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Abstract 

For shape maintenance and migration of living 
organisms, bio-polymer materials play important roles for 
the redistribution of internal forces in the biological 
structures. A substantial amount of observations have 
been made over the past decades to show how the 
structures composed of bio-polymers deform and identify 
what the characteristics of the network materials are. For 
example, it has been revealed both experimentally and 
computationally that as macroscopic loading goes, the 
bio-polymer materials of the network type experience 
alterations from entropy-directed shape changes to 
structural deformations, such as filament bending and 
stretching. In addition, the transition point happens as the 
levels of macroscopic stress reach around 1% of the bulk 
modulus of the materials [1]. Hence, here finite element 
formulations are developed to solve the large deformation 
problems for the bio-polymer materials in solutions by 
introducing fluid-solid interaction forces across the 
immersed boundaries of the materials. We anticipate that 
this technique will open doors for understanding more 
physiological states of biological specimens under 
environmental loading. 
Keywords: Finite element method, fluid-solid interaction, 
soft materials, nonlinear elasticity. 

1. Introduction 
For recent decades, a great amount of investigation 

efforts have been put into the fluid-solid interaction 
naturally occurring in wide-range of engineering 
problems and physical phenomena. To realize the 
fluid-structure interaction complexity, mechanics of 
fluid-solid boundaries has to be accomplished thoroughly 
in different models. Through the models of computational 
mechanics, the research achievements facilitate 
challenging engineering applications, for example, 
geo-mechanical engineering, soil-structure interaction, 
microelectromechanical systems, and microfluidic 
devices. Here, the goal of this research is to implement 
the modern finite element analysis for solving fluid-solid 
interaction problems. The formulations of mechanics 
which embrace conservation equations, kinematics 
descriptions and computing algorithms especially 
developed for elaborating fluid-solid interaction models 
are also the main theme of this paper. 

 
 

2. Formulations of Finite Element Method 

for Fluid-Solid Interaction 
We may consider the finite element method for 

solving fluid-solid interaction problems under the 
following three main subjects: the boundary force 
mapping from solids to fluids, the boundary value 
problem in solid mechanics, and the model problem of 
viscous incompressible fluids in fluid dynamics. The 
detailed description of the finite element method dealing 
with the interaction between fluids and nonlinear elastic 
solids with large deformations will be given in this 
section. 
 
2.1 Boundary Force Mapping from Solids to 
Fluids 

The framework named as the immersed boundary (IB) 
method for solving the fluid-solid interaction problems 
was initially developed by Peskin to investigate blood 
fluids through a heart valve structure [2]. In this 
framework, various fluid-structure interaction problems 
can be elucidated through the boundary force mapping 
from the solid to the fluid. The immersed boundary 
between the solid and fluid is considered as a zone 
directly blending the fluid-solid interactions into forces 
acting the neighboring fluid and solid [3]. The concept of 
the fluid-solid finite element formulations in this paper is 
an adaptation of Peskin’s IB method. Having got the 
special framework out of Peskin’s work, we may turn to 
our central idea of dealing fluid-solid interactions in finite 
element formulations that the interaction of fluids with 
deformable solids is through the forces exerted onto the 
fluids by the adjacent solids across the immersed 
boundary. In continuum, the interaction forces subjected 
to elastic solids and incompressible Newtonian fluids act 
as externally applied body forces along the boundary 
appearing in the linear momentum balance equations of 
the solids with assured traction boundary conditions and 
the Navier-Stoke equations of the fluids respectively: 

,
s s

ij j i ib u      subjected to s
j ij in f   on the 

immersed boundary s , 

, , ,
f fi

j i j i i jj i

v
v v p v f

t
       

 and 
, 0i iv  , 

where σ  is the Cauchy stress field, b  is the body force 
distribution, u  is the displacement field in the solid 

domain s , sf  is the traction distribution on s , v  

is the velocity field, p  is the pressure distribution, ff  

is the external force at time t in the fluid domain f , 
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and s  and f  are the mass density of the solids and 

fluids correspondingly. In this paper, the superscript s  
represents quantities for solids, while f  for fluids. Here, 

we assume that the externally body forces are applied 
relatively slowly compared to environmental chemical 
loadings on the solid surfaces. Hence, in certain 
circumstances, the solid is in quasistatic equilibrium, and 
its inertial effects can be reasonably ignored. Furthermore, 
the equilibrium equations in terms of stresses can be 
replaced with an integral expression which is namely 
weak form by the principle of virtual work (PVW) for 
finite element analysis in solid mechanics. The integral 
version of the equilibrium equations is thus derived as 

,s s s

s s
ij i j i i i iu dV b u dV f u dS    

  
    . 

The PVW states that if the stress field satisfies the weak 
form for all kinematically admissible virtual displacement 
fields 

iu , it will automatically satisfy the equilibrium 

equation and the traction boundary conditions. In this 
study, we are proposing that fluid-solid interaction forces 
acting on the neighboring fluid and solid particles are 
naturally action and reaction to each other satisfying 
Newton’s third law. To advance the finite element 
formulation for fluid-solid interaction problems, we apply 
the algorithm developed by Peskin for mapping boundary 
forces from a solid surface onto its adjacent fluid particles 
[3]: 

      , , ,
s

f f s f s
i if t f s t s t dS


  x x x , 

where  ,s s tx  is a parametric immersed boundary 

configuration of the solid domain,  ,f f
if tx  is the 

external force at location fx  along the boundary and 
time t  in the fluid domain, and ( )f x  is a Dirac delta 

function. 
 
2.2 Boundary Value Problem in Solid Mechanics 

To understand mechanical responses of biological 
specimens under environmental loading related to 
possible physiological states, we consider a hyperelastic 
material model with the Neo-Hookean material 
description including nonlinear material behaviors and 
large shape changes for an isotropic solid. In continuum 
mechanics, the deformation measurements commonly 
used in large strain elasticity are the deformation gradient 

ijF , the Jacobian of the deformation gradient field J , 

and the Left Cauchy-Green deformation tensor 
ijB . In 

addition, the constitutive law of stress-strain relation for 
an isotropic hyperelastic material is defined by an energy 
function relating the strain energy density of the material 
to its deformation gradient. The strain energy density to 
the deformation gradient of a generalized Neo-Hookean 
solid is 

   21 1
1 3 1

2 2
U I J

 
    , 

where 
1  and 

1  are the shear and bulk modulus of the 

solid respectively, and 
1I  is 2/3/kkB J . For such finite 

strain problems, it is usually more convenient to evaluate 
the integrals appearing in the weak form of equilibrium 
equations over reference configurations, whereas the 
deformed configuration is unknown: 
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where 
ij  is Kirchhoff stress tensor, and   is the 

inverse surface Jacobian. Then, we apply the typical finite 
element approach for solving the nodal displacement on a 
set of meshes in an undeformed solid by introducing the 
usual finite element interpolation written as 
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where  a sN X  is the shape function, a
iu  is the nodal 

displacement, and n  is the number of nodes for an 
element in the meshes. Subsequently, the virtual work 
equation becomes 
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Now this is the system of nonlinear equations for the 
unknown nodal displacement b

ku . One may notice that 

the nonlinear behaviors of the solid are resulted from both 
material properties and geometry configurations. To solve 
the nonlinear virtual work equation, we apply the 
Newton-Raphson iteration algorithm by guessing the 
solution for nodal displacement as b

kw  and perturb it as 
b b
k kw dw . The equilibrium equation thus yields a system 

of linear equations by ignoring high order terms for 
solving b

kdw  in iteration progress as 

0b a a
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2.3 Model Problem of Viscous Incompressible 
Fluids in Fluid Dynamics 

In many fluid-structure interaction problems, the fluid 
density is reasonably set as a constant in certain ambient 
condition. For this kind of problems, the systems of 
equations are suggested to be solved by the discrete 
Fourier transform, implemented by the Fast Fourier 
Transform algorithm. To facilitate the implementation, the 
models for solving the problems are formulated on 
periodic domains [4]. The Navier-Stoke equations of the 
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incompressible Newtonian fluids may be discretized by 
introducing the central difference operator 0

,h iD , the 

skew-symmetric difference operator  hS v  [3], and the 

tight Laplacian operator 
hL  as follows: 
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To further improve numerical stability, a temporal 
discretization scheme with two substeps based on the 
second-order accurate Runge-Kutta method proposed by 
Lai and Peskin [5] is used for the above system of 
ordinary differential equations. The preliminary substep, 
from level n  to 1 2n  , proceeds as follows: 
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Note that the above equation forms a system of equations 
with the unknowns 1 2n

iv   and 1 2np   for fx . Similarly, 

the final substep, from level n  to 1n  , proceeds as 
follows: 
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Again, note that the above equation forms a system of 
equations with the unknowns 1n

iv   and 1 2np   for fx . 

 

3. Numerical Example 
A close study on nanoindentation of hydrated collagen 

fibrils was made by Grant et al., and it revealed that the 
elastic modulus E  of individual collagen fibrils can be 

varied over a range of 1.938-4.762 MPa in variation of 
sodium chloride solutions in water of 0-1 M 
concentration at pH 7 [6]. In this section, we will examine 
oscillations in the transverse direction of the cross section 
of an initially deformed collagen fibril in solutions with 
different NaCl concentrations. Consider the undeformed 
and initially deformed configurations of the cross section 
of the collage fibril parameterized respectively by 

     ,0 1 2 cos ,1 2 sin ,0
Ts s r s r s    X , and 

     ,0 ,0 0, sin ,0
Ts ss s r s    x X , 

where 21 10 ; 1 2     1 2

0 ; otherwise

sX r


   


. 

In general, the Poisson’s ratio of collagen fibrils, which 
reflect the effect of network heterogeneity under 
macroscopic deformation fields and the realignment of 
the fibers, was reported 0.27 for the transverse direction 
of the fiber-aligned orientation in soft biological tissues 
by Stylianopoulos [7]. Besides, the density and viscosity 
of sodium chloride solutions in water were systematically 
measured at 298.15 K by Zhang and Han [8]. Accordingly, 
we adopt these measured material properties of collagen 
fibrils and sodium chloride solutions in water of different 
concentrations which are listed in Table 1. This example 
is designed to solve the oscillation in transverse direction 
of the cross section of the initially deformed collagen 
fibril in solutions of different NaCl concentrations. The 
fluid domain has a size of 1 × 1 cm, and the geometry 
property of 0.2r   cm is set for the solid domain. Fig. 1 
shows the stress fields of the cross section of the collagen 
and fluid velocity contours in the NaCl solution in water 
of 0.50 M at different time steps. One may also observe 
the progress of collagen fibril oscillation through these 
deformed configurations. Using the parameters described 
above, we can examine further the strain energy evolution 
of the collagen in sodium chloride solutions during its 
oscillation progress through finite element analysis. 
 
 

Table 1: Material properties of collagen fibrils in 
solutions of different NaCl concentrations 

Material 
property\Case

I II III IV V 

Fluid 
Molar 

concentration 
(M) 

0.00 0.25 0.50 0.75 1.00

Density 
(g/cm3) 

0.9969 1.0071 1.0166 1.0261 1.0349

Viscosity 
(mPa-s) 

0.8911 0.9111 0.9309 0.9512 0.9722

Solid 

Elastic 
modulus 
(MPa) 

2.138 1.938 2.486 3.005 4.762
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Figure 1: The stress fields of the cross section of a 
collagen fibril in the sodium chloride solution in water 
of 0.50 M concentration at different time steps. 
 

Fig. 2 presents the comparison with the evolution of 
the ratio of the total strain energy to that at 0t   of the 
collagen material in NaCl solutions with various 
concentrations. Besides, the inset presents the deformed 
configurations of the collagen material and velocity 
contours in the saline solutions with case I and V at time 
of 0.28 milliseconds. The results clearly illustrate that the 
collagen fibril becomes laxer along the transverse 
directions of its cross section while staying in the solution 
with lower concentrations of NaCl. 
 

4. Conclusions 
In this paper, we proposed the finite element 

algorithm for considering the fluid-solid interaction 
forces acting on the neighboring fluid and solid particles 
as naturally action and reaction to each other satisfying 
Newton’s third law. As the computational results 
presented above, the algorithm provides a unique way of 
analyzing mechanics problems of bio-polymer materials 
subjected environmental loading in fluids. 
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Figure 2: Comparison with the evolution of the ratio 
of the total strain energy to that at t = 0 of the collagen 
fibril in NaCl solutions with various concentrations. 
Inset: Stress fields of the cross section at t = 0.28 (ms). 
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For shape maintenance and migration of living 
organisms, bio-polymer materials are important for the 
redistribution of internal forces in the biological 
structures. Here, finite element formulations are 
developed to solve the large deformation problems for the 
bio-polymer materials by utilizing the fluid-solid 
interaction forces, the hyperelastic material model for 
solids, and the Navier-Stoke equations of the 
incompressible Newtonian fluids. A numerical 
experiment is designed to investigate oscillations in the 
transverse direction of the cross section of an initially 
deformed collagen fibril in solutions with different NaCl 
concentrations. The results show that the collagen fibril 
becomes laxer along the transverse directions of its cross 
section while staying in the solutions with lower 
concentrations of NaCl. 
Keywords: Finite element method, fluid-solid interaction, 
soft materials, nonlinear elasticity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Comparison with the evolution of the ratio of 
the total strain energy to that of t = 0 of the collagen fibril 
in NaCl solutions with various concentrations. Inset: 
Stress fields of the cross section at time t = 0.28 (ms). 
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膠原纖維材料於不同濃度 
食鹽水溶液其力學行為之 

有限元素分析 
 

莊博森 1、陳品均 1、王建凱 1 
1
淡江大學土木工程學系 

摘要 
對於生物體形態維持與遷徙，生物材料的力學特

性對於其結構的內力重分佈，是重要的影響因素。已

有許多學者投入於生物聚合物的網狀結構組成與其變

形特性之研究，並以實驗設計與計算分析的觀點，指

出當加載於生物聚合物材料之外力增大時，此類材料

會以材料熱力學之熵特性引導之變形模式轉為以結構

力學形變為主之模式。因此，本論文以計算流體力

學、固體力學有限元素法與流體與固體間介面力之傳

遞模型三方面來進行具巨量變形狀態生物材料於流體

環境中之分析。在本論文所設計之一數值計算實作

中，對於剖面方向具 10%預形變程度之膠原纖維於不

同濃度氯化鈉水溶液中之變形回復歷程進行模擬與分

析，結果顯示膠原纖維材料於濃度低的氯化鈉水溶液

中具有較差的變形回復能力。本研究期許此流固耦合

理論與分析技術能應用於分析於不同環境負載中生物

體力學變形與其複雜生理狀態之關連性。 
關鍵詞：有限元素分析，流固體耦合，軟物質材

料，非線性彈性力學。 
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，發表            

                   之錄影檔、聲音檔、照片、投影片、論文

摘要及全文內容，予以數位典藏並上網公開播放。本資料僅供科

技部工程司產學媒合之目的使用。 

立同意書人：王建凱              

身分證字號：A125143892          
 
 

聯絡電話：(02)2621-5656 ext.3602  

中華民國  104  年  9  月 14 日 
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