics.
Note that when all the constant parameters of the system

are set to be zero, including the input functions λi, λ
H
i , then

the system

(L1(t), L2(t),H1(t),H2(t)) (3.4)

remains at the initial state (L1(0), L2(0),H1(0),H2(0)).
We shall assume that

(L1(0), L2(0),H1(0),H2(0)) = (0, 0, 0, 0), (3.5)

and that all the input functions are non-negative constants, i.e.,

(λ1(t), λ2(t), λ
H
1 (t), λ

H
2 (t)) = (λ1, λ2, λ

H
1 , λ

H
2 ) = : λ̄. (3.6)

We shall address the following problems. Assume, that λ1 >

λ2 > 0.
Problem I. Are there 0 ≤ λH1 ≤ λH2 such that L1(t) ≤ L2(t) for all
large values of t? This is investigated in Investigation 1.
Problem II. Are there 0 ≤ λH1 ≤ λH2 such that H1(t) ≤ H2(t) for
all large values of t? This is investigated in Investigation 2.

In other words we are looking for the conditions for the
parameters of the system which allow the biased competition.
Deco and Rolls (2005) found numerically an area of parameters
which yields such effect. Here we derive this analytically. This
allows us to treat a wide range of parameters andmoreover to find
out the exact relations between all the parameters of the network
when the biased competition takes place.

4. SIMULATIONS OF THE OPERATION OF
THE NETWORK WITH PARAMETERS
SELECTED BASED ON THE ANALYSIS
THAT FOLLOWS

4.1. Investigation 1
The top-down biased competition effect to be considered here is
as follows. If λ1 is greater than λ2, then the activity of L1 will be
greater than the activity of L2. But if we apply a top-down biased
competition input λH to H2, then at some value of λH the top-
down bias will result in L2 having as much activity as L1. The
aim was to discover the critical value of λH by simulation, for
comparison with the analytic value.

The system specified by (3.1) and (3.2) was implemented
in Matlab. The parameters shown in (3.1) and (3.2) were set
as follows:

Jf = 0.15 / 3 (the values for these synaptic weights are in the same
ratio as in Deco and Rolls, 2005)
Jb = 0.05 / 3
Kf = 0.015 /3
Kb = 0.005 / 3

βL = 0.35 (the decay term for the L nodes)
cL = 0.3 (the competition between the L nodes)
TL = 5.0 (the threshold at which an L node enters its attractor
dynamics; in practice this was set to infinity in most of the work
described, in order to prevent attractor dynamics operation in
the nodes)
αL = 0.0 (the gain factor for self-excitation in an L node for
attractor dynamics, αL can be set as well to 0.1 if recurrent
dynamics are required)

βH = 0.35 (the decay term for the H nodes)
cH = 0.3 (the competition between the H nodes)
TH = 5.0 (the threshold at which an H node enters its attractor
dynamics; in practice this was set to infinity in most of the work
described, in order to prevent attractor dynamics operation in
the nodes)
αH = 0.0 (the gain factor for self-excitation in an H node for
attractor dynamics, αH can be set to 0.1)

λ1 = 6.0
λ2 = 5.0
λH2 = 0.0 or the critical value λ

H,cr
2 of λH2 derived below in the

analysis for the top-down bias to overcome the bottom-up inputs
shown as λ1 and λ2.

For all of the simulations illustrated in this paper and for
the analytic investigations, the recurrent collateral self-excitatory
effects were turned off (i.e., the α values were set to zero, and
the parameters TL and TH were set to infinity). However, as
stated in the Legend to Figure 1, the effects obtained when these
were enabled were generically the same with respect to the biased
competition effects described in this research.

Simulation results for a system with λ1 = 6.0, λ2 = 5.0, and
the top-down bias λH = λ

H,cr
2 are shown in Figure 2. λ

H,cr
2 is

the value derived in the analysis for the top-down bias to just
overcome the bottom-up inputs shown as λ1 and λ2, as shown
below in (5.54). λ

H,cr
2 was 22.816. Now the H2 node has high

activity as expected due to the application of λH2 , but this has
the effect that the network settles into a state where the L2 node
has just higher activity than the L1 node, despite λ1 > λ2.
This demonstrates that the analysis described below that derives
the critical value λ

H,cr
2 for the biased attention signal to just

reverse the difference between the bottom up inputs to make the
network respond preferentially to the weaker incoming signal,
is accurate.

In further investigations, it was found that the analysis made
correct predictions over a wide range of values of the parameters
that were confirmed by numerical simulations. For example, the
value λ

H,cr
2 was correctly calculated by the analysis over a 10-

fold variation of Kf and Kb as shown by the performance of
the numerical simulations. It was also found in the simulations
that ratios for Jb/Jf and kb/kf in the range of 0.1–0.5 produced
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FIGURE 2 | Simulation results for Investigation 1 for a system with λ1 = 6.0,

λ2 = 5.0, and the top-down bias λH2 = 22.816. λH2 = 22.816 is the value

derived in the analysis for the top-down bias to just overcome the difference

between the bottom-up inputs shown as λ1 and λ2.

FIGURE 3 | Analytical results for Investigation 1 showing the top-down bias

λ
H,cr
2 needed to make the activity of L2 as large as L1 as a function of λ1 − λ2

denoted δλ. λ1 was fixed at 6.

top-down biased competition effects with values for λ
H,cr
2 that

were in the range of the other activities in the system.
The interpretation of the analytical results shown in for

example (5.54) is now facilitated by graphical analysis. Figure 3
for Investigation 1 shows the top-down bias λ

H,cr
2 needed tomake

the activity of L2 as large as L1 as a function of λ1 − λ2 which is
termed δλ. λ1 was fixed at 6, and λH2 = 0. Figure 3 shows that

λ
H,cr
2 is a linear function of δλ. The slope of this function is high

(140/6). The implication is that for reasonable values of the top-
down bias limited to perhaps 50 in this model, the working range
for δλ is relatively small, approximately 2.

FIGURE 4 | Analytical results for Investigation 1 for a system with λ1 − λ2

which is termed δλ fixed at 1. It is shown that λ
H,cr
2 the top-down bias needed

to make the activity of L2 as large as L1 was relatively independent of the

absolute values of λ1 and λ2.

In another example to illustrate the utility of the analysis that
produced (5.54), it was found that the top-down bias λ

H,cr
2 needed

tomake the activity of L2 as large as L1 was relatively independent
of the absolute values of λ1 and λ2, and so depended on the
difference between them, i.e., λ1−λ2 termed δλ. This is illustrated
in Figure 4 in which δλ was set to 1.0, and the value of λ1 was
increased from 1 to 10. It is clear that the top-down bias required
depends very little on the absolute values of λ1 and λ2, but instead
on their difference as shown in Figure 3.

We can also understand quantitatively the effect of the other
parameters using (5.54). For example, if Jb is increased from its
default value of 0.05/3 to 0.1/3, then the slope of the function
illustrated in Figure 3 falls to a lower value (66/6). This makes
the important point that top-down biased competition can only
operate with rates for the top-down bias (in this case λH2 ) in
a reasonable range (not too high) if the backward connection
strength (here Jb with a default value of 0.05/3) is not too low
compared to the forward connection strength (here Jf with a
default value of 0.13/3). This places important constraints on
the ratio of the strengths of backprojections relative to forward
projections between cortical areas (Rolls, 2016).

In another example to illustrate the utility of the analysis that
produced (5.54), it was found that if the crossed connections Kb

(default 0.005/3) were increased (for example to 0.01/3), then
more top-down bias was needed, with the slope of the function
shown in Figure 3 now 158/6. The reason for this is clear, that
some of the top-down bias λH2 acts on λ1 via Kb, but the analytic
result in (5.54) quantifies this, as it does the effects of the other
parameters involved in this approach to biased competition.

4.2. Investigation 2
The second top-down competition effect considered was as
follows. If λ1 is greater than λ2 and both are applied
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simultaneously, then the activity of H1 will be greater than the
activity ofH2. However, if we apply top down biased competition
λH to H2, then we can influence the rates H2 and H1 (through
all the connections in the system) until H2 and H1 have the same
activity (and at the same time there will be an effect on L1 and
L2). We wished to quantify these effects analytically in terms of
all the parameters of the system.

Simulation results for a system with λ1 = 6.0, λ2 = 5.0, and
the top-down bias λH2 = 0 or = λ

H,cr
2 are shown in Figure 5.

λ
H,cr
2 is the value derived in the analysis for the top-down bias

to make the rates in H1 equal those in H2, to just overcome the
difference between the bottom-up inputs λ1 and λ2, as shown
in (5.60). The upper graph in Figure 5 shows the results when
the top-down bias λH = 0. It can be seen that the rates in H1

are higher than in H2, which is as expected, because λ1 = 6.0,
and λ2 = 5.0. In the lower part of Figure 5 the top-down bias
λH2 = 0.775, the value derived in the analysis for the top-down
bias to just produce equal rates in H1 and H2, overcoming the
difference between the bottom-up inputs shown as λ1 and λ2.
The simulation illustrated in the lower part of the figure thus
shows that when the analytically calculated value for λ

H,cr
2 is

used, the numerical simulation confirms that this is the correct
value. When a different value is used, as shown in the top part of
Figure 5, then the correct results are not obtained.

The interpretation of the analytical results shown in for
example (5.60) for Investigation 2 is now facilitated by graphical
analysis. Analytical results for Investigation 2 to show how
λ
H,cr
2 is a function of λ1 are shown in Figure 6, for a system

with λ2 = 5.0. λ
H,cr
2 is the value derived in the analysis for

the top-down bias to just produce equal rates in H1 and H2,
overcoming the difference between the bottom-up inputs shown
as λ1 and λ2. Figure 6 shows that λ

H,cr
2 is a linear function of

λ1, when λ2 = 5.0. Moreover, Figure 6 shows that only a small
variation of λ

H,cr
2 is sufficient to counteract large changes in

λ1. Moreover, the implication of 5.60 is that provided that the
conditions shown in (5.59) are met, the operation is relatively
independent of λ2. The understanding to which this leads is
that the relative outputs measured at the H nodes are relatively
little affected by the values of λ1 and λ2, compared to the
effects of the input biases to λH2 and λH1 . An implication for
the operation of the brain is that top-down biased competition
can have useful effects on the lower (L) nodes in the system,
which could then influence other systems. Another implication
is that the output from the higher (H) nodes is relatively strongly
affected by any direct inputs to the H nodes, compared to
effects mediated by top-down biases acting through the backward
connections to the L nodes, and on systems connected to
these L nodes.

Analytical results for Investigation 2 to show how λ
H,cr
2

depends on λH1 are shown in Figure 7, for a system with λ2

= 5.0. λ
H,cr
2 is the value derived in the analysis for the top-

down bias to just produce equal rates in H1 and H2, overcoming
the difference between the bottom-up inputs shown as λ1 and
λ2. This figure shows that λ

H,cr
2 is a linear function of λH1

with a slope of approximately 1. The implication here is that
inputs to the H nodes influence each other almost equally, and
this will occur primarily through the inhibition between these

FIGURE 5 | Simulation results for Investigation 2 for a system with λ1 = 6.0,

λ2 = 5.0. (Upper) The top-down bias λH2 = 0. (Lower) The top-down bias λH2

= λ
H,cr
2 = 0.775. λH2 = λ

H,cr
2 is the value derived in the analysis for the

top-down bias to just produce equal rates in H1 and H2, overcoming the

difference between the bottom-up inputs shown as λ1 and λ2.

nodes implemented by cH , rather than through the top-down
connections to the L nodes, and then the return effects from the
L to the H nodes.

5. MATHEMATICAL ANALYSIS

To solve the named problems we shall study the system (3.1) and
(3.2) which describes the dynamics of (L1(t), L2(t),H1(t),H2(t))
in R4+. Note that the entire state space R

4
+ = {(x1, x2, y1, y2) : xi ≥

0, yi ≥ 0} is decomposed into 24 = 16 areas depending on
whether xi ∈ [0,TL], yi ∈ [0,TH]:

R4+ = ∪(e1 ,...,e4) : ei∈{0,1}Xe1 × Xe2 × Ye3 × Ye4 , (5.7)

where

X0 = [0,TL),X1 = [TL,∞),Y0 = [0,TH),Y1 = [TH ,∞).
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FIGURE 6 | Analytical results for Investigation 2 for a system with λ2 = 5.0.

λ
H,cr
2 is shown as a function of λ1. λ

H,cr
2 is the value derived in the analysis for

the top-down bias to just produce equal rates in H1 and H2, overcoming the

difference between the bottom-up inputs shown as λ1 and λ2.

FIGURE 7 | Analytical results for Investigation 2 for a system with λ1 = 6.0, λ2

= 5.0. λ
H,cr
2 is shown as a function of λH1 . λ

H,cr
2 is the value derived in the

analysis for the top-down bias to just produce equal rates in H1 and H2,

overcoming the difference between the bottom-up inputs shown as λ1 and λ2.

In each area Xe1 ×Xe2 ×Ye3 ×Ye4 the behavior of a system (3.1),
(3.2) is linear; the non-linear nature of this system is seen, roughly
speaking, only at the borders of these areas. In particular, there is
a “cut” or “threshold” at zero for all involved functions, as their
meaning as rates assumes only non-negative values.

We are mostly interested in modeling dynamics of a vector
(L1(t), L2(t),H1(t),H2(t)) which does not escape to infinity in any
coordinate. Therefore, we shall first study the system in the area

S : = {(x1, x2, y1, y2) : xi ∈ [0,TL], yi ∈ [0,TH], i = 1, 2}

= X0 × X0 × Y0 × Y0. (5.8)

Let us assume first the following simplifying assumption. Set

TL = TH = ∞, (5.9)

which means that there is no facilitation of rates in the network.
Consider the linear system associated with the system

(3.1), (3.2):




L̃1(t + 1)

L̃2(t + 1)

H̃1(t + 1)

H̃2(t + 1)


 =




1− βL −cL Jb Kb

−cL 1− βL Kb Jb
Jf Kf 1− βH −cH
Kf Jf −cH 1− βH







L̃1(t)

L̃2(t)

H̃1(t)

H̃2(t)




+




λ1
λ2
λH1
λH2


 . (5.10)

Let us fix

λ̄ ∈ S. (5.11)

Then assuming also as in (3.5) the zero initial conditions

(̃L1(0), L̃2(0), H̃1(0), H̃2(0)) = (0, 0, 0, 0) = (L1(0), L2(0),H1(0),H2(0)),

we observe that as long as

L̃i(t) ∈ [0,TL], H̃i(t) ∈ [0,TH], i = 1, 2, (5.12)

i.e., L̃i(t) ≥ 0 and H̃i(t) ≥ 0 [recall assumption (5.9)], the system
(5.10) describes exactly the same system as in (3.1) and (3.2), i.e.,

L̃i(t) = Li(t), H̃i(t) = Hi(t). (5.13)

Therefore we first derive the conditions for the matrix in (5.10)
under which relations (5.12) hold for all t ≥ 0, i.e., the system
remains to be in the bounded area S.

The boundedness of the solution to (5.10) is defined entirely
by the eigenvalues of the corresponding matrix. However,
deriving the eigenvalues even for a (4×4)-matrix requires already
heavy computations. Instead we shall take advantage of some
particular properties and symmetries of our model which allow
us to reduce the original 4 dimensions of the system.

5.1. Boundedness of the Trajectories
Let us consider the dynamics of two systems related to (5.10):

L(t) = L̃1(t)+ L̃2(t), H(t) = H̃1(t)+ H̃2(t), (5.14)

and

1L(t) = L̃1(t)− L̃2(t), 1H(t) = H̃1(t)− H̃2(t). (5.15)

Observe that H(t) → ∞ or 1H(t) → ∞ if and only if
at least one H̃i(t) → ∞, in which case the original system
(L1(t), L2(t),H1(t),H2(t)) cannot remain in the bounded area S.
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A similar statement holds about L(t) and 1L(t). Therefore, we
begin the analysis by providing the necessary conditions for the
stability of systems (5.14) and (5.15), and thus for the stability
of (5.10).

Then assuming that the connection parameters provide
stability for the sums (5.14) we investigate the behavior of the
system of differences (5.15) for different inputs

λ1 > λ2 and λH1 < λH2 .

Our goal here is to find parameters such that given asymmetric
inputs λ1 > λ2 we want to find λH1 < λH2 such that 1L(t)
converges to a negative value for large t or that 1H(t) converges
to a negative value for large t.

If the equality (5.13) still holds for all t this means that
correspondingly, L1(t) < L2(t) or H1(t) < H2(t) for large t as
well. Hence, correspondingly, we have a solution to Problem I or
Problem II.

First we derive from (5.10):

(
L(t + 1)
H(t + 1)

)
= WS

(
L(t)
H(t)

)
+

(
λ

λH

)
, (5.16)

where

WS =

(
1− βL − cL Jb + Kb

Jf + Kf 1− βH − cH

)
, (5.17)

and

λ = λ1 + λ2, λH = λH1 + λH2 .

Similarly,

(
1L(t + 1)
1H(t + 1)

)
= W1

(
1L(t)
1H(t)

)
+

(
1λ

1λH

)
, (5.18)

where

W1 =

(
1− βL + cL Jb − Kb

Jf − Kf 1− βH + cH

)
, (5.19)

and

1λ = λ1 − λ2, 1λH = λH1 − λH2 .

Effectively, using the symmetries we reduced the 4 dimensions
of our model to 2 dimensions, as the solution to our original
system (5.10) is given by

L̃1(t) =
1

2
(L(t)+ 1L(t)), L̃2(t) =

1

2
(L(t)− 1L(t)), (5.20)

and

H̃1(t) =
1

2
(H(t)+1H(t)), H̃2(t) =

1

2
(H(t)−1H(t)). (5.21)

Recall that for a 2x2 matrix

M =

(
A C
D B

)
, (5.22)

where all the entries are positive (as in ourmodel) the eigenvalues
are given by

κ1 =
A+ B+

√
(A− B)2 + 4CD

2
, (5.23)

and

κ2 =
A+ B−

√
(A− B)2 + 4CD

2
. (5.24)

Note that due to the assumption of positivity of entries we
have here

κ2 < κ1, |κ2| < κ1. (5.25)

Hence, we have two (not linearly dependent) eigenvectors

Ei =

(
1

κi−A
C

)
. (5.26)

Note here for further reference that the inequalities

κ1 − A =
B− A+

√
(A− B)2 + 4CD

2
> 0, (5.27)

and

κ2 − A =
B− A−

√
(A− B)2 + 4CD

2
< 0 (5.28)

hold for all positive parameters A,B,C,D.
Let us consider a linear transformation in R2:

X̄ (t + 1) = MX̄ (t)+ ȳ, (5.29)

where X̄(0) = (0, 0) and ȳ = (y1, y2) is any vector.
Since vectors E1 and E2 make a basis in R2, for any vector ȳ

there are numbers q1 and q2, such that

ȳ = q1E1 + q2E2 =




q1 + q2

κ1−A
C q1 +

κ2−A
C q2.


 . (5.30)

Then the solution to (5.29) is given by

X̄(t + 1) =

t∑

k=0

Mkȳ =

t∑

k=0

κk
1q1E1 +

t∑

k=0

κk
2q2E2. (5.31)

Observe that

κ1 < 1 if and only if

{
A+ B < 2,
CD < (1− A)(1− B).

(5.32)

The last system together with the assumption that both C and D
are positive yields

κ1 < 1 if and only if

{
0 < A,B < 1,
CD < (1− A)(1− B).

(5.33)
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Under the last condition equation (5.31) yields the following
convergence to the fixed point:

X̄(t) →
1

1− κ1
q1E1 +

1

1− κ2
q2E2 =




q1
1−κ1

+
q2

1−κ2

κ1−A
C(1−κ1)

q1 +
κ2−A

C(1−κ2)
q2


 ,

(5.34)

as t → ∞.
Consider WS defined in (5.17) as an example of the generic

matrixM in (5.22). Let us denote its eigenvalues κi(WS), i = 1, 2,
κ1(WS) ≥ κ2(WS). Under assumption

βL + cL < 1, βH + cH < 1, (5.35)

we have according to (5.33):

κ1(WS) < 1 if and only if (Jf +Kf )(Jb+Kb) < (βL+cL)(βH+cH).
(5.36)

Next we study the eigenvalues κ1(W1) ≥ κ2(W1) of W1.
Under assumption

βL − cL < 1, βH − cH < 1, (5.37)

which holds whenever (5.35) holds, we have according to (5.33):

κ1(W1) < 1 if and only if (Jf−Kf )(Jb−Kb) < (βL−cL)(βH−cH).
(5.38)

Observe that when cL = cH = 0, condition (5.38) follows by the
above condition (5.36).

Notice that together with the assumption (3.3) when all the
parameters except Jb,Kb are fixed, the ratio q = Jb/Jf has to be
small to ensure the boundedness of the functions Li(t),Hi(t).

In words, conditions (5.36) and (5.38) tell us that under the
assumption (5.35) the stability of the system (or boundedness of
the trajectories) requires that at least some of the connections,
forward or backward ones, have to be sufficiently small.

5.2. Dynamics of (1L(t),1H(t)) for a Biased
Input When All Rates Remain to be Strictly
Positive
Here we study the system (3.1)–(3.2) assuming conditions
when the functions Li(t),Hi(t) remain to be strictly positive
and bounded. This means that the dynamics is described by
linear system.

Assume that initially the input to L̃1 is greater than the one
to L̃2, i.e., 1λ > 0. We shall find here the sufficient conditions
on the parameters of the connections which yield existence of
the values

1λH < 0

such that eventually, contrary to the initial bias, the state of the
system satisfies

L̃2(t) < L̃1(t), (5.39)

for all large t.

We shall assume first of all that the above conditions (5.35),
(5.36), (5.37), and (5.38) are satisfied.

Consider system (5.19) with input

(
1λ

1λH

)
=

(
λ1 − λ2
λH1 − λH2

)
.

Let us decompose this vector along the eigenvectors of W1 as
in (5.30):

(
1λ

1λH

)
= xE1(W1)+ yE2(W1) =




x+ y

κ1(W1)−A1

C1
x+ κ2(W1)−A1

C1
y


 ,

(5.40)

where Ei(W1) and κi(W1), i = 1, 2, denote, correspondingly
the eigenvectors and the eigenvalues of W1, and here [compare
matrices (5.19) and (5.22)]

C1 = Jb − Kb, A1 = 1− βL + cL.

Then by (5.34) the following convergence takes place
when t → ∞:

(
1L(t)
1H(t)

)
→




x
1−κ1(W1)

+
y

1−κ2(W1)

κ1(W1)−A1

C1(1−κ1(W1))
x+ κ2(W1)−A1

C1(1−κ2(W1))
y


 . (5.41)

Hence, given a positive

1λ = λ1 − λ2 = x+ y

we want to find value x = x(1λ) which satisfies condition

x

1− κ1
+

1λ − x

1− κ2
< 0 (5.42)

and moreover minimizes function [see (5.40)]

F(x) =

∣∣∣∣
κ1 − A1

C1

x+
κ2 − A1

C1

(1λ − x)

∣∣∣∣ . (5.43)

From (5.42) we get

x < −1λ
1− κ1

κ1 − κ2
, (5.44)

which is negative. Then for all the x which satisfy (5.44) we have

F(x) =
1

C1

∣∣(κ1 − κ2)x− (A1 − κ2)1λ
∣∣

=
(κ1 − κ2)|x| + (A1 − κ2)1λ

C1

> 1λ
1+ A1 − (κ1 + κ2)

C1

.

(5.45)
Finally, we can define a negative 1λH such that (5.40) holds,
and moreover the limiting state as defined in the first row on
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the right in (5.41) satisfies (5.42). Observe that condition (5.42)
by (5.41) guarantees condition (5.39). Substituting previously
derived formulas into (5.45) we derive that for any given positive
1λ and any λH1 < λH2 such that

λH2 − λH1 >
βH − cH

Jb − Kb
1λ (5.46)

we have (5.39).
We conclude that in the case when (5.13) still holds for all large

t, i.e., if the system remains to be in the positive area, we have
L2(t) ≥ L1(t) for all large t if conditions (5.35), (5.36), and (5.38)
are fulfilled and λH2 is greater than the following critical value:

λ
H,cr
2 = λH1 +

βH − cH

Jb − Kb
(λ1 − λ2). (5.47)

5.3. Operation With a Threshold at a Rate
of Zero
Here we explore the non-linear effects of the system (3.1)–
(3.2) considering the case when some of the rates Li(t) or Hi(t)
become zero andmay stay at zero due to the non-linear threshold
function that does not allow negative rates (·)+.

5.3.1. Equality in the L-Nodes

We shall find here the conditions when a state

L1(t) = L2(t) = L,H1(t) = 0,H2(t) = H (5.48)

with strictly positive L and H can be a fixed point for the
dynamical system (3.1)-(3.2) under assumption that

λ1 > λ2, λ
H
2 > λH1

and also (5.9) holds, i.e., when a facilitation of rate above a certain
threshold is not applied.

Assuming that the trajectories of L1(t), L2(t), andH2(t) remain
to be strictly positive and do not hit zero, while H1(t) does decay
to zero, the constants in (5.48) should satisfy the following system
derived from (5.10) [see also 3.1)–(3.2)]:





−βLL− cLL+ KbH + λ1 = 0,
−cLL− βLL+ JbH + λ2 = 0,

Jf L+ Kf L− cHH + λH1 ≤ 0,

Kf L+ Jf L− βHH + λH2 = 0.

(5.49)

Observe that the inequality in the third line in (5.49) after the
threshold at a rate of zero as in the original system (3.1)-(3.2)
yields limiting state H1(t) = 0.

The system (5.49) is equivalent to




0 < H = λ1−λ2
Jb−Kb

≤
λH2 −λH1
βH−cH

,

L =
JbH+λ2
βL+cL

=
βHH−λH2
Kf+Jf

.

(5.50)

This requires the following conditions for the parameters in order
for the last system to have a solution:

λ2(Kf + Jf )+
(

λ1−λ2
Jb−Kb

(βH − cH)+ λH1

)
(βL + cL)

βH(βL + cL)− Jb(Kf + Jf )
≤ H (5.51)

=
λ2(Kf + Jf )+ λH2 (βL + cL)

βH(βL + cL)− Jb(Kf + Jf )
=

λ1 − λ2

Jb − Kb
,

which in turn requires

λ2(Kf + Jf )(Jb − Kb)+
(
(λ1 − λ2)(βH − cH)+ λH1 (Jb − Kb)

)
(βL + cL)

βH(βL + cL)− Jb(Kf + Jf )
≤ λ1 − λ2.

(5.52)

Observe that when λH1 = 0 the last condition is equivalent to

(λ1Jb − λ2Kb)(Kf + Jf ) ≤ (λ1 − λ2)cH(βL + cL). (5.53)

Assuming that (5.52) holds we derive from (5.51) the following
critical value

λ
H,cr
2 =

λ1 − λ2

Jb − Kb

(
βH − Jb

Kf + Jf

βL + cL

)
− λ2

Kf + Jf

βL + cL
. (5.54)

The above analysis yields the following statement.

Proposition 5.1. Let conditions (5.36) and (5.38) hold, and let

λH2 ≥ λ
H,cr
2 .

Assume also (5.52) (or (5.53) if λH1 = 0) and

λ2(Kf + Jf )+ λH2 (βL + cL)

βH(βL + cL)− Jb(Kf + Jf )
=

λ1 − λ2

Jb − Kb
. (5.55)

Then the system (3.1)-(3.2) converges to a state where

H1(t) = 0, H2(t) = H =
λ1 − λ2

Jb − Kb
, L1(t) = L2(t) =

JbH + λ2

βL + cL
.

Notice that the limiting state described in the last Proposition
satisfies (5.48).

Observe that the formula (5.54) for the critical value λ
H,cr
2 is in

a good agreement with the previous case (5.47); in fact the same
condition as in (5.47) reads directly from the inequality in (5.50).
However, this is precisely the non-linearity of the system that we
use here to derive the exact formula (5.54) for the critical value.

5.3.2. Equality in the H-Nodes

We shall find here the conditions when a state

L1(t) = L, L2(t) = 0,H1(t) = H2(t) = H (5.56)

with strictly positive L and H can be a fixed point for the
dynamical system (3.1)-(3.2) under the assumption that

λ1 > λ2, λ
H
2 > λH1

and also (5.9) holds, i.e., when a facilitation of rate above a certain
threshold is not applied.

Assuming that the trajectories of L1(t),H1(t), and H2(t)
remain to be strictly positive and do not hit zero, while L2(t) does
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decay to zero, the constants in (5.56) should satisfy the following
system derived from (5.10) [see also 3.1)–(3.2)]:





−βLL+ (Jb + Kb)H + λ1 = 0,
−cLL+ (Jb + Kb)H + λ2 ≤ 0,

Jf L− (βH + cH)H + λH1 = 0,

Kf L− (βH + cH)H + λH2 = 0.

(5.57)

Observe that the inequality in the second line in (5.57) after
the threshold at zero as in the original system (3.1)–(3.2) yields
limiting state L2(t) = 0. The system (5.57) is equivalent to





0 < L =
λH2 −λH1
Jf−Kf

≤ λ1−λ2
βL−cL

,

H =
Kf L+λH2
βH+cH

=
βLL−λ1
Kb+Jb

.

(5.58)

First we derive the conditions for the parameters in order for the
last system to have a solution:

λ1

(
cL − Jf

Kb + Jb

βH + cH

)
≥ λH1

Kb + Jb

βH + cH
(βL − cL)+ λ2

(
βL − Jf

Kb + Jb

βH + cH

)
.

(5.59)

Assuming that the latter holds we derive from (5.57) the following
critical value

λ
H,cr
2 =

λ1(Jf − Kf )(βH + cH)+ λH1

(
(βH + cH)βL − Kf (Kb + Jb)

)

(βH + cH)βL − (Jb + Kb)Jf
.

(5.60)

If λH2 ≥ λ
H,cr
2 then the system ends up in a state where L1(t) =

L > L2(t) = 0 and H2(t) = H1(t) = H.

6. DISCUSSION

6.1. The Analysis
We consider here a 4-dimensional system of linear equations
with thresholds for the rates at zero. Although it is “almost”
a linear system, which admits rather straightforward analysis,
the focus is on the relations between the numerous parameters.
Notably, the latter relations are mostly non-linear.

Our approach takes advantage of the authentic symmetries in
the system which allowed us to reduce the original 4 dimensions
to 2 dimensions. This method may have some interest on its own
as it can be used in other similar situations.

The derived conditions for the parameters which yield certain
desired properties (specified as Problems I and II) disclose non-
trivial relations between the parameters.

We considered several cases: (i) when the system keeps a
positive rate at each node (section 5.2), and (ii) when the rate at
one node, namely L2(t) (section 5.3.2), or H2(t) (section 5.3.1) is
suppressed to zero after a long enough time.

Consider first our solution to Problem I. Remarkably the
formulas for the critical value of the bias λH2 to yield the success
of competition are different for the above two cases, namely when

all the rates are strictly positive or when one rate is zero. These
formulas are given by (5.47) and (5.54). This level of accuracy
would not be possible without analytic formulas. Observe that
(5.47) is the first condition in system (5.50), which also has to be
fulfilled for the formula (5.54) to work.

As we mentioned above, formula (5.47) holds only under
assumption that all the rates remain to be strictly positive, that
can be achieved, for example, by choosing λH1 sufficiently large.

Further, we notice that the solution to Problem II provided
by formula (5.60) reveals an interesting relation: as long as λ2
satisfies condition (5.59) it does not enter directly formula (5.60).

Deco and Rolls (2005) inferred from their particular
simulations that the ratio of 2.5 between Jf and Jb provides a
good working point for the biased competition. As we do not find
any universal ratio between Jf and Jb in our analysis we conclude
that the ratio 2.5 reflects particular scaling when the remaining
parameters are fixed at certain values. On the other hand, our
analysis tells us that the product Jf Jb has to be sufficiently small
for the boundedness of the trajectories. More precisely, (5.36)
and (5.38) under assumption (3.3) require the following sufficient
conditions for our analysis

q =
Jb

Jf
< min

{
(βL + cL)(βH + cH)

(Jf + Kf )2
,
(βL − cL)(βH − cH)

(Jf − Kf )2

}

(6.61)
Furthermore, each of formulas (5.54) or (5.47) works under
additional conditions as specified in the text. In particular,
formula (5.54) requires (5.53), which is

q =
Jb

Jf
< cH

λ1 − λ2

λ1Jf − λ2Kf

βL + cL

Kf + Jf
. (6.62)

A reasonably large set of parameters satisfies the above
conditions, as shown by the computational results.

6.2. Implications for Understanding Biased
Competition and the Interaction Between
Neural Systems
The analysis elucidates some interesting properties of the biased
competition system described. For example, the system is
sensitive to the difference between λ1 and λ2, with the amount of
biased competition required to produce the biased competition
effects described related to this difference, as shown by the
analytical results leading to (5.54), and the results shown in
Figures 3, 4. These analyses and results show that while the
system tolerates a wide range for the absolute values of λ1 and
λ2, the difference between then δλ must be relatively small for
the values of the top-down bias λ

H,cr
2 to be within a reasonable

range of activity values, which in the context of the simulations
described here might be up to 50.

The mean value of the λ inputs on the other hand influences
how high the rates are of the output neurons. Another feature
revealed by the analysis is how the parameters can be set to
achieve asymptotically stable performance.

The analysis has interesting implications for understanding
the operation of the backprojections that are important in top-
down biased competition mechanisms of attention. Equation
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(5.54) and Figure 3, the associated results show that in order for
the top down critical value λ

H,cr
2 not to have to be too large, the

backprojections Jb must not be too weak. At the same time, Jb
must be less than Jf , so that perceptual bottom-up inputs can
dominate neural processing, which must not be dominated by
internally generated top-down signals. This leaves a relatively
small region for Jb/Jf between perhaps < 1.0 and 0.3. However,
this ratio must be kept fairly low so that the two systems being
coupled in this way can operate with separate attractors at the
bottom (L) and top (H) ends (Renart et al., 1999a,b).

Another interesting property of this top-down biased
competition system elucidated by the analysis is that the
operation of the system, including the effects of the top-down
bias λH2 , was influenced especially by the difference δλ between
λ1 and λ2, rather than by their absolute value, as shown in
(5.54) and illustrated in Figures 3, 4. This is similar to the
operation of integrate-and-fire decision-making networks (Rolls
and Deco, 2010; Deco et al., 2013; Rolls, 2016), with the similarity
reflecting the way in which the competition between the nodes or
attractors operates.

The key correspondence between the mathematical analysis
and the numerical simulations is that the simulations show that
themathematical analysis very accurately specifies the exact value
of the top-down bias that is needed. That is useful confirmation
that the analysis accurately specifies the interactions between the
parameters in the biased competition system. The simulations
are additionally useful in illustrating the operation of the biased
competition system investigated analytically.

In conclusion, the major advantage of the analytical
approach brought to bear here for the first time on biased
competition between cortical areas is that it discloses
relations between all the parameters of the model, and
helps to identify those values that yield the desired effect of
biased competition. This task cannot be fulfilled purely by
numerical simulations.
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