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Abstract

Activated sludge (AS) is a biological treatment process that is employed in wastewater

treatment plants. Filamentous bacteria in AS plays an important role in the settling abil-

ity of the sludge. Proper settling of the sludge is essential for normal functionality of the

wastewater plants, where filamentous bulking is always a persistent problem preventing

sludge from settling. The performance of AS plants is conventionally monitored by

physico-chemical procedures. An alternative way of monitoring the AS in wastewater

treatment process is to use image processing and analysis. Good performance of the

image segmentation algorithms is important to quantify flocs and filaments in AS. In

this article, an algorithm is proposed to perform segmentation of filaments in the phase

contrast images using phase stretch transform. Different values of strength (S) and

warp (W) are tested to obtain optimum segmentation results and decrease the halo and

shade-off artefacts encountered in phase contrast microscopy. The performance of the

algorithm is assessed using DICE coefficient, accuracy, false positive rate (FPR), false

negative rate (FNR) and Rand index (RI). Sixty-one gold approximations of ground truth

images were manually prepared to assess the segmentation results. Thirty-two of them

were acquired at 10× magnification and 29 of them were acquired at 20× magnification.

The proposed algorithm exhibits better segmentation performance with an average

DICE coefficient equal to 52.25%, accuracy 99.74%, FNR 41.8% and FPR 0.14% and RI

99.49%, based on 61 images.
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Introduction

Activated sludge (AS) process is frequently used in bio-
logical treatment of wastewater discharged from municipal
and industrial plants. Proper settling of sludge is essential
for normal functionality of the wastewater treatment
plants. The efficiency of the AS process is highly influenced
by the solid–liquid separation which is affected by the
structure and strength of the flocs. Flocs are microbial
aggregates present in wastewater along with filamentous
bacteria. Settling ability and compaction of the floc parti-
cles is associated with the quantity of filamentous bacteria
in the AS. Lack of filamentous bacteria results in an abnor-
mal condition of pinpoint flocs [1], whereas overgrowth of
filamentous bacteria results in abnormal condition of fila-
mentous bulking. It results in decreased settling ability and
compactness of the flocs [2]. Filamentous bulking is a com-
mon problem that is present in wastewater treatment
plants around the world. Evaluation and modelling of the
wastewater treatment by using image processing and ana-
lysis offers an alternative way of monitoring AS process.
The application of automated image analysis on AS pro-
cess has been increased in the recent years [3–6].

Phase contrast microscopy (PCM) is widely used in bio-
logical and medical research to examine the live organisms
and micro-organisms by enhancing the contrast of trans-
parent components in the cell. In order to observe fila-
ments in AS wastewater both bright field and PCM is used
[2,3]. However PCM exhibits better discrimination of thin
filamentous bacteria as they appear darker in phase con-
trast images as compared to the background. Hence the
filamentous bacteria can be viewed at lower objective mag-
nification without staining in PCM as compared to bright
field microscopy where at low magnifications filaments are
not easily visible. Observing filaments at low magnifica-
tions also results in time saving when acquiring images of
the AS samples [7]. The dark colour of the filaments and
bright flocs provide a good contrast for segmentation
based on the intensity. However, PCM has its own pro-
blems. In the phase contrast images, two different types of
artefacts known as halos and shade-off are present. Halos
appear as bright region around the boundaries of flocs and
filaments making segmentation difficult. Whereas shade-off
causes decreased contrast between the flocs and the back-
ground that results in introduction of foreground noise
during segmentation. The shade-off and halo artefact that
exists in PCM makes it difficult to identify the boundary of
the flocs and filaments.

Kaur and Kaur [8] reported a review of popular
segmentation methods such as threshold based methods,
edge detection based methods, region based methods, clus-
tering based methods, watershed based methods, partial

differential equation based segmentation methods and artifi-
cial neural network based segmentation methods. Many
authors have proposed algorithms for segmentation of
bright field microscopic images of AS. Lee et al. [9] pre-
processed the bright field image followed by variance based
thresholding. Wu and Wheatley [10] used thresholding to
binarize the image, followed by morphological opening.
Mesquita et al. [3] applied background removal and histo-
gram equalization followed by thresholding.For phase con-
trast images, Khan et al. [4] proposed histogram based
thresholding using inter-means algorithm. Otsu threshold-
ing, channel based algorithm, Sobel edge based algorithm
and Bradley based algorithm were adopted by Nisar et al.
[11]. They suggested that edge based algorithm is the best
for phase contrast images. Khan et al. [12] conducted a
comprehensive review of nine segmentation algorithms, that
includes Saturation based segmentation, edge based segmen-
tation, K-means, Watershed based segmentation, Kittler,
split and merge method, top-bottom-hat, local adaptive
thresholding based segmentation and texture based segmen-
tation. They detected the flocs using Otsu thresholding fol-
lowed by dilation and reduced radius of gyration (RRG).

Jenné et al. [13] used five different shape parameters,
i.e. aspect ratio, roundness, form factor, fractal dimension
and RRG to discriminate between the flocs and the fila-
ments. They found out that the most suitable parameter
used to differentiate between flocs and filaments is RRG
while the most unsuitable parameter is form factor. RRG
has been widely used by many authors to filter out small
debris and determine the true filaments [3,4,9,14].

Many researchers [15–17] have used phase stretch
transform (PST) to enhance digital images. PST can be
applied to both digital images as well as time series data
and has been used for edge detection in biomedical images
[16,18]. PST has also been applied in super-resolution
localization microscopy for enhancing the resolution when
imaging a single molecule [19]. The algorithm has been
open sourced on GitHub and Matlab Central File
Exchange [20]. PST applies a 2D phase function to the
image in the frequency domain. The amount of phase
applied to the image depends on the frequency. It is known
that the edges of an image contain high frequency compo-
nents, hence PST emphasizes the edges by giving more
importance to the higher frequency features present in the
edges. Finally, the edges can be extracted by thresholding
the PST output phase image [16]. This method is found to
be very useful by many researches [15–20] and gives prom-
ising results.

Hence in this paper we have used PST proposed by
Asghari and Jalali [15,16] for the segmentation of AS fila-
mentous bacteria and evaluated the performance of the
developed algorithm using different assessment metrics. In
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the following sections we will discuss the proposed method
and assessment in detail.

Methods

Image acquisition

Samples from eight municipal wastewater treatment plants
and one experimental setup were collected to build the image
database. Olympus Microscope BX43 with Olympus CellSens
Dimension image acquisition software was used to capture
phase contrast images. 12 μL of sample collected from AS
wastewater treatment plant was placed on a microscopic slide
covered by a 18× 18mm2 cover slip. All images were saved
in the TIFF file format with 1224 × 960 pixels image reso-
lution. The images were acquired at 10× and 20× magnifi-
cations. Magnifications lower than 10× were not considered
as filaments are not easily visible at lower magnifications
whereas magnifications higher than 20× may require many
images to cover a single filament, if the filament size is long.
Hence, 10× and 20x magnifications were found suitable for
the present work. At 10× magnification, the pixel size is
0.7015 μm/pixel and at 20x magnification the pixel size is
0.3481 μm/pixel. From the database, 61 phase contrast
images (32 images with 10× magnification and 29 images
with 20× magnification) were randomly selected to assess
the proposed algorithm.

Image segmentation algorithm

The proposed algorithm consists of two main parts:
Identification of flocs and filamentous bacteria as fore-
ground and separation of filamentous bacteria from the
foreground. The flow diagram is illustrated in Fig. 1.

Gaussian low pass filter
The RGB image (red, green blue) is converted into the
grayscale image. Gaussian low pass filter is applied to the
grayscale image to reduce the random noise by blurring
the image. The blurring effect depends on the bandwidth
of the Gaussian localisation filter (Δf) used. Lower band-
width will result in better noise reduction but the edge
information may be lost after filtering. Bandwidth of 0.25
is selected to reduce the noise in the image while the edges
are still preserved and are detectable by the PST.

Phase stretch transform
PST is proposed by Asghari and Jalali [15,16]. It applies a
2-dimensional (2D) phase kernel to the frequency domain
image to highlight the edge information. The amount of
the phase applied to the image is associated with the fre-
quency. Edges consist of high frequency features, and

hence, higher phase will be assigned to them. PST of a 2D
image can be given by the following equation [15,16]:

[ ] = ∡〈 { ˜ [ ] ⋅ { [ ]}}〉 ( )A n m K p q B n m, IFFT2 , FFT2 , 1

where [ ]B n m, is the input image, [ ]A n m, is the output
phase image, n and m are 2D spatial variables. ∡〈⋅〉 refers
to the angle operator, FFT2 and IFFT2 are the 2D Fast
Fourier Transform and the 2D Inverse Fast Fourier
Transform, respectively, and ˜ [ ]K p q, is the phase kernel
described by the frequency dependent phase function in the
following equation:

˜ [ ] = ( )ϕ [ ]K p q e, 2j p q,

For edge detection, the phase derivative [ ]PD p q,
should be a linear or sublinear function with respect to p
and q frequency variables. Inverse tangent function as
shown in the following equation can be used to create such
phase derivative profiles:
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Fig. 1. Flow diagram of proposed segmentation algorithm.
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From the equation, θ= + = ( )−r p q tan, p

q
2 2 1 and

rmax refers to the maximum value of r. S and W refer to the
strength and warp variables used to construct the phase kernel.

The first stage of PST is to convert the image from spatial
domain into frequency domain using 2D FFT. Then, the
resultant frequency domain image is multiplied by a phase
kernel described in Eq. (1). Variables S and W decide phase
derivative of the phase kernel and control the amount of
phase applied to each frequency. Figure 2 compares four
phase kernels constructed using different S and W values.
Each of them produce different phase derivative profiles, as
shown in Fig. 3.

Referring to Fig. 3, a near zero W value results in linear
phase derivative profile. As W increases up to 40, the curva-
ture of the phase derivative profile increases. The phase pro-
file with higher W has almost the same phase derivative
when away from the origin. In contrast, the phase derivative
will experience significant drop when it is closer to the origin.

The output phase image is obtained by performing 2D
IFFT to convert the resultant image from frequency
domain to the spatial domain. Figure 4 shows an example
of output phase image with different viewpoints. Edges in
an image represent high frequency features. The sharp

transition edges are assigned high phase values illustrated
in yellow and red colours in Fig. 4. The background which
has somewhat uniform intensity exhibits low frequency
features. Thus, low phase value is assigned to low fre-
quency background shown in cyan colour.

One-level thresholding
In Fig. 4 negative phase values are shown by the blue col-
our. These negative phase values are removed from further
processing. It is observed that the pixels with negative
phase values correspond to the pixels with the halo arte-
facts in the foreground in the original image. Halo artefact
appears as bright halos around the borders of flocs and
filaments [7]. These halos which surround the flocs and
filaments have negative phase values when PST is applied,
hence the pixels with negative phase values are considered
undesirable and removed from further processing other-
wise segmentation accuracy will be affected.

In order to extract the edges from output phase image,
it is binarized using one-level thresholding, which only
considers positive phase values. The threshold point is
fixed at 0.002 empirically, parameters W and S are varied
to observe the segmentation results. Figures 5 and 6

Fig. 2. Comparison of 2D phase kernels. (a) W = 0.1, S = 0.4, (b) W = 10, S = 0.4, (c) W = 40, S = 0.4 and (d)

W = 40, S = 1.
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illustrate the binary image results using different W and S
values.

A larger W in phase derivative results in sharper edge but
it is prone to noises. In Fig. 5b, only sharp edges with high
intensity transition were included; whereas the soft edges
failed to be detected, which caused under segmentation. As
the value of W increases to 10 as shown in Fig. 5c, only
some soft edges were partially detected. When W increases to
40, most of the soft and sharp filaments were preserved suc-
cessfully but it gives lower noise performance and is more
sensitive to the shade-off artefact. It was observed that the
value of W equal to 40 gives the best results.

A higher value of S in phase derivative allows the segmen-
tation to preserve all the filaments but it falsely detects large
number of isolated pixels as foreground. In Fig. 6a, only sharp
edges with high intensity transitions were identified whereas
the soft edges were not detected. In addition although fila-
ments are detected, but their pixels are not joined together;
hence they will be removed in the subsequent morphological
operations and post-processing steps, which will result in
under segmentation of filaments. As S increases to 0.4 as
shown in Fig. 6b, some soft edges were slightly detected. At
the same time, noise was increased. Finally when S increases

to 1, all filaments were detected successfully but the segmenta-
tion is very sensitive to noise and shade-off as shown in Fig 6c
and d. Now it is difficult to remove the connected noise during
the post-processing as there are falsely segmented filaments
when S is high. In order to deal with these false filaments,
more powerful and advanced post-processing steps are
required. It is also observed that inspite of W and S been
applied, halo artefact is invariant in PST based segmentation.
The best segmentation results are obtained with values of S =
0.4 and W = 40 for the shade-off artefact, and hence will be
used throughout the paper for segmentation.

Flocs detection and removal
In AS phase contrast images, the flocs appear brighter than
the background and the filaments. Therefore, flocs can be
easily segmented from the grayscale image by applying
Otsu thresholding [21] method. Otsu thresholding works
well with phase contrast images that have bimodal histo-
gram. It calculates the threshold level such that the inter-
class variance is maximum. The Otsu threshold level is
multiplied by 1.2 so that it’s suitable for images with both
unimodal and bimodal histograms. After the flocs are
detected, morphological dilation is performed to fill in the

Fig. 3. Comparison of 2D Phase derivative profiles. (a) W = 0.1, S = 0.4, (b) W = 10, S = 0.4, (c) W = 40, S = 0.4 and

(d) W = 40, S = 1.
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holes and improve the boundary of the flocs. The resultant
mask (floc) is subtracted from the segmented binary image
obtained using PST, leaving only filaments in the output
image. The example of Otsu thresholding of images with
unimodal and bimodal histograms is shown in Figs. 7 and 8.

Noise removal
The segmentation of phase contrast images using PST mis-
classifies some objects as foreground. These falsely detected
pixels can be categorised into two types, random noise and
noise at the border as shown in Fig. 9. Here two methods
are used to remove them while retaining the filament pix-
els. In the first stage, objects that have pixels less than 20
will be removed using area opening.

An algorithm is developed to eliminate the border noise
that cannot be removed by the previous step. This algo-
rithm first defines a frame with a margin of 10 pixels on
each side. The defined frame is shown in Fig. 10. Then,

connected pixels are labelled to obtain the location of each
pixel. If 50% of the pixels in the region are within the mar-
gin, it is identified as border noise. Green colour shows the
defined margin whereas red pixels represent the detected
border noise. Pseudo code of the algorithm is shown below:

Label object in the binary image.
Extract x and y coordinate information for each pixel in the object.

If x ≥ (total column-10) or x ≤ 10
Pixel is marked

Else if (y ≥ total row-10) or y ≤ 10
Pixel is marked

Else
Pixel not marked

End if
If marked pixel is more than 50% of the total pixels of the object

Remove the object because it’s border noise
Else

Keep the object because it’s filament

Fig. 4. Output phase image in different viewpoints.
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Reduced radius of gyration
RRG is used to distinguish between flocs and filaments
(which are normally elongated). This method calculates the
radius of gyration of all identified connected components.
However it will not work on the filaments that are
attached to the flocs. The connected components with
radius of gyration less than a defined threshold will be
removed while retaining the objects with radius of gyration
higher than the threshold. RRG can be defined as follows
[14]:
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where i is the pixel of an object with location (xi,yi) and
Deq is the diameter of circle with area equivalent to the
object’s area A. The total amount of object pixels is repre-
sented by N. xg and yg are the coordinates of the object’s

centroid. M2x and M2y refer to the momentum in each
dimension. The threshold for radius of gyration is set to
1.2 by subjective iteration.

Performance assessment

In order to evaluate the accuracy of the segmentation algo-
rithm, the ground truth images are prepared by manual
drawing using GIMP software [22]. True positive (TP),
true negative (TN), false positive (FP) and false negative
(FN) are determined for performance measurement. TP is
defined as the intersection of pixels between the segmented
image and the ground truth, showing the pixels that are
correctly segmented. Whereas FP pixels are the segmented
pixels that do not match with the ground truth. FN pixels
are marked in ground truth image but not in the segmented
image. Finally, the TN pixels are not marked by the
ground truth image nor the segmented image. For perform-
ance assessment DICE coefficient, FP rate (FPR), FN rate
(FNR) and accuracy are calculated. The formulas are
expressed as follows:

= | ∩ |
| | + | |

= ∗
+ ∗ +

( )DICE
2 X Y
X Y

2
TP

FN 2 TP FP
5

Fig. 5. Effect of Warp (W) on phase contrast image; (a) original image and (b–d) the compari-

son of threshold image with different W values using strength (S) = 0.4: (b) W = 1, (c) W = 10

and (d) W = 40.
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TP TN FP FN
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Rand index (RI) suggested by Rand [23] is used to
evaluate the performance of clustering methods. It shows
the similarity between two data clustering methods. RI is
computed as the ratio of similar assignment of pair of pix-
els in both clusterings divided by total number of pairs.
The RI is given by the following equation:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) =
∑

( )<
S S

C

N
RI 1, 2

2

9
i j
N

ij

where N is the total number of the pixels in the image, ⎜ ⎟
⎛
⎝

⎞
⎠

N
2

is the total number of combinations of 2 pixels drawn
from N pixels and Cij is given in the following equation:

⎧

⎨

⎪
⎪
⎪
⎪
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⎪
⎪
⎪
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= ( )C

pixel pair that are
simultaneously identified
as either foreground or

background in both S and S
pixel pair that are
simultaneously indentied as
neither foreground nor

background

in both S and S
otherwise

1,

1 2
1,

0, 1 2

10ij

Results and discussion

The first step towards the performance assessment of the
proposed segmentation method is to identify its apparent
failures. The images with subjectively obvious false detec-
tions were considered as failed segmentation. Khan et al.
[12] reported nine different algorithms for segmenting
phase contrast images of AS. The algorithms include satur-
ation based [12], edge based (Sobel) [12], K-means [24],
watershed algorithm [25], Kittler [26], Split-merge [12],
top-bottom hat [27] and two proposed methods [12]. The
comparison of the subjective evaluation of these segmenta-
tion algorithms and the proposed algorithm based on 61

Fig. 6. Effect of strength (S) on the threshold image using different S values using warp (W) =
40: (a) S = 0.1, (b) S = 0.4, (c) S = 0.8 and (d) S = 1.
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images is shown in Table 1. Of the 61 phase contrast
microscopic images, the proposed method failed to seg-
ment the filaments in two images with percentage failure of
3%. The proposed method can be considered as the second
best algorithm after Sobel edge detection algorithm based
on subjective evaluation.

Next, we performed the objective assessment to evalu-
ate the efficiency of the segmentation algorithms using five
parameters including DICE coefficient, accuracy, FNR,
FPR and RI. A total of 61 images (31 images of 10× mag-
nification and 29 images of 20× magnification) were
selected. The mean and standard deviation of each param-
eter is tabulated in Tables 2 and 3 respectively. The 20×
magnification images performed better with respect to
accuracy, FPR and RI, whereas the 10× magnification
images have better performance in terms of FNR and
DICE coefficient. Small FNR (implies that TP is much
greater than FN) results in better segmentation of fila-
ments. In other words, high FNR indicates greater under
segmentation of the filaments. Moreover, high DICE coeffi-
cient in 10x magnification is caused by lower FN.
Conversely, over segmentation of filaments results in
increase in FP and FPR, that drops accuracy. From
Table 3, we see that 10× magnification images give least

variations across DICE coefficient and FNR, but 20× mag-
nification has lower variations in accuracy, RI and FPR.
The proposed algorithm is more suitable to perform seg-
mentation under 10× magnification as it gives better per-
formance in terms of DICE coefficient and less FNR
variations. Table 4 shows the overall mean and standard
deviation values based on the assessment of 61 phase con-
trast images.

Khan et al. [12] removed 17 outlier images and selected
44 images that are apparently successful to assess the seg-
mentations. Therefore, the comparison of mean and stand-
ard deviation values of these 44 images was performed.
Comparisons of mean and standard deviations for five
algorithms are shown in Tables 5 and 6 respectively. The
best result is highlighted using red colour, whereas blue
colour represents the second best result. The proposed
algorithm gives better segmentation performance as com-
pared to the other four algorithms with mean accuracy
0.9977, RI 0.9954, FNR 0.4091 and FPR 0.0013.
Comparing with Sobel edge detection shown in blue col-
our, the accuracy has improved by +0.0007 and RI is
increased by +0.0015. The FNR has also improved signifi-
cantly by −0.2721 compared with Method-II. The pro-
posed algorithm has least under segmentation of filaments.

Fig. 7. Otsu thresholding of phase contrast image with unimodal histogram: (a) grayscale

image, (b) histogram of grayscale image, (c) segmented image using first vertical line and (d)

segmented image using second vertical line.
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However, it has greater FPR than Sobel edge detection,
Method-II, Watershed and Kittler algorithms, which implies
that the algorithm tends to over segment the filaments. The
proposed algorithm has least variation compared with other
four algorithms in terms of accuracy, RI and FPR. However,
its FNR variation is greater than Sobel edge detection,
Watershed based and Kittler algorithm but smaller than
Method-II. Sample images with best and worst FNR results

are shown in Figs. 11 and 12, and best and worst FPR results
are shown in Figs. 13 and 14 respectively. Performance
assessment metrics for Figs 11–14 are given in Table 7.

From Fig. 11, it is observed that the FNR is very small
due to small FN compared to TP. It can be clearly
observed that the proposed algorithm detects most of the
filaments with small over segmentation. Therefore, increase
in FP results in high FPR. Sobel-based algorithm under

Fig. 8. Otsu thresholding of phase contrast image with bimodal histogram: (a) grayscale

image, (b) histogram of grayscale image, (c) segmented image using first vertical line and (d)

segmented image using second vertical line.

Fig. 9. Illustration of random noise and border noise in complemented

image.
Fig 10. Defined frame and detected border noise in complemented

image.
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segments the filaments more than the proposed algorithm,
which results in higher FN and FNR. On the other hand,
Fig. 12 shows the worst FNR result among the 61 images.
The proposed algorithm under segments the filaments
causing low TP. The amount of FN is much greater than TP

results in large FNR. Sobel based algorithm has greater under
segmentation of filaments compared with the proposed algo-
rithm, which causes higher FNR. The large amount of TN
results in very small FPR even if it is a failed segmentation.

In case of best FPR shown in Fig. 13, it is observed that
both algorithms under segment the filaments, causing the
high FN and FNR. Since the Sobel based algorithm does
not detect any filament, the TP is zero and cause unity
FNR. Both algorithms do not over segment the filaments
which give zero FP and zero FPR. The accuracies are
always high (>0.95) due to large TN. The number of fila-
ment pixels are much less as compared to the background.
Even for the failed segmentation as shown in Fig. 13d, it
can achieve accuracy of 0.9974. Same happens with RI.
For the worst FPR which was shown in Fig. 14, it is
observed that the proposed algorithm significantly over
segments the filaments, high FP providing large FPR. Sobel
based algorithm has lower over segmentation of filaments
compared with the proposed algorithm, therefore it gives
lower FPR. However, Sobel based algorithm has under
segmented more filaments when compared with the pro-
posed algorithm, which results in larger FNR. The pro-
posed algorithm has better performance in terms of FNR
which has lower probability to under segment the fila-
ments. However, it tends to over segment the filaments.

Conclusion remarks

In this research, filamentous bacteria in phase contrast
microscopic images of AS have been successfully

Table 1. Comparison of failed segmentations

Algorithm Number of failed
segmentations

Percentage
failure (%)

Proposed method based on PST 2 3
Saturation [12] 29 48
Edge (Sobel) [12] 1 2
K-means [24] 24 39
Method-I [12] 13 21
Method-II [12] 9 15
Watershed [25] 5 8
Kittler [26] 5 8
Split-merge [12] 33 54
Top-bottom-hat [12] 16 26

Table 2. Mean values of segmentation assessment under

different magnifications

Magnification DICE Accuracy FNR FPR RI

10× 0.5475 0.9972 0.3336 0.0019 0.9943
20× 0.4950 0.9977 0.5145 0.0009 0.9955

Table 3. Standard deviation of segmentation assessment

under different magnifications

Magnification DICE Accuracy FNR FPR RI

10× 0.1672 0.0022 0.2003 0.0017 0.0044
20× 0.2362 0.0021 0.2275 0.0012 0.0042

Table 4. Mean and standard deviation values based on 61

images

DICE Accuracy FNR FPR RI

Mean 0.5225 0.9974 0.4180 0.0014 0.9949
Standard deviation 0.2030 0.0022 0.2303 0.0015 0.0043

Table 5. Comparison of mean values of segmentation

assessment metrics

Algorithm Accuracy FNR FPR RI

Proposed method based on PST 0.9977 0.4091 0.0013 0.9954
Edge (Sobel) [12] 0.9970 0.8266 0.0006 0.9939
Texture based (Method-II) [12] 0.9887 0.6812 0.0094 0.9794
Watershed [25] 0.9967 0.8868 0.0008 0.9933
Kittler [26] 0.9965 0.946 0.0007 0.9930

Table 6.. Comparison of standard deviation of segmentation

assessment metrics

Algorithm Accuracy FNR FPR RI

Proposed method based on PST 0.0016 0.2343 0.0013 0.0032
Edge (Sobel) [12] 0.0025 0.2196 0.0015 0.0051
Texture based (Method-II) [12] 0.0334 0.2602 0.034 0.0568
Watershed [25] 0.0021 0.1204 0.0014 0.0042
Kittler [26] 0.0029 0.1348 0.002 0.0058

Table 7.. Performance assessment metrics for Figs 11–14

Figure Algorithm Accuracy FNR FPR RI

11 Proposed 0.9963 0.0670 0.0033 0.9927
Sobel [12] 0.9952 0.4045 0.0027 0.9905

12 Proposed 0.9980 0.8885 0.0003 0.9961
Sobel [12] 0.9980 0.9378 0.0003 0.9960

13 Proposed 0.9977 0.8861 0.0 0.9954
Sobel [12] 0.9974 1.0 0.0 0.9949

14 Proposed 0.9934 0.0952 0.0061 0.9868
Sobel [12] 0.9929 0.7986 00.0022 0.9859
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Fig. 11. Image and its segmentation with best FNR: (a) original image, (b) ground truth image,

(c) proposed algorithm and (d) Sobel-based algorithm.

Fig. 12. Image and its segmentation with worst FNR: (a) original image, (b) ground truth

image, (c) proposed algorithm and (d) Sobel-based algorithm.
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Fig. 13. Image and its segmentation with best FPR: (a) original image, (b) ground truth image,

(c) proposed algorithm and (d) Sobel-based algorithm.

Fig. 14. Image and its segmentation with worst FPR: (a) original image, (b) ground truth

image, (c) proposed algorithm and (d) Sobel-based algorithm.
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segmented at 10× and 20× magnifications. The segmenta-
tion algorithm is based on PST. Phase kernel has been con-
structed by varying strength (S) and warp (W) values,
empirically choosing S = 0.4 and W = 40 resulting in good
segmentation accuracy decreasing the effect of shade-off
artefact, however it increases foreground noise.
Foreground noise is removed using specific methods during
post-processing. In order to counter the halo artefact in
phase contrast images negative phases have been removed
by thresholding the phase image using a positive threshold
equal to .002. The performance of the segmentation algo-
rithm was assessed for different magnifications using DICE
coefficient, accuracy, FNR, FPR and RI. The segmentation
algorithm is more suitable at 10x magnification as it per-
formed better with respect to the DICE coefficient and
FNR with low variation. An average accuracy of 99.74%,
RI of 99.49%, FNR of 41.8% and FPR of 0.14% have
been achieved based on 61 images. The proposed filament
segmentation algorithm shows better performance com-
pared to the other algorithms reported in the literature in
terms of accuracy, RI and FNR. The algorithm is invariant
towards the halo artefacts of phase contrast images but
sensitive towards the shade-off artefact. In the future, work
can be extended to investigate post-processing methods to
deal with ‘false filaments’ caused by shade-off artefacts.
Effective floc and filament recognition techniques should be
explored so that true filaments can be identified correctly,
hence, increasing the accuracy of filament segmentation.
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