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Cx26 keratitis ichthyosis
deafness syndrome
mutations trigger alternative
splicing of Cx26 to prevent
expression and cause toxicity
in vitro
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The Cx26 mRNA has not been reported to undergo alternative
splicing. In expressing a series of human keratitis ichthyosis
deafness (KID) syndrome mutations of Cx26 (A88V, N14K
and A40V), we found the production of a truncated mRNA
product. These mutations, although not creating a cryptic
splice site, appeared to activate a pre-existing cryptic splice
site. The alternative splicing of the mutant Cx26 mRNA
could be prevented by mutating the predicted 30, 50 splice
sites and the branch point. The presence of a C-terminal
fluorescent protein tag (mCherry or Clover) was necessary
for this alternative splicing to occur. Strangely, Cx26A88V

could cause the alternative splicing of co-expressed WT
Cx26—suggesting a trans effect. The alternative splicing of
Cx26A88V caused cell death, and this could be prevented by
the 30, 50 and branch point mutations. Expression of the KID
syndrome mutants could be rescued by combining them
with removal of the 50 splice site. We used this strategy to
enable expression of Cx26A40V-50 and demonstrate that this
KID syndrome mutation removed CO2 sensitivity from
the Cx26 hemichannel. This is the fourth KID syndrome
mutation found to abolish the CO2-sensitivity of the Cx26
hemichannel, and suggests that the altered CO2-sensitivity
could contribute to the pathology of this mutation. Future
research on KID syndrome mutations should take care to
avoid using a C-terminal tag to track cellular localization and
expression or if this is unavoidable, combine this mutation
with removal of the 50 splice site.
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1. Introduction

The human connexin26 (Cx26) gene is comprised of a short non-coding exon 1, followed by a long intron
and a long protein-coding exon 2. The promotor P1, located upstream of exon 1, contains a TATA
motif (TTAAAA) and several GC boxes for specificity protein 1 (Sp1) and specificity protein 3 (Sp3)
binding [1–3]. Connexin gene expression is predominantly controlled by transcriptional regulation, in
a tissue-dependent manner [4]. The resulting Cx26 mRNA contains an internal ribosome entry site
(IRES) in the 50 untranslated region and a signal for the initiation of cap-independent translation [4,5].
Alternative splicing of Cx26 has never been reported.

Like all connexins, six protein subunits assemble to form a hexameric Cx26 hemichannel or connexon.
Hemichannels in opposing cell membranes dock together to form a gap junction, facilitating the
transmission of small molecules, including ions, metabolites and signalling molecules. Cx26 also exhibits
functionality independently of gap junctions; hemichannels are opened in response to an increase in
PCO2, resulting in the release of ATP, which acts on respiratory neurons to stimulate breathing [6,7]. We
demonstrated, by mutational analysis, that CO2 directly led to the carbamylation of residue K125,
resulting in the formation of a salt bridge to R104 in an adjacent subunit of the connexin hexamer [8].

Mutations in the Cx26 gene have been associated with human pathology of varying severity, ranging
from non-syndromic deafness to keratitis ichthyosis deafness (KID) syndrome, a disease characterized by
skin lesions, sensorineural hearing loss and vascularizing keratitis [9–18]. Nine mutations in Cx26 have
been linked to KID syndrome [19]. One hypothesis to account for the pathological nature of these
dominant mutations is that they give rise to leaky hemichannels which, being less sensitive to Ca2+

block, are open under resting conditions thereby causing cell death [20–24]. To some extent altered Cx26
gating properties of some mutations may correlate with the severity of the pathology [25]. The A88V
mutation in Cx26, which causes a very severe form of KID syndrome, can also occur in the related
connexin Cx30 where it causes Clouston’s syndrome [26,27]. Recently Cx30A88V, although being toxic to
cells in culture, was found to confer protection against age-related hearing loss in vivo [28] suggesting
caution in extrapolation of effects from in vitro model systems to whole animal physiology.

We have recently reported that Cx26 hemichannels with N14K or N14Y mutations do not open in
response to CO2 challenge [29]. We previously reported that the A88V mutation in rat Cx26 removed
CO2 sensitivity in a dominant-negative fashion [30]. Both N14Y and N14K exert powerful dominant-
negative action on the CO2 sensitivity of Cx26WT [29]. In this paper, we have explored other KID
syndrome mutations (A40V and A88V in human Cx26) that we had been previously unable to express
in HeLa cells. Surprisingly, we found the existence of pre-existing splicing at cryptic splice sites within
Cx26 that became active when Cx26 contained certain KID syndrome mutations. Once splicing had
been prevented, expression of the Cx26 KID syndrome mutant proteins was restored. We used this
method to show that the KID syndrome mutation A40 V (in human), like A88V (in rat), N14K and
N14Y (in rat), abolished the sensitivity of Cx26 to CO2. This cryptic splicing seemed to depend on the
existence of a C-terminal fluorescent protein tag, suggesting that this method of localizing Cx26
expression is not suitable for KID syndrome mutants.
2. Material and methods
2.1. Connexin 26 mutagenesis
The sequence for wild-type Cx26 was taken from accession number: NM_004004.5. Mutations were
introduced into the human Cx26 sequence [29] by the Quikchange protocol (Agilent) using the
following primers:

A88V: for 50 cgtgtccacgccagTgctcctagtggcc 30, rev 50 ggccactaggagcactggcgtggacacg 30;
A40V: for 50 ctcgttgtggctgTaaaggaggtgtgg 30, rev 50 ccacacctcctttacagccacaacgag 30;
N14K: for 50 ctggggggtgtgaaGaaacactccaccag 30, rev 50 ctggtggagtgtttcttcacaccccccag 30;
A88S: for 50 cgtgtccacgccaTcgctcctagtggcc 30, rev 50 ggccactaggagcgatggcgtggacacg 30.

Cx26 was then cloned, in frame, into the pCAG-GS mCherry vector. Similar constructs were also made
with a pcDNA 3.1 mCherry vector. Splice site mutations were made with the following primers:

30 splice site mutant 646C: for 50 gttatttgctaattCgatattgttctgggaag 30, rev 50 cttcccagaacaatatcgaattagcaaa
taac 30, 646AGA (arginine) silently mutated to 646CGA (arginine);
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Branch point mutants: for 50 gtgtctggaatttgcatcctgctgCaGgtcactCTattgtgttatttgctaattagatattg 30, rev 50

caatatctaattagcaaataacacaatagagtgacctgcagcaggatgcaaattccagacac 30, 616AAT (asparagine) mutated to
616CAG (glutamine) and 625GAA (glutamic acid) mutated to 625CTA (leucine);

50 splice site mutant M151 L: for 50 catcttcgaagccgccttcCtCtacgtcttctatgtcatgt 30, rev 50 acatgacatagaagacgt
agaggaaggcggcttcgaagatg 30, 451ATG (methionine) mutated to 451CTC (leucine).

The presence of the correct Cx26 sequence in each construct was confirmed by DNA sequencing (GATC
Biotech).

2.2. Hela cell culture and transfection
HeLa Ohio (ECACC) cells were grown in EMEM supplemented with 1% non-essential amino acids, 10%
fetal bovine serum, 50 µg ml−1 penicillin/streptomycin and 3 mM CaCl2. For microscopy and dye
loading experiments, cells were plated onto coverslips at a density of 1 × 105 cells per well of a six-
well plate. The cells were transiently transfected with Cx26 constructs containing a fluorescent marker,
mCherry (1 µg) as described in the GeneJuice Transfection Reagent protocol (Merck Millipore). Cx26
expression was determined by imaging mCherry fluorescence using an Axiovert A1 microscope.
 n

sci.6:191128
2.3. cDNA preparation
HeLa cells were harvested 48 h post-transfection and washed twice with cold PBS. The cell pellet was
stored at −80°C. Total RNA was prepared using the Reliaprep RNA Cell Miniprep System (Promega).
cDNA was generated with GoScript reagents (Promega) using random hexamer primers. Taq
polymerase (Invitrogen) was used to PCR Cx26 from the cDNA. The forward primer annealed
upstream of the start codon (ngF for pCAG-GS and pcfor for pcDNA 3.1) and the reverse primer
annealed at the 30 end of the Cx26 coding sequence (tag-cxRev).

pCAG-GS: ngF 50 GCAACGTGCTGGTTATTGTGCTGT 30;
pcDNA 3.1: pcfor 50 CACTGCTTACTGGCTTATCG 30;
Tag-cxRev: 50 tcatggtggcgaataaCTGGCTTTTTTGACTTCC 30.

2.4. Dye loading experiments
Our dye loading protocol has been described previously [7,8,29–32]. HeLa Ohio cells expressing either
Cx26WT, Cx26WT-50 or Cx26A40V-50 for 48 h were exposed to control, zero Ca2+ or hypercapnic aCSF
containing 200 µM 5(6)-carboxyfluorescein (CBF) for 10 min. Cells were then exposed to control aCSF
with 200 µM CBF for a further 5 min, followed by a wash in control aCSF with no CBF for 30 min to
remove excess extracellular dye. A replacement coverslip of HeLa cells was used for each condition.
2.5. Artificial cerebrospinal fluid solutions

2.5.1. Control aCSF

124 mM NaCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 3 mM KCl, 10 mM D-glucose, 1 mM MgSO4, 1 mM
CaCl2. This was bubbled with 95%O2/5% CO2 and had a final pH of approximately 7.4.
2.5.2. Zero Ca2+ aCSF

124 mM NaCl, 26 mM NaHCO3, 1.25 mM NaH2PO4, 3 mM KCl, 10 mM D-glucose, 1 mM MgSO4, 1 mM
MgCl2, 1 mM EGTA. This was bubbled with 95%O2/5% CO2 and had a final pH of approximately 7.4.
2.5.3. Hypercapnic (55 mmHg CO2) aCSF

100 mM NaCl, 50 mM NaHCO3, 1.25 mM NaH2PO4, 3 mM KCl, 10 mM D-glucose, 1 mM MgSO4, 1 mM
CaCl2. This was bubbled with sufficient CO2 (approx. 9%, balance O2) to give a final pH of
approximately 7.4.
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2.6. Assessment of cell death

Cells plated at a density of 1 × 105 cells per well in a six-well plate were transfected as above. After 48 h, the
media was collected, and a PBS wash (superfusate) also collected in the same tube. Cells were then
harvested with trypsin and added to the tube containing the media and PBS superfusate. The cells were
then pelleted, washed in fresh media, and the final pellet was resuspended in 2 ml of media. An aliquot
was mixed 1 : 1 with trypan blue. Using a haemocytometer, the cells were counted to determine the
proportion of dead (blue) cells. This was expressed relative to the proportion of dead cells found in
similar cultures of dummy-transfected parental HeLa cells, that were treated with GeneJuice but no DNA.

2.7. Fluorescence imaging and analysis
After dye loading, HeLa cells were imaged by epifluorescence (Scientifica Slice Scope, Cairn Research
OptoLED illumination, 60× water Olympus immersion objective, NA 1.0, Hamamatsu ImagEM EM-
CCD camera, Metafluor software). The extent of dye loading was determined by drawing a region of
interest (ROI) around each cell in ImageJ (Wayne Rasband, National Institutes of Health, USA) [33], and
subsequently, measuring the mean pixel intensity of the ROI. The mean pixel intensity of a
representative background ROI for each image was subtracted from each cell measurement from the
same image. At least 50 cells expressing each Cx26-mCherry construct were analysed for each condition
per experiment, and five independent repetitions using the same batch of cells were completed. Data
were plotted both as cumulative probabilities (showing every data point) and box and whisker plots
where the box is interquartile rage, bar is median, and whisker extends to the most extreme data point
that is no more than 1.5 times the interquartile range. Points that fall outside this range are plotted
individually as circles. To avoid pseudoreplication, the medians of the individual replicates were
compared between conditions using the Mann–Whitney U test with one-tailed comparisons.
3. Results
3.1. Keratitis ichthyosis deafness syndrome mutations cause the expression of two transcripts

from the Cx26 gene
We introduced the KID syndrome mutations, A88V, A40V and N14K, along with A88S, a Cx26 mutant that
has no syndromic pathology but may cause deafness [34,35], into human Cx26 linked to the mCherry
fluorophore. We then expressed these mutant hemichannels in HeLa cells. After 24–72 h, punctate
expression of Cx26WT and Cx26A88S was observed, however, no expression was present in viable cells
transfected with Cx26 carrying the A88V (figure 1a), A40V or N14K mutations (data not shown). To
determine if the Cx26 mRNA was present, total RNA was harvested from HeLa cells 48 h after
transfection with Cx26 and cDNA was synthesized using random hexamer primers. PCR of Cx26 from
the cDNA revealed two PCR products of approximately 550 bp and 660 bp size from HeLa cells
transfected with A88V, A40V or N14K Cx26 (figure 1b). Only the larger PCR product (660 bp),
corresponding to the full Cx26 product, was present in cells expressing WT or A88S Cx26 (figure 1b).
We also noted that many cells expressing the KID syndrome mutated Cx26 appeared to undergo cell death.

The smaller PCR product (550 bp, Cx26Δ) from cells transfected with Cx26A88V was isolated and
sequenced. Alignment of this Cx26Δ with Cx26 revealed a deletion from bases 453 to 647 in Cx26Δ
(figure 2). This truncated molecule lacks transmembrane domain 4, the second extracellular loop and
part of transmembrane domain 3. We reasoned that alternative splicing of the Cx26 mRNA may have
resulted in the smaller product, and employed a human splicing finder [36] to identify potential
cryptic splice sites. Such sites were predicted at the 50 and 30 end of the deletion (figure 2).
Two possible branch points were predicted to be located in close proximity to the 30 splice site (bases
611–618 and 621–627). Note that the KID syndrome mutations did not introduce splice sites, but
instead seem to have enabled pre-existing cryptic splice sites to become active.

3.2. Analysis of the alternative splicing of the Cx26 mRNA
To determine if the splicing of the Cx26 mRNA could be prevented, each of the required features
(50 donor site, 30 acceptor site and branch point) were mutated in turn. Firstly, the arginine
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Figure 1. Reduced expression of Cx26A88V compared to Cx26WT and Cx26A88S in HeLa cells. (a) HeLa cells transfected with pCAG
Cx26-mCherry. Representative images of mCherry fluorescence for each time point post-transfection. Strong punctate expression is
seen for the WT and the A88S mutant, but not for the A88V mutant. (b) Total RNA was harvested at 48 h and cDNA made with
random primers followed by PCR for Cx26. Negative control, cells transfected with no DNA; +ve control, Cx26-mCherry plasmid DNA;
Δ control, Cx26Δ(453-647)-mCherry plasmid DNA. DNA size marker (M) is 500 bp.
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codon AGA across the 30 site was silently mutated to CGA (see methods). This mutation
prevented splicing, but did not result in expression of either A88V, A40V or N14K mutant Cx26
(figure 3a).

Silent changes could not be introduced into the two potential branch points in order to disrupt them.
Mutating the first branch point resulted in the conservative amino acid change of N206Q. The second
branch point could also not be mutated conservatively, so the change E209L (see methods) was
introduced in order to maintain hydrophobicity as it was located in the 4th transmembrane domain
of Cx26. Again, the cryptic splicing was prevented and this time expression of Cx26A88V was
seen (figure 3b). Unfortunately, these mutations appeared to decrease the level of WT Cx26-mCherry
(compare to figure 3d ).
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The 50 site could not be mutated silently either, so a conservative M151L mutation (see methods) was
introduced (located in the third transmembrane domain). This mutation abolished splicing and also
allowed expression of A88V, A40V and N14K mutant Cx26 without appearing to affect the level of
WT-Cx26 expression (figure 3c compared to 3d ).

The simplest interpretation of our results is that the KID syndrome mutations somehow induce
alternative splicing of the Cx26 mRNA at a cryptic splice site. This alternative splicing prevents expression
of Cx26 and appears to have a toxic effect on the cells (WT versus A88V, figure 4). The 30 splice
mutations, although they prevented the splicing, did not rescue expression of the KID syndrome mutations.

We next examined what aspect of the alternative splicing caused cell toxicity by analysing the
proportion of dead cells after transfection with WT Cx26 and Cx26A88V combined with the various
mutations to stop splicing. Unlike expression of Cx26WT and its various splice site mutations or
Cx26A88S, expression of Cx26A88V caused a large increase in the proportion of dead cells (figure 4).
A similar increase in cell death has been observed for the A88V mutation in Cx30 [28]. Cx30A88V also
has reduced mRNA expression [28]. Whether this mutation triggers alternative splicing of the Cx30
mRNA in a manner analogous to what we report has not been investigated. All of the mutations that
prevented splicing of Cx26A88V returned the proportion of dead cells to levels similar to Cx26WT

(figure 4). As expression of the Cx26Δ did not induce significant cell death, the toxic effect must
presumably be related to the mRNA itself and its ability to form the looped structure within the cells.

Curiously, the alternative splicing is only seen when the mutant channels are linked to the
mCherry tag (figure 6c,d ). Non-tagged Cx26A88V did not cause the elevated cell death seen with the
mCherry-tagged construct (figure 4). We examined whether the ability to trigger alternative splicing
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was specific to the mCherry tag by testing Cx26A88V tagged with Clover (figure 5). We found the same
phenomenon occurred—production of an alternative transcript that could be prevented by the 50 splice
mutation. Thus, the effect on splicing requires a fluorescent protein tag but is not specific to a particular
fluorescent protein.
3.3. The keratitis ichthyosis deafness syndrome mutants cause alternative splicing of WT Cx26
in trans

The KID syndrome mutations are dominant. If this cryptic splicing were to contribute to the dominant
pathogenic actions of the mutant Cx26 in KID syndrome one would predict that the presence of a KID
syndrome mutant Cx26 might induce alternative splicing of WT Cx26 in trans (figure 6a), thus
preventing expression of functional Cx26 and amplifying the proposed toxic moiety.

We, therefore, transfected HeLa cells with two different constructs. A ‘reporter construct’ that
consisted of the WT Cx26 tagged with mCherry in the pCAG vector. The ‘input construct’ consisted
of Cx26 (WT, variants of A88V, or A88S) tagged with mCherry in the pcDNA vector (figure 6a). The
use of separate vectors allowed us to use vector-specific PCR primers to identify which mRNAs were
being spliced—those of the input construct and/or those of the reporter construct. This strategy was
verified by showing that the pCAG primers gave PCR products only with the pCAG construct
and the pcDNA primers only with the pcDNA construct (figure 6b). When the input pcDNA
construct had either WT Cx26 or Cx26A88S, no alternative splicing was induced in the reporter
construct (figure 6b). However, when the Cx26A88V was present, alternative splicing was induced in
the reporter construct (figure 6b). Surprisingly, when the A88V mutation in the input construct was
combined with further mutations of the 30 or 50 splice sites or the branch point, and thus underwent
no splicing itself (figure 6b), splicing of the WT Cx26 was still induced in the reporter construct
(figure 6b). This result shows that the splicing of the mutant Cx26 mRNA does not need to occur for
the trans effect on splicing of the WT mRNA. It further implies that it is the conformation of the
mutant input mRNA that mediates the effects in trans on the WT Cx26 mRNA of the reporter construct.

We have previously shown that the presence of an mCherry or Clover tag is required for this alternative
splicing to manifest itself. We, therefore, tested whether a non-tagged input Cx26 variant might also induce
alternative splicing in the WT Cx26 of the reporter (tagged with mCherry). Without the C-terminal
mCherry tag, none of the mRNAs produced by the input construct were alternatively spliced
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(figure 6c). However, all of the A88V variants (and to a very low extent A88S) induced alternative splicing
in the pCAG reporter construct. Thus, the presence of the C-terminal tag is not required in the input mRNA
to induce splicing. However, at least one of the Cx26 genes must be tagged—transfection of untagged
Cx26A88V does not induce splicing in cells expressing untagged Cx26WT (figure 6d).

We then examined whether this trans-splicing action also affected the expression of WT Cx26 in HeLa
cells. Like A88V, A88V-30spl caused poor expression of the WT Cx26 (figure 7). This is perhaps not
surprising as both these variants cause a high degree of alternative splicing of the WT Cx26 mRNA.
More significantly A88V-50spl allowed better expression of the WT Cx26 as did A88S (cf. figure 3).
Although in these experiments both of these input transcripts caused a small amount of alternative
splicing it was evidently not enough to prevent good expression of the WT Cx26.
3.4. The A40V mutation removes CO2 sensitivity from Cx26 hemichannels
As we have previously shown that the A88V, N14K and N14Y mutations alter the CO2 sensitivity of Cx26
in a dominant fashion [29,30], we determined the sensitivity of Cx26A40V-50 hemichannels in response to
CO2 via our previously established and validated dye-loading assay [7,8,29–32]. Removal of extracellular
Ca2+ results in opening of the hemichannels and, therefore, serves as a positive control as it reflects
maximal dye loading into the cell [8,29,30]. HeLa cells expressing Cx26WT loaded with dye in
response to increased PCO2 (55 mmHg) and zero Ca2+ conditions (figure 8a,b) as expected. Cells
expressing Cx26WT with the 50 splice site mutation (Cx26WT-50) also loaded with dye at PCO2

of 55 mmHg and under zero Ca2+ conditions (figure 8a,b). Furthermore, Cx26A40V-50 hemichannels also
resulted in dye loading under zero Ca2+ conditions, confirming that the functionality of the
hemichannels was retained in the 50 splice site mutants. HeLa cells expressing Cx26A40V-50 did not dye
load at PCO2 of 55 mmHg. As for the other KID syndrome mutations that we have tested [29,30], this
mutation also abolishes the sensitivity of Cx26 to CO2.
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Figure 6. Cx26A88V can cause Cx26WT-mCherry to splice in trans. (a) Diagram of the experimental logic. Light green, plasmid RNA; blue,
Cx26 coding exon; red mCherry. (b) HeLa cells were cotransfected with the mCherry-tagged A88V variants, pcDNA Cx26-variant-mch
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does not cause this. The Cx26A88V does not need to splice itself to cause splicing in trans of Cx26WT -the 30, 50 and branch
mutations prevent splicing of pcDNA-Cx26A88V but do not prevent splicing of the pCAG-Cx26WT reporter. (c) HeLa cells were
cotransfected with the A88V variants lacking the mCherry tag (denoted by -NT), pcDNA Cx26-variant-NT (Input), and mCherry-
tagged WT Cx26, pCAG Cx26WT-mch (Reporter). To induce splicing in trans, the input pcDNA-Cx26A88V does not need to carry the
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variants show no sign of alternative splicing, however, the pCAG reporter Cx26 is spliced. Mutations to prevent splicing in the
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primer to the 30 end of Cx26. Controls are Cx26-mCherry plasmid DNA and Δ control is Cx26Δ(453-647)-mCherry plasmid DNA.
DNA size marker (M) is 500 bp.
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4. Discussion
4.1. Implications of our results for in vivo and in vitro studies of keratitis ichthyosis deafness

syndrome mutations
Our study has revealed the surprising observation that three KID syndrome mutations (A88V, N14K,
A40V) induce a high degree of alternative splicing of the Cx26 mRNA. Interestingly, the non-
syndromic mutation A88S does not induce this alternative splicing. The KID syndrome mutations
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do not create new splice sites, instead, they enable the pre-existing sites to become highly active.
Occasionally, but not consistently, we observed a very low level of alternative splicing of the WT Cx26
mRNA on its own (e.g. figures 3c and 6b). As the cryptic splice site is present in the WT gene, this
occasional very low level of alternative splicing is perhaps not unexpected, and clearly does not occur
at a level that will affect the expression of the WT gene.

There are some important caveats to discuss before concluding this alternative splicing could mediate
the pathological effects of these mutations in vivo. Firstly, the presence of a C-terminal fluorescent protein
tag was required for the alternative splicing to occur. As the N-terminus of connexins is a short alpha-
helix that is located within the pore of the channel [37], the alternative strategy of tagging connexins
at the N-terminus is not an option. Secondly, our constructs lacked the non-translated regions that
would be present in the real Cx26 mRNA transcribed in vivo. These non-translated regions could alter
the stability and folding of the mRNA and potentially protect the mRNA from this aberrant splicing.
Both of these caveats suggest that the splicing we report here might not occur in vivo. Nevertheless,
this is speculation and we think it important and interesting to verify directly whether truncated Cx26
transcripts occur in mRNA extracted from KID syndrome patients.

Many investigators studying the properties of mutant hemichannels use a C-terminal tag to assess the
expression and cellular localization of the hemichannel. There have been many reports of expression of
KID syndrome mutations causing cell death. Our data suggest that if this is done in conjunction with a
C-terminal fluorescent protein tag, the cell death may be connected to the alternative splicing of the
mRNA rather than any property of the mutant hemichannel. At the very least, our data indicate that
functional studies on KID syndrome Cx26 mutants should not be performed with a C-terminal tagged
variant to avoid the effects of alternative splicing. However, if a C-terminal tag is desired, e.g. to
study cellular localization or trafficking, then it should be combined with mutation of the 50 splice site
to prevent alternative splicing. While the mutation M151L that removes the 50 splice site is not silent,
M151 is in the 3rd transmembrane domain and is outward-facing [37]. The conservative substitution
of a hydrophobic residue to interact with the membrane lipid is unlikely to cause significant
conformational change. This is supported by our data showing that Cx26M151L retains CO2-sensitivity,
permeability to the fluorescent dye (CBF) and can still be blocked by extracellular Ca2+.
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4.2. The nature of the toxic moiety and the trans dominance of the alternative splicing
All three mutations cause the production of the same alternative product Cx26Δ. Cx26Δ lacks the
4th transmembrane domain, the second extracellular loop (required for gap junction formation) and
part of the 3rd transmembrane domain. The topology of the truncated molecule is different to the
full length: if it were to be expressed, the C-terminal would be extracellular instead of intracellular
for the full-length molecule. We think it likely that the truncated molecule, if expressed, produces a
non-functional product.

Our mutational analysis revealed that the predicted splice sites and branch point were indeed
required for the production of the alternative transcripts in the mutant Cx26. Interestingly, removal of
the 30 splice site prevented the alternative splicing but did not allow good expression of the mutant
Cx26. The removal of the branch points gave better expression, but the removal of the 50 splice site
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was the most effective at allowing expression of the mutant Cx26. Expression of Cx26A88V had a toxic

effect on the HeLa cells and resulted in increased cell death (figure 4). This could be avoided by
combining the A88V mutation with further mutations to remove the 30 or 50 splice sites or the
potential branch points suggesting that some aspect of the splicing process itself, rather than the full-
length A88V mutant protein, causes toxicity. Because expression of the truncated product Cx26Δ had
no toxic effect, we postulate that it is the looped mRNA structure that is deleterious to the cells.

As the A88S mutation does not trigger the alternate splicing to the same degree as the KID syndrome
mutations or cause cell death, the occurrence of the postulated toxic looped mRNA structure of the
mutant Cx26 must be very sensitive to the precise base sequence of the mRNA. Whether analogous
toxic looped mRNA structures might occur for other connexins remains an open question that would
be worth investigating where expression of connexin mutants has an effect on cell survival, if only to
eliminate it as a possible explanation.

Strangely, the Cx26 KID mutant mRNAs could induce alternative splicing in WT Cx26 i.e. they had
a dominant effect in trans. Given that the KID syndrome mutations are always dominant, this
dominant trans action could be pathologically significant. Whereas the mCherry or Clover C-terminal
tag was necessary for the alternative splicing to occur within the transcript itself (figures 5 and 6c), a
non-tagged KID syndrome mutant Cx26 could cause tagged WT-Cx26 to alternatively splice (figure 6c).

4.3. Keratitis ichthyosis deafness syndrome mutations and CO2 sensing
We exploited our strategy of removing the 50 splice site in Cx26A40V to permit good expression of this
mutant to enable testing of its properties. This allowed us to show that the A40V mutation does
indeed remove CO2 sensitivity from the Cx26 hemichannel (figure 8). Our data now indicate that
4 out of 9 KID syndrome mutations—A88V [30], N14K, N14Y [29] and now A40V—remove CO2

sensitivity from KID syndrome mutant Cx26 hemichannels. This seems beyond coincidental to us,
especially as the A88S mutant has relatively mild effects on CO2 sensitivity [29] and is not syndromic
[34,35]. We have not yet tested the other 5 KID syndrome mutations, but it remains possible that they
too have a similar effect on the CO2 sensitivity of the Cx26 hemichannel. Although there is evidence
that aberrant gating of mutant Cx26 hemichannels may contribute to the pathology of KID syndrome
[19,21,22,24,38–40], our results strengthen the hypothesis that the actions of KID syndrome mutations
on the CO2 sensitivity of Cx26 may additionally contribute to its pathological syndromic effects in vivo.
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