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Abstract 
After construction of rail bridges, differential support settlement at bridge foundations is one of the key 
issues being considered for running safety of trains and operation of railways. In this paper, the influence 
of ground settlement on dynamic interactions of train-bridge system will be studied. The train is simulated 
as a sequence of identical sprung mass units with equal intervals and the bridge system as a series of 
simple beams with identical properties. To resolve the train-induced vibrations of a beam structure with 
support settlements, the total beam response is decomposed into two parts: the static response due to 
vertical support settlement and the dynamic component caused by inertia effect of beam vibration. An 
exact solution for static displacement is presented by exerting the support displacements on the beam 
statically. Thus the remaining dynamic response of the vehicle/bridge coupling system can be computed 
by conventional vehicle-bridge interaction dynamic method. From the present study, the numerical results 
indicate that the inclusion of ground settlement is generally small on the bridge response, but it can 
amplify drastically the vertical response of the moving train. This conclusion is of significance in planning 
a rail route that has to cross a region with ground subsidence. 

1 Introduction 

Differential support settlement at bridge foundations is one of the key issues being considered for running 
safety of trains and operation of railways. In this study, a train is simulated as a sequence of equally 
spaced moving sprung mass units. The multi-span bridge system is modeled as a series of simply 
supported beams with identical spans. To resolve the dynamic problem for a simple beam undergoing 
vertical support settlement, the total response of the beam is decomposed into two parts: the static 
response due to support settlement and the dynamic component due to inertial effect of beam vibration 
[1,2]. An exact solution for static displacement is presented by exerting the support displacements on the 
simple beam statically [3]. The remaining interaction vibration of train-bridge system was solved by 
Galerkin’s method and then computed using a comprehensive iterative procedure with Newmark’s finite 
difference scheme [4]. Numerical studies indicate that the inclusion of differential settlement is generally 
small on the bridge response, but it can amplify drastically the vertical response of a traveling train at 
various speeds. Such a fact should be taken into account in the design of high-speed railway bridges, 
especially for the rail route that has to cross the region with concave-up settlement profile. 
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2 Problem formulation 

Figure 1: Multi-span railway bridges traveled by a high-speed train. 

2.1 Basic considerations 

Figure 1 shows a train with equally-spaced bogie-sets is crossing a series of railway bridges, in which two 
adjacent car bodies are articulated on a common bogie-set. To simplify the formulation of equations of 
motion for the vehicle-bridge interaction system in an analytical way, only vertical motions of the 
dynamic model are considered in this study. The following are the assumptions adopted for the vehicle-
bridge system: (1) The multi-span bridges are modeled as a series of simply supported bridges with 
identical properties; (2) The bridge is idealized as a linear elastic Bernoulli-Euler beam with uniform 
section; (3) For the regular feature of equally-spaced bogie-sets, the train is simulated as a sequence of 
identical sprung mass units with equal intervals; (4) The dynamic response of continuous tracks is similar 
to that of the bridge deck due to the strong constraining effect of the ballast layer [1]; (5)The moving 
wheel-set supporting the bogie-set with a lumped mass m1 is modeled as an un-sprung mass directly 
rolling on the bridge deck as it moves on the surface of the bridge deck; (6) According to the design 
specification in Ref. [5], allowable angular distortion between any two points along a bridge span due to 
ground settlement should not exceed 1/1000. 

Figure 2: A train model moving on multi-span simple beams undergoing support settlement. 

2.2 Governing equations 

As shown in Figure 2, a sequence of identical sprung mass units with equal intervals d is moving on a 
series of simple beams at constant speed v. Each sprung mass unit consists of two concentrated masses, 
with the top one representing the mass (m2) lumped from the half of a car body, and the bottom one 
modeling the concentrated mass (m1) of the bogie-set supported by an un-sprung mass (mw) directly 
running on the surface of the beam deck. The two masses are connected by a set of spring-dashpot system 
that serves to represent the vehicle’s suspension and energy dissipation mechanism. Here, we shall use the 
following symbols to denote the properties depicted in Figure 1: m = beam mass per unit length, c = beam 
damping per unit length, EI = flexural rigidity, mw = lumped mass of moving wheel, m1 = lumped mass of 
the bogie-set, and m2 = lumped mass of half of a car body. Including the differential settlement on bridge 
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supports, one can formulate the equation of motion for the j-th simple beam carrying multiple moving 
sprung mass units as follows: 
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with the following non-homogeneous boundary conditions for vertical support settlement [29]: 

0(0, ) , ( , ) ,   "(0, ) "( , ) 0,j j j jL j ju t u u L t u EIu t EIu L t= = = = (5) 

where ( ) ' ( ) / x• = ∂ • ∂ , ( ) ( ) / t• = ∂ • ∂ɺ , uj(x, t) = vertical deflection of the j-th span, ( , )j x tµ  = inertial

force induced by the vibrating sprung mass units running on the j-th beam, L = span length, p0 = lumped 

weight of a vehicle model = –(m1 + m2 + mw)g, g = gravity acceleration, ( )δ •  = Dirac's delta function,

H(t) = unit step function, k =1, 2, 3, …, N-th moving load on the beam, tk = (k - 1)d/v = arrival time of the 
k-th load into the beam, xk = position of the k-th load along the beam, y1k = vertical displacement of the k-
th lumped mass m1, y2k = vertical displacement of the k-th lumped mass m2, uj0 = vertical settlement at x = 
0 of the j-th beam, and ujL = vertical settlement at x = L of the j-th beam. The equations of motion for the 
k-th sprung mass unit are given by 

1 1 11

2 2 22

0

0 0
k p s s k p s s k vk

k s s k s s k

y c c c y k k k ym f

y c c y k k ym

+ − + −            
+ + =            − −             

ɺɺ ɺ

ɺɺ ɺ
(6) 

[ ( , ) ( )] ( , ),vk p j k k p j kf k u x t x c u x tγ= + + ɺ  (7) 

in which cp = primarily damping, and kp = primarily stiffness, cs = secondary damping, and kp = secondary 
stiffness, fvk = interaction force existing between the beam and the wheel mass of the k-th moving 
oscillator, and ( )kxγ = rail irregularity (vertical profile)..

3 Solution methods 

As the beam equation shown in Eqs. (1) and (5), it is a differential equation associated with non-
homogeneous boundary conditions. The total deflection response uj(x,t) for the j-span of the multi-span 
beams undergoing vertical support settlement can be decomposed into two parts: the static displacement 
Uj(x) and the dynamic deflection udj(x, t) [1,2], or 

( , ) ( ) ( , )j j dju x t U x u x t= +
.  (8) 

Here, Uj(x) represents the structure displacement caused by relative support settlement, and udj(x,t) the 
dynamic deflection due to inertia effect of structure vibration [1,2]. By using the decomposition concept of 
Eq. (8), substituting Eq. (8) into Eq. (1), and discarding all the dynamic terms and external loads, the static 
equation of equilibrium and the non-homogeneous boundary conditions of the beam can be written as 
follows:  
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Solving the fourth order equation of Eq. (9) associated with the boundary conditions of Eqs. (10) yields 

( )0 0 / .j j jL jU u u u x L= + − ×  (11) 

The static displacement shown in Eq. (11) represents the rigid body displacements of the j-th beam 
undergoing vertical support settlement. Furthermore, introducing Eqs. (8) and (11) into Eq. (1), the 
equation of motion for the j-th simple beam is converted into the following vibration equation in terms of 
dynamic deflection udj(x, t): 

( , ) ( , ) ""( , ) ( , ) ( , ).dj dj dj jmu x t cu x t EIu x t x t p x tµ+ + + =ɺɺ ɺ  (12) 

Since the static displacement Uj (x) in Eq. (11) has satisfied the boundary conditions with vertical 
settlements shown in Eqs. (5), the introduction of Eqs. (8) and (10) into Eqs. (5) yields the following 
homogeneous boundary conditions for the dynamic deflection udj(x,t) : 
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Obviously, the response of dynamic deflection udj(x,t) in Eq. (12) associated with the homogeneous 
boundary conditions in Eqs.(13) can be solved by Galerkin’s method [13-15] and computed by Newmark 
method [4] in the time domain. First, multiplying both sides of Eq. (12) with respect to the variation of the 
dynamic deflection ( djuδ ), and then integrating the equation over the beam length L, one can obtain the

following virtual work equation: 
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According to the homogeneous boundary conditions shown in Eqs. (13), the dynamic deflection (udj) of a 
simple beam can be approximated by a series of sinusoidal functions: 
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where qjn(t) means the generalized coordinate associated with the n-th assumed mode of the j-th span. 
Substituting Eq. (15) into Eq. (14) yields the following generalized equation of motion for the n-th 
dynamic system of the j-th beam: 
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where 4( / )nk EI n Lπ= = generalized stiffness associated with the nth generalized system for a simple
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The generalized forces of ( , , )k nF v tϖ , ( , , )vk nF v tϖ  and ( , , )wk nF v tϖ  with respect to the k-th sprung

mass unit are respectively expressed as 
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where ( / )n n v Lϖ π= = the driving frequency of the k-th moving load to the n-th mode of a simple beam. It

is noted that the inertial force term of ( )jn tΓ  shown in Eq. (18) is a key issue making all the generalized

beam system and vehicle’s equations coupled together due to the presence of ( , , )k nF v tϖ  and

1
( )sin( / )jn kn

q t n x Lπ
=∑ ɺɺ , the second term of which is related to all the shape functions used in response 

analysis of the beam. 

To compute the dynamic response of vehicle-bridge interactions for a beam undergoing support 
settlements, an incremental-iterative procedure needs to be carried out [6]. The numerical procedure of 
incremental-iterative dynamic analysis conventionally involves three phases: predictor, corrector, and 
equilibrium checking. In performing the dynamic response analysis of structures containing support 
settlements, two sets of structure responses were computed each for the pseudo-static response and for the 
inertia-dynamic response. Detailed information for nonlinear VBI dynamic analysis is available in 
references [1,2]. 

4 Numerical studies 

Figure 2 shows that a number of identical sprung mass units with equal intervals d are crossing a series of 
simply supported beams at constant speed v. To account for the random nature and characteristics of rail 
irregularity in practice, the following power spectrum density (PSD) function [4] is given to simulate the 
vertical profile of track geometry variations 
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whereΩ = spatial frequency, and Av, (= 1.5x10-7 m), rΩ  (= 2.06x10-6 rad/m), and cΩ (= 0.825 rad/m) are

relevant parameters.  
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Figure 3: Rail irregularity. 
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Figure 3 plots the vertical profile of rail irregularity for the simulation of rail geometry variations in this 
study. The properties of the simple beam are listed in Table 1, in which 1ω  denotes the fundamental 

circular frequency of the first mode and nω  the n-th mode. Twenty sprung mass units are used to model 

the running train with identical axle-intervals, i.e., N = 20. Table 2 shows the properties of the sprung mass 
units and the first resonant speed ( 1resv dω= ) of the simple beam under the moving loads. The properties

of sprung mass units and beam structures listed in Tables 1 and 2 will be employed as the input data for 
the dynamic response analysis of train-bridge system in the following examples. 

L (m) EI (N-m2) m (t/m) c (kN-s/m/m) 
1ω  (Hz)

35 3.1x108 32 40.2 4 

Table 1:  Properties and natural frequency of the bridge. 

N d 

(m) 

p0 

(kN) 

m1 

(t) 

m2 

(t) 

mw 

(t) 

cp

(kN-s/m) 

kp 

(kN/m) 

cs

(kN-s/m) 

ks 

(kN/m) 
1resv dω=

(km/h) 
20 19 272 4 22 1.8 100 1550 50 550 274 

Table 2: Properties of sprung mass unit. 

4.1 Resonance response 

It was well known that if the acceleration response, rather than the displacement response, of the bridge is 
of concern, as is the case considered herein, much more higher modes have to be included in the 
computation [1,2]. In order to verify that a sufficient number of modes of vibration has been used in the 
analysis, we first compute the mid-span acceleration response of a single-span simple beam with smooth 
surface under the action of a series of moving sprung mass units given in Table 2 at the first resonant 
speed of 1resv dω=  (= 76m/s ≃ 274km/h) using either 2, 10, or 20 modes by using the time step of 0.001s.

Figure 4 shows the time history response of mid-span acceleration of the beam. As can be seen from 
Figure 4, the use of 20 modes is considered sufficient. For this reason, the same number of modes and the 
time step will be used in all the examples to follow. As it is expected for resonance phenomena, the mid-
span acceleration response is generally built up as the increase of moving loads passing through the beam. 
In addition, the time-history responses of vertical acceleration for both the first and the last (N = 20) 
sprung masses have been drawn in Figure 5, respectively. Due to the resonance phenomenon occurring in 
the vibrating beam, the dynamic response of the last sprung mass (N = 20) running on the beam has been 
dramatically amplified in comparison with that of the first one. 

960 PROCEEDINGS OF ISMA2014 INCLUDING USD2014



0.0 10.0 20.0 30.0 40.0 50.0 60.0

vt/L

-2.0

-1.0

0.0

1.0

2.0

M
id

-s
p

a
n

 a
cc

e
l. 

(m
/s2 )

with 2 modes

with 10 modes

with 20 modes

 

Figure 4: Resonant response of mid-span acceleration. 
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Figure 5 Vertical acceleration of sprung masses moving on a simple beam with smooth surface. 

4.2 Effect of ground settlement  

To explore the influence of ground settlement on the interaction response of vehicle-bridge system, two 
vertical settlement profiles along the route of the multi-span bridges have been plotted in Figure 6, 
respectively. Settlement type 1 represents an uneven ground surface settlement along a rail route, and type 
2 a simulation of concave-up settlement profile caused by regional land subsidence due to the possibility 
of over groundwater utilization for agricultural and fishery farming use. Let the train loads travel over the 
multi-span beams from 100 km/h to 500 km/h with an increment of 5km/h. Figure 7 depicts the maximum 
acceleration response curves at the midpoint of the 15-th beam against various speeds. From the analysis 
results, the influence of differential settlement on bridge response are generally insignificant since a 
simple beam with vertical support settlement merely experiences a rigid body displacement or rotation 
(see Eq. 11), from which there is no additional natural deformation occurring in the beam. Besides, there 
exist another three sub-resonant peaks plotted in Figure 7 together with secondary peaks at the speeds of 
352, 410, and 492 km/h, respectively, which are equal to the sub-resonant speeds at the third mode excited 

[7], i.e., 3 7,6,5
/res j

v d jω
=

= . Here j represents the number of complete oscillation cycles for the third 

mode of the beam to vibrate during the passage of two adjacent sprung mass units [8].  
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Figure 6: Vertical profile of settlements. 
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Figure 7: Maximum acceleration for mid-span beam. 
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Figure 8: Effect of ground settlement on maximum acceleration of moving vehicles. 

For the present example, the maximum vertical acceleration computed for the running train vs. the speed 
has been plotted in Figure 8. Obviously, the inclusion of ground settlement can result in the vehicle’s 
acceleration amplitude amplifying significantly, particularly for the critical case of the ground settlement 
type 2 with concave-up profile. And there exists a noticeable amplification for each of the response curves 
at the resonant speed of 274km/h. It means that as a train travels over multi-span bridges that have to cross 
the region with local land subsidence, the operation speed should be kept away from the resonant speed 
for running safety of the moving train. Since the present sprung mass unit is a rather simplified vehicle 
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model, a further study to develop a more realistic 3D train model is required for carrying out the dynamic 
interactions of the train-bridge system undergoing ground settlement. 

5 Concluding remarks 

To deal with the dynamic problem of a beam structure with differential support settlement, a 
decomposition method is proposed to extract the static displacement from the total response of the beam. 
Then, the dynamic response of the vehicle-bridge coupling system is solved by Galerkin’s method and 
computed using an iterative approach with the Newmark finite difference formulas. From the numerical 
studies, the following conclusions are reached: 

(1) Once the resonance occurs in the vehicle-bridge interaction system around the resonant speed, the 
dynamic responses of both the bridge and train are amplified dramatically. 

(2) With the allowable angular distortion not exceeding 1/1000 for high-speed railway bridges built in the 
region with local land subsidence, the effect of differential settlement has little influence on the bridge 
response induced by moving trains. 

(3) With the inclusion of support settlement, especially for the concave-up settlement profile, the 
maximum accelerations of a traveling train are totally amplified even though the running speeds are 
not in the range of resonant speeds. 
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