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Abstract 

     This paper presents the studies of time domain inverse scattering 

for a two dimensional inhomogeneous dielectric cylinder buried in a slab 

medium by the finite difference time domain (FDTD) method and the 

asynchronous particle swarm optimization (APSO) method. For the 

forward scattering part, the FDTD method is employed to calculate the 

scattered E fields. Base on the scattering fields, these inverse scattering 

problems are transformed into optimization problems. The APSO is 

applied to reconstruct permittivity of the two-dimensional 

inhomogeneous dielectric cylinder. In addition, the effects of Gaussian 

noise on the reconstruction results are investigated. Numerical results 

show that even when the measured scattered fields are contaminated with 

Gaussian noise, APSO ten times is able to yield good reconstructed 

quality. 

Index Terms– FDTD, asynchronous particle swarm optimization 
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(APSO), inhomogeneous dielectric cylinders, time domain inverse 

scattering 

I. INTRODUCTION 

The objective of the inverse problem is to determine the 

electromagnetic properties of the buried scatterer from the scattered field 

measured outside. There are many applications such as geophysical 

prospecting, medical imaging, non-destructive evaluated, determination 

of underground tunnels and pipelines, etc [1]-[10]. However, it is well 

known that one major difficulty of inverse scattering is its nonlinearity 

because it involves the product of two unknowns: the electrical properties 

of object, and the electric field within the object [11]. 

In general, the nonlinearity of the problem is coped with by applying 

iterative optimization techniques, concretely two techniques are 

employed. The first is traditional deterministic methods, such as Born 

iterative method (BIM) [12] and the distorted Born iterative method 

(DBIM) [13].  Furthermore, for a gradient-type method, it is well known 

that the convergence of the iteration depends highly on the initial guess. 

If a good initial guess is given, the speed of the convergence can be very 

fast. On the other hand, if the initial guess is far away from the exact one, 

searching tends to get fail [14].  

The second is stochastic methods. These algorithms based on strategies 

offer advantages relative to local inversion algorithms including strong 

search ability, simplicity, robustness and insensitivity to nonlinearity. In 

contrast to traditional deterministic methods, evolutionary searching 

schemes provide a more robust and efficient approach for solving inverse 
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scattering problems [15]-[17]. Thus, some stochastic methods, such as 

genetic algorithm (GA) [18]-[21], particle swarm optimization (PSO) 

[22]-[26], differential evolution/dynamic differential evolution (DE/DDE) 

[17], [26]-[34] are proposed to search the global extreme of the inverse 

problems to overcome the drawback of the deterministic methods. 

However, these papers only focus on homogeneous dielectric cylinder or 

perfectly conducting cylinder cases.  

Recently, there are a few reports on this subject of 2-D object about 

inhomogeneous dielectric cylinder under time domain [32]-[34]. The 

reference [33] focuses on two-dimensional inhomogeneous dielectric 

cylinder buried in a half-space by using dynamic differential evolution 

(DDE) and non-uniform steady state genetic algorithm (NU-SSGA). To 

the best of our knowledge, there is still no investigation on using the 

APSO to reconstruct the electromagnetic imaging of inhomogeneous 

dielectric cylinders with arbitrary cross section in a three-layered slab 

medium under time domain. 

This paper presents a time domain computational scheme for the 

microwave imaging of a 2D inhomogeneous dielectric cylinder. The 

forward problem is solved by the FDTD method. The inverse problem is 

formulated into an optimization problem, and then the global searching 

scheme APSO is used to search the parameter space. In Section II, the 

theoretical formulation for the electromagnetic imaging is presented. The 

general principle of the APSO scheme and the way we applied it to the 

imaging problem are described. In section III, some numerical results are 

presented. Finally, in section IV some conclusions are drawn. 
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II. THEORETICAL FORMULATION  

Consider a 2-D inhomogeneous dielectric cylinder buried in a slab 

medium material medium as shown in Figure 1. The cylinder is parallel 

to z axis buried between the planar interfaces separating three 

homogeneous spaces: the region 1 1 1( , )  , the region 2 2 2( , )   and 

region 3 1 2( , )  . The permittivity of the buried dielectric object is 

denoted by 3( , )x y . The dielectric object is illuminated by a Gaussian 

pulse line source located at the points denoted by xT  in the first layer 

and scattered waves are recorded at those points denoted by xR  in the 

same layer. The computational domain is surrounded by the perfect 

matching layers (PML) absorber [35] to reduce the reflection from the 

environment-PML interface.  

A.  Forward Problem 

The direct scattering problem is to calculate the scattered electric 

fields for a given permittivity 3  . The scatterer region is subdivided by 

a rectangular grid with R and U subdivisions along the x and y axis, 

respectively. Then, the relative permittivity is expressed as 
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where 

 

                                                   (2) 

are the pulse functions. 

B.  Inverse Problem 

For the inverse scattering problem, the permittivity of the dielectric 

cylinder is reconstructed through the given scattered electric fields 

obtained at the receivers. This problem is formulated as an optimization 

problem, for which the global searching scheme APSO is employed to 

minimize the following objective function (OF): 
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where exp
zE  and cal

zE  are the experimental electric fields and calculated 

electric fields, respectively. The Ni and M are the total number of the 

transmitters and receivers, respectively. K  is the total time step number 

of the recorded electric fields. 

 

C.  Asynchronous Particle Swarm Optimization (APSO) 

Particle swarm global optimization is a class of derivative-free, 

population-based and self-adaptive search optimization technique which 

was introduced by Kennedy and Eberhart [36]. PSO has proven to be a 

useful method of optimization for difficult and discontinuous 

multidimensional engineering problems [37]-[39] due to its efficiency of 

exploring the entire search space. 

Particles (potential solutions) are distributed throughout the searching 
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space and their positions and velocities are modified based on social 

behavior. The social behaviors in PSO exhibit a population of particles 

moving toward the most promising region of the search space. Clerc [40] 

proposed the constriction factor to adjust the velocity of the particle for 

obtaining the better convergence; the algorithm was named as 

constriction factor method (CFM). PSO starts with an initial population 

of potential solutions that is randomly generated and composed of Np 

individuals (also called particles), of which each represents the 

permittivity distribution of the cylinder. 

After the initialization step, each particle of population is associated 

with a randomized velocity and position. Thus, each particle has a 

position and velocity vector, and can move through the problem space. In 

each generation, the particle changes its velocity according to its best 

experience, called pbestx , and the best particle in the swarm, called 

gbestx . 

Assume there are Np particles in the swarm that is in a search space of 

D dimensions, the position and velocity of the i-th particle is determined 

according to the constriction factor method as follows: 

    k k-1 k-1 k-1
id id 1 1 pbest, id id 2 2 gbest, id idv v c x x c x x              (4) 

k
id
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k
id vxx                                              (5) 

where 
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
42

2
2

, 4cc 21  . 1c  and 2c  are the learning 

coefficients used to control the impact of the local and global component 

in velocity equation (4). k
idv  and k

idx  are the velocity and position of the 
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i-th particle with d-th dimension at the k-th generation, 1  and 2  are 

both random numbers between 0 and 1.  

Asynchronous PSO use the following rule: after each particle position 

updates if the new best position is better than the current best position, the 

new best position will replace the current best position and be used in the 

next particles swarm immediately. In this way, the swarm reacts more 

quickly to speedup the convergence because the updating occurs 

immediately after cost function evaluation for each particle.   

The “damping boundary condition” was proposed by Huang and 

Mohan [41] to ensure the particles move within the legal search space. In 

many practical optimization problems, the dimensionality and the 

location of the global optimum is usually difficult to know a priori. It is 

therefore desirable to have a single boundary condition that can offer a 

robust and consistent performance for the PSO technique regardless of 

the problem dimensionality and the location of the global optimum. 

When the particle exceed a certain dimension of the solution search space, 

the position of particle will be re-located in the search boundary and its 

velocity component in the reverse of this dimension and multiplied by a 

random number (between 0-1). 

Mutation scheme is introduced in this algorithm to speed up the 

convergence when particles are around global optimum. The mutation 

scheme can also avoid premature convergences in the searching 

procedure and help the gbestx  escape from the local optimal position. It 

can increase the robustness of the algorithm with full search capabilities 

to avoid falling into the regional value. More details about the APSO 
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algorithm can be found in [41]-[42]. 

The flowchart of the modified APSO is shown in Figure 2. 

Asynchronous PSO goes through seven procedures as follows: 

I. Initialize a starting population: randomly generate a swarm of 

particles. 

II. Calculate the E fields by a home-made FDTD code. 

III. Evaluate the population using cost function: the asynchronous 

PSO algorithm evaluates the cost function (3) for each individual 

in the population.  

IV. Find pbestx  and gbestx . 

V. Mutation scheme: the particle swarm optimization algorithm has 

been shown to converge rapidly during the initial stages of a 

global search, but when around the global optimum, the search 

can become very slow. For the reason, mutation scheme is leaded 

into asynchronous PSO. As shown in Figure 2, there is an 

additional competition between the gbestx  and 
mugbestx . The 

current gbestx  will be replaced by the mugbestx  if the mugbestx  

is better than the current gbestx . The mugbestx  is generated by 

following way: 
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where 3c  and 4c  are the scaling parameter. 3  and mu are both 

the random numbers between 0 and 1. k  is the current iteration 
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number. maxk  is the maximum iteration number. maxx  and minx  

are the upper limit and lower limit of the search space, respectively. 

VI. Update the velocity and position. 

VII. Stop the process and print the best individual if the termination 

criterion is satisfied; else, go to step 2. 

 

III. NUMERICAL RESULTS 

As shown in Figure 1, the problem space is divided in 68 68 grids 

with the grid size yx  =5.95mm. The inhomogeneous dielectric 

cylinder is buried in a lossless a slab medium( 0321   ). The 

transmitters and receivers are placed in free space above the 

inhomogeneous dielectric slab. The permittivities in region 1, region 2 

and region 3 are characterized by 01    , 02 8   and 01   , 

respectively, while the permeability 0  is assumed for each region, i.e., 

only non-magnetic media are concerned here. The cylindrical object is 

illuminated by a transmitter at two different positions, Ni=2, which are 

located at (154.7mm, 440.3mm) and (440.3mm, 440.3mm), respectively. 

The scattered E fields for each illumination are collected at the five 

receivers, M=5, which are equally separated by 23.8mm in the x-axis and 

the first receiver is located at (119mm, 416.5mm). For the representation 

of the scatterer properties, seven subdivisions are considered along both x 

and y axis ( 7R U  ) and axis resulting in 49 equal square cells. There 

are 49 unknown parameters to retrieve, which include the scatterers 

permittivities distribution. The search range of unknowns for permittivity 
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is chosen from 1.0 to 6.0, determined by the prior knowledge of the 

object. The related coefficients of the APSO are set below. The learning 

coefficients 1c  and 2c  are set to 2.8 and 1.3[42]-[43], respectively. The 

mutation probability is 0.4. Moreover, the relative mean square error of 

the reconstructed data profile is defined as 

            %100
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1
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1

2 





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N

i
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where exact
i  and i , respectively, denote the exact value of the relative 

permittivity of the ith cell and the difference between the reconstructed 

and exact values. Reconstruction is carried out on an Intel PC (2.83 GHz/ 

2GB memory /500 GB HD). The software is developed on FORTRAN 

VISION 6.0 in WINDOWS XP system environment. In our simulation, 

the typical CPU time for 1000 generations is about 4 hours on a 

home-made Fortran program that runs on an Intel PC (3.4 GHz/ 4G 

memory /500G).  

In the first example, we consider a practical case to detect water buried 

in the wall, as shown in Fig. 3(a). The whole problem space is considered. 

The reconstructed error is 27.02 %. From Fig. 3(b), we conclude that the 

water in the wall is detectable by APSO. 

In the second example, let us consider a crisscross-like object, as 

shown in Fig. 4(a). The relative permittivity of the crisscross axis is 4.5 

with four leaves of 2.5. The reconstructed error is 3.89 %. Fig. 4(b) shows 

that it is clear that the reconstructed result is good by APSO.  

In the third example, we consider an X-like object, as shown in Fig. 

5(a). The permittivity of the crisscross axis is 4.5 with four leaves of 2.5. 
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The reconstructed error is 3.09 %. Again, Fig. 5(b) shows it is seen that 

good reconstruction is achieved by APSO. 

In the fourth example, we report on multi-inhomogeneous 

dielectric objects buried in a lossy slab medium ( s/m 102 3 ), as 

shown in Fig. 6(a). The reconstructed error is 9.68 %, as shown in Fig. 

6(b).  It is clear that the reconstruction error is less well for the 

inhomogeneous dielectric objects with high permittivity. However, we 

can see that reconstruction is better for the illuminated side than that 

obtained for the backside. 

In the last example, to test the problem of reference [33], we have 

conducted the following studies: a two dimensional inhomogeneous 

dielectric cylinder buried in half space and slab medium, respectively. 

Bulges object of 3 3.5  , surrounding area of the object is 2.5, as shown in 

Fig. 7(a). The reconstructed result is shown in Fig. 7(b) and Fig. 7(c), 

respectively. The reconstructed error is 2.48 % and 2.61% in slab medium 

and half space, respectively. It is found that APSO is suitable for inverse 

scattering problem whether inhomogeneous dielectric cylinders buried in 

half or slab medium. 

From last four examples, we conclude that, in the case of noisy free 

data, the relative reconstruction errors for all parameters are lower than 

10%. In order to investigate the sensitivity of the imaging algorithm 

against random noise, the additive white Gaussian noise of zero mean 

with standard deviation g  is added into the recorded scattered electric 

fields to mimic the measurement errors for examples 2 to 4. The signal to 

noise ratio (SNR) is defined as: 
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Figure 8 shows the reconstructed results for the cylinder under the 

condition that the recorded scattered fields are contaminated by noise, of 

which the SNR includes 40dB, 30dB, 20dB, 10dB and 3dB. It is observed 

that good reconstruction can be obtained when the SNR is above 10dB. 

IV. CONCLUSION  

In this paper, the time domain inverse scattering of 

inhomogeneous dielectric cylinders of arbitrary cross section in three 

layer space is investigated. By combining the FDTD method and the 

APSO scheme, good reconstructed results are obtained. Through the 

APSO scheme, dielectric constant of the object can be successfully 

reconstructed even when the dielectric constant is relatively large even 

with lossy or lossless surrounding media. The effects of noise on 

microwave imaging are examined, and good reconstruction has been 

obtained even in the presence of white Gaussian noise in experimental 

data.   
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Caption 

Fig. 1 Geometry for the inverse scattering of a dielectric cylinder 

buried in a slab medium. 

Fig. 2 Flowchart for the asynchronous particle swarm optimization 

Fig. 3(a) Original permittivity distribution 

Fig. 3(b) Reconstructed permittivity distribution with a 27.02% error 

Fig. 4(a) Original permittivity distribution 

Fig. 4(b) Reconstructed permittivity distribution with a 3.89% error 

Fig. 5(a) Original permittivity distribution 

Fig. 5(b) Reconstructed permittivity distribution with a 3.09% error 

Fig. 6(a) Original permittivity distribution 

Fig. 6(b) Reconstructed permittivity distribution with a 9.68% error 

Fig. 7(a) Original permittivity distribution 

  Fig. 7(b) Reconstructed permittivity distribution buried in slab medium 

Fig. 7(c) Reconstructed permittivity distribution buried in half space 

Fig. 8 Reconstruction error as function of SNR by APSO 
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  Fig. 1 Geometry for the inverse scattering of a dielectric 
cylinder buried in a slab medium 
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Fig. 3(a) Original dielectric constant 
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Fig. 3(b) Reconstructed permittivity distribution with a 27.02% error 
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Fig. 4(a) Original dielectric constant 
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Fig. 4(b) Reconstructed permittivity distribution with a 3.89% error 
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Fig. 5(a) Original dielectric constant 
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Fig.5 (b) Reconstructed permittivity distribution with a 3.09% error 
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Fig. 6(a) Original dielectric constant 
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Fig.6 (b) Reconstructed permittivity distribution with a 9.68% error 
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Fig. 7(a) Original dielectric constant 
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Fig.7 (b) Reconstructed permittivity distribution buried in slab medium 
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Fig.7 (c) Reconstructed permittivity distribution buried in half space 
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Fig 8.Reconstruction error as function of SNR by APSO 


