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    Abstract- Many applications of sequential patterns require a 
guarantee of a particular event happening within a period of time. 
We propose CAI-PrefixSpan, a new data mining algorithm to 
obtain confident timed sequential patterns from sequential 
databases. Based on PrefixSpan, it takes advantage of the 
pattern-growth approach. After a particular event sequence, it 
would first calculate the confidence level regarding the eventual 
occurrence of a particular event. For those pass the minimal 
confidence requirement, it then computes the minimal time 
interval that satisfies the support requirement.  It then generates 
corresponding projected databases, and applies itself recursively 
on the projected databases. With the timing information, it 
obtains fewer but more confident sequential patterns. CAI-
PrefixSpan is implemented along with PrefixSpan. They are 
compared in terms of numbers of patterns obtained and 
execution efficiency. Our effectiveness and performance study 
shows that CAI-PrefixSpan is a valuable and efficient approach 
in obtaining timed sequential patterns. 
 

I.    INTRODUCTION 
 

   With the universal deployment of internet and computer 
technologies, the amount of accumulated electronic data has 
been growing exponentially. Sequential pattern mining is one 
of the successful data mining endeavors that extracts implicit 
information inside these data. It obtains frequent sequential 
patterns of items satisfying the condition that the number of 
their occurrences, called support, in the item sequence 
database is greater than or equal to a given threshold, called 
minimum support. The obtained frequent patterns could be 
applied to analysis and decision making in applications like 
time-series stock trend, medical diagnosis, web page traversal, 
customer purchasing behavior, content signature of network 
applications, etc. 

The existing sequential pattern mining algorithms can be 
separated into two categories: Apriori-like (candidate-
generation-and-test) approaches ([1],[2],[10]) and pattern-
growth approaches ([6],[8]). The PrefixSpan algorithm [8] 
divides the database into smaller projected databases and 
solves them recursively. Since no candidate sequence needs to 
be generated, the database need not be scanned multiple times, 
thus making it faster than Apriori-like algorithms.  

A timed sequential pattern could provide more valuable 
information than a conventional sequential pattern. The issue 
of mining sequential patterns with time constraints was first 
addressed in [10]. Three time constraints, minimum-gap, 
maximum-gap and sliding time-window, were specified to 

enhance the semantics of sequence discovery, and to make the 
obtained patterns more actionable. Since then, several studies 
about mining sequential patterns with miscellaneous time 
constraints have been proposed.  

In addition to the minimum support constraint, many 
applications of sequential patterns need to be confident in 
terms of the percentage of a specific event occurring within a 
time interval. For example, after a customer’s purchasing of 
products A and B, a retailer would like to know the percentage 
that he/she would return to buy product C within a week. The 
guarantee is often more important than the timing. Most users 
are willing to extend the time interval to meet the minimal 
confidence requirement. We thus propose to check the 
percentage that a specific event happens eventually first. After 
that is confirmed, then we calculate the minimum time 
required to satisfy the minimum support requirement. We take 
advantage of the fact that time intervals have an intrinsic 
nature: suppose time point t1 < t2. Then for events guaranteed 
to happen within t1, they are also guaranteed to happen within 
t2. Previous tackles over timed sequential patterns failed to 
capture this containment nature of accumulated time intervals.  

Applying the pattern growth approach, we propose CAI-
PrefixSpan to handle the timed sequential pattern mining.  A 
pattern is extended by first satisfying a minimum confidence 
requirement that certain event would happen eventually. Then, 
we compute the minimal time interval that satisfies the 
minimum support requirement. A projected database would 
then be obtained for the sequence in the extended timed 
sequential pattern.  

CAI-PrefixSpan is implemented along with PrefixSpan. 
They are compared in terms of numbers of patterns obtained 
and execution efficiency. Our effectiveness and performance 
study shows that CAI-PrefixSpan is a valuable and efficient 
approach in obtaining timed sequential patterns. 

The rest of this paper is organized as follows: Section II 
reviews literature on sequential pattern mining and timed 
sequential pattern mining. Section III describes CAI-
PrefixSpan. Section IV presents the experimental results. 
Finally, Section V concludes and discusses future research. 

 
II.   RELATED WORK 

 

Agrawal and Srikant [2] extended the frequent itemset 
mining algorithm [1] for non-serial transactions to sequential 
pattern mining for serial transactions. With their approach, 
candidate frequent sequential patterns can be obtained by 
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joining shorter frequent sequential patterns. Srikant and 
Agrawal [10] then proposed the GSP (generalizations and 
performance improvements) algorithm, which uses a breadth-
first search and bottom up method to obtain the frequent 
subsequences. It also considers mining sequential patterns 
with timing constraints regarding the minimal time gap, 
maximal time gap, and sliding window size. 
    Chen et al., [3] developed two algorithms (I-Apriori and I-
PrefixSpan) for mining time-interval sequential patterns. They 
assumed the time interval has already been partitioned into a 
set of fixed time intervals. Fiot et al. [4] utilized fuzzy set to 
extend the time constraint to soft time constraints. They 
defined temporal accuracy of a sequential pattern. To handle 
these constraints while, they designed a data mining algorithm 
based on sequence graphs. Masseglia et al. [7] considered 
handling time constraints in the earlier stage of the data 
mining process to provide better performance.  
     Guyet and Quiniou [5] handled the problem of quantitative 
temporal pattern extraction from temporal interval sequences 
where events are qualified by a type and a numerical date and 
duration. Yang et al. [11] adopted an efficient encoding 
strategy to speed up the efficiency of processing period 
segments in an event sequence, and combined with the 
projection method to quickly find the partial periodic patterns 
in the recursive process. Shyur et al. [9] proposed to discover 
frequent sequential patterns with probability of inter arrival 
time of consecutive items. They imposed minimum time-
probability constraint on sequential patterns, so that fewer but 
more reliable patterns will be obtained. 
 

III.   CAI-PrefixSpan Algorithm 

 
A.     Introduction 

Chen et al. [3] proposed I-PrefixSpan to partition time 
intervals into several equal-length sub-intervals. Concept of 
the partitioned time intervals could be illustrated in Figure 1.     

 

In Figure 1, I0 represents the instantaneous interval 0  t  0. 
A pattern < e1, I0, e2> means events e1 and e2 happen at the 
same time.  

Let e1, e2, e3 denote events. And let I1 and I2 denote two 
time intervals that do not overlap. Their frequent sequential 
patterns are of the form <e1, I1, e2, I2, e3>, which means that 
after the occurrence of event e1, event e2 would occur within 
time interval I1, and then event e3 would occur within time 
interval I2. A timed sequence is said to support a timed 
sequential pattern if the events in the sequential pattern also 
appear in the timed sequence with the same order and the time 
differences between adjacent events are within each 
corresponding interval. Based on checking the support counts 
of patterns occurring in each interval, they obtain the frequent 

patterns by extending the patterns step by step with an event 
and an interval.  

Their separate counting for partitioned (or non-overlapping) 
intervals makes it possible that the same transaction be 
counted as supports several times with different intervals, 
which makes the meaning of support counting unclear. On the 
other hand, due to separate support counting of disjoint time 
intervals, frequent patterns obtained in PrefixSpan might not 
pass the minimum support requirement. Thus, they would not 
be collected as frequent patterns in I-PrefixSpan. Additionally, 
their patterns could not capture the following intrinsic nature 
of “containment” relationship among time intervals: Suppose 
time point t1 < t2. An event happens within t1 implies that it 
also happens within t2.  

The length of the time intervals would affect the 
discovered results in I-PrefixSpan. If the length is set too long, 
then the timing information in the obtained patterns do not 
convey enough information. If the length is set too short, then 
most patterns would not pass the minimum threshold.  

In many applications, the existence of more than one in-
between time intervals in I-PrefixSpan is too detailed to make 
it useful. For example, in diagnosing a disease, after 
appearances of several symptoms, a doctor would rather be 
confident about symptoms would appear afterwards within 
certain time interval. Thus, we propose that in a timed 
sequential pattern, the prefix part of the event sequence does 
not have to include the timing information. Only the interval 
between the prefix and the last event needs to be specified. 

In our model, the user could specify the cut-off-time that 
he/she would like to collect timing information. Beyond the 
specified cut-off-time, they are only interested in whether the 
event would happen eventually. A timed pattern is of the form 
<, I, e>, where  is an event sequence, I is an interval of the 
form 0  t  ti for some time point ti, and e is the event 
happening after the occurrence of . We call such intervals 
accumulated intervals. They satisfy the intrinsic 
“containment” relationship. Concept of the accumulated 
intervals is illustrated in Figure 2. 

 

 

  Our model could handle the cut-off-time cases by setting 
the next-to-last interval as 0 < t   tc, for some cut-off-time tc, 
and setting the last interval as 0 < t <. Granularity of the 
time intervals could be adjusted based on the required 
accuracy level, and it would not split the support counting, 
which happened in I-PrefixSpan. 
 

B.   Model 
We use purchasing transactions of customers in a retail 

store as an example to explain the CAI-PrefixSpan algorithm. 

Fig. 2  Accumulated time intervals 

Fig. 1 Partitioned time intervals 



Given a set of items A, a timed sequence is represented as 
<(a1, t1), (a2, t2), …, (an, tn)>, where for all 1  j  n, tj-1  tj, aj 
is an item in A, and tj is the time point at which purchasing of 
aj occurs. Since a customer might purchase more than one 
item in a transaction, we model this kind of transaction by 
ordering the items alphabetically and by assigning the same 
time points for them. 

The accumulated intervals I0, I1, I2, … , Ir for a sequence of 
time points t0, t1, …, tr-1, tr  are defined as follows:  

 

 t0 = 0, tr = , and for all 1  i  r-1, ti < ti+1.  
 I0 is for purchasing events happening in the same 

transaction, that is t = 0. 
 Ij is used to denote that the time difference t between 

two items satisfies 0 < t  tj. 
 
Time point tr-1 is the cut-off-time. In the following, we will 

denote Ir, the only time interval that includes all the time after 
the cut-off-time, as I. The accumulated intervals satisfy the 
following containment property:  

 

 for all 1  i < r-1, Ii  Ii+1.  
 for all 1  i < r, a discovered pattern <, Ii, b> means 

after the event sequence , it is quite possible to 
purchase item b within interval Ii.  

 

In our model, when we have the extreme pattern <, I, b> 
but not <, Ir-1, b>, it means that starting from the last 
purchasing of the event sequence , after at least Ir-1, 
purchasing of  item b would happen with a guarantee above 
the  minimum confidence requirement. 
 
Definition 1: Let A = { a1, a2, …, am } be the set of all items 
and TI = { I0, …, Ir-1, I } be the set of all accumulated time 
intervals. A sequence X = <x1, x2, …, xk-1, I, xk> is a 
sequential pattern if for all 1  i   k, xi   A, and I  TI. 
The number of events in X, that is k, is called the length of X. 
 
Definition 2: A sequential pattern X is said to be contained in 
a sequence s=<(a1, t1), (a2, t2), …, (an, tn)>,, denoted as X  s, 
if exist integers 1  j1 < j2 …< jk  n such that: 
  

1. a1 = 
1j

x ,…, ak =
kj

x  

2. time difference 
1


kk jj tt is within the interval I. 

 
Definition 3: For a timed sequence database S, support count 
of a sequential pattern X with respect to S is defined as the 
number of sequences in which X is contained: 
 

support(X, S) = },|{ SssXs ididid   

 
A pattern X is called a frequent timed sequential pattern in a 
database S if support(X, S) is greater than the minimum 
support.  
 

Definition 4: Confidence of an event sequence  =<x1, 
x2, …,xk-1, xk>  is defined as follows: 

confidence() =
}|{

}|{

id1-k2-k21id

idk1-k21id

 s >x ,I ,x,… ,x ,x < s

 s >x ,I ,x,… ,x ,x < s






  

 
Confidence of  captures the percentage that the event xk 
happens after the occurrence of event sequence <x1,…, xk-1>. 
From the association rule mining, the confidence level is very 
important for applications.  
 
Definition 5: Confidence of a sequential pattern X =<x1, 
x2, …,xk-1, I, xk> is defined as the confidence of the event 
sequence  =<x1, x2, …,xk-1, xk>. 
 

Note that confidence of a sequential pattern is independent 
of its time interval I.  

In the extending phase of CAI-PrefixSpan algorithm, 
suppose we have found a pattern of the form <x1,x2…,I,xk-1>. 
We will first find the set of frequent items in the projected 

database
 12,1 ,..., kxxx

S . Then for each frequent item b, we first 

calculate the confidence level of the extended sequence <x1,…, 
xk-1, b>. They represent the percentage that item b are 
guaranteed to eventually happen after the event sequence 
<x1,…, xk-1>. For those items passing the requirement, we then 
calculate the minimal time interval that satisfies the minimum 
support requirement.  

With the concept of accumulated intervals, the support 
counting mechanism would be as follows: with the time 
interval as the row and the sequence id as the column, we 
check the containment of a sequential pattern with respect to 
each sequence for each accumulated interval. The entry would 
be 1 if an event occurs within that time interval. Note that if 
the entry for a time interval Ii is 1, then the entry for all 
intervals containing Ii would be 1. To explain the support 
counting mechanism, we use the sequential database in Table I.  

 
TABLE I 

Example Database for Minimal Time Interval Calculation 
Sequence id Timed Sequence 
10 <(a,3)(d,8)> 
20 <(a,1)(d,2)> 
30 <(a,4)(d,11)> 

 
Suppose I1: 0 < t  2, I2: 0< t  4, I3: 0 < t  6, I4:0 < t < , 

and the minimum support is 2. Starting with I0, from small to 
large accumulated intervals, we find the minimal accumulated 
interval satisfying the minimum support requirement. The 
calculation of minimal time interval satisfying minimal 
support of a sequence <a, d> is displayed in Table II. 

In Table II, I3 is the shortest accumulated interval satisfying 
the minimum support requirement. We thus obtain the 
sequential pattern <a, I3, d> for the sequence <a, d>. 

For data mining systems with a low minimal support 
threshold, the inclusion of the confidence constraints is not 
only to eliminate less confident patterns, but also to keep rare 
but important patterns.  

 



TABLE II 
Example Calculation of Minimal Time Interval 

id 
interval 

10 20 30 
Total 
support 

I0 0 0 0 0 
I1 0 1 0 1 
I2 0 1 0 1 
I3 1 1 0 2 
I4 1 1 1 3 
1: the sequence is in the accumulated interval 
0: the sequence is not in the accumulated interval 

 
 
C.    The CAI-PrefixSpan Algorithm 

We extend PrefixSpan with the confidence constraints in 
accumulated intervals to obtain the CAI-PrefixSpan algorithm. 
With the pattern growth approach, CAI-PrefixSpan would 
extend currently obtained patterns, one item at a time, with 
another frequent item. It would then impose the confidence 
constraint to ensure that the percentage of the eventual support 
of the newly generated patterns and that of the current patterns 
is greater than or equal to the minimum confidence threshold. 
Our support count would apply only to those patterns passing 
the constraints. 

In CAI-PrefixSpan, we would first scan the whole timed 
sequential database to record number of occurrences of each 
item. After eliminating those items with occurrence below the 
minimum support, we obtain level-one sequential patterns L1. 
Then we build the projected databases for each item in L1, and 
record the happening time of the item. For each event 
sequence, we would only record the one happening at the 
earliest time. That would prevent redundant support counting 
for a timed sequence. Then, in the projected databases, we 
would extend them with a frequent item, and calculate the 
confidence level of the resulting L2 sequence. If they pass the 
minimum confidence constraints, then we would perform their 
support counting mechanism for accumulated intervals. After 
that, projected databases for the extended sequences would be 
generated. The above procedures would be applied recursively 
to the projected databases until no more projected databases 
could be generated. 

 
Definition 6: Given an event sequence s=<(a1, t1), (a2, t2), …, 
(an, tn)> and a timed sequential pattern X=<(b1, b2, …, bk-1,, I, 
bk> ( for some k  n). Let i1 < i2 < … < is be the indexes of the 
elements in s that matches the elements of X.  A subsequence 
s’ = <(a’1,  t’1),  (a’2,  t’2), …,  (a’p,  t’p)> of s, where p = k + n - is, 
is called a projection of s with respect to X if and only if the 
last n-is elements of s’ are the same as the last n-is elements of 
s. 

 
Note that there might exist more than one projection 

sequences for a pair of event sequence and a timed sequential 
pattern. We would choose the one with the earliest occurrence 
time, which will contain all the relevant information. 

 
Definition 7: For a timed sequential pattern X, the set of 
projections of all sequences in the original database S with 

respect to X is called the projected database of S with respect 
to X, and is denoted as SX. 

 
Figure 3 and 4 display pseudo codes of the CAI-

PrefixSpan algorithm. Given timed sequential database S, we 
would call CAI-PrefixSpan(< >,S) to obtain the set of all 
timed sequential patterns. 

CAI-PrefixSpan(X, SX) 
Input: a sequential pattern X, projected timed-sequential 
database SX.  
// note that if X = “< >”, then SX = S 
Parameters: minimum support min_sup, minimum 
confidence min_conf,  set of accumulated intervals TI 
Output: All the frequent timed sequential patterns 
satisfying both the min_sup and min_conf conditions 
and with prefix equal to the event sequence in X 
Steps: 
1. Scan SX once to obtain all frequent items in SX 
2. for each frequent item b: 
  if X = “< >” then let X’ = <b>.  

    else { 
        let  be the event sequence in X  

append b to  to generate an extended sequence ’ 
if confidence(’)  min_conf, then { 

   I’= Get-TimeInterval(’)  //Figure 4 
  let X’ = <, I’, b> 

     } 
output X’  

  } 
  Build the projected database SX’ . 
  If SX’ is not , call CAI-PrefixSpan(X’, SX’) 

Function Get-TimeInterval() 
Input: an event sequence  =<x1, x2, …,xk-1, xk>  
Parameters: minimum support min_sup, set of 
accumulated intervals TI 
Output: the shortest accumulated interval I such that 
support (<x1, x2, …,xk-1, I, xk>)  min_sup 
Steps: 
For all I  TI, from small to large I 
 If support (<x1, x2, …,xk-1, I, xk>)  min_sup  then 
    return I 

EndFor 

Fig. 3 Pseudo codes of CAI-PrefixSpan 

Fig. 4 Pseudo code of Get-TimeInterval 



     We illustrate the CAI-PrefixSpan algorithm with the 
example database in Table III. Parameters   are    min_sup = 2,      
min_conf = 50%, and accumulated intervals I1: 0 < t  2, I2: 0 
< t  4, I3: 0 < t  6, I4:0  < t  < . 

Sequence id Timed Sequence 

10 <(b,1) , (a,3) , (e,4) , (b,6) , (e,6) > 

20 <(a,3), (b,4) , (e,4) , (b,7) , (e,9) > 

30 <(a,5), (c,8) , (a,10) , (e,10) , (a,11) , (c,14)> 

40 <(b,7) , (f,9) , (a,15) , (b,16) , (e17) , (f,17)> 

50 <(a,8) , (d,10) , (f,10) , (a,17) , (f,18)> 

 
Step 1: Obtain the set of all frequent items L1. The frequent 
items and their support counts are L1 = { a:5, b:3, e:4, f:2 }. 
 
Step 2: Build projected databases for each item in L1. Table 
IV shows the obtained projected databases. 
 

TABLE IV 
Projected Databases for Level 1 Sequential Patterns 

Prefix I
D 

Starting 
time 

Projected database 

<a> 10 
20 
30 
40 
50 

3 
3 
5 
15 
8 

< (e,4) , (b,6) , (e,6) > 
< (b,4) , (e,4) , (b,7) , (e,9) > 
< (c,8) , (a,10) , (e,10) , (a,11) , (c,14)> 
< (b,16) , (e,17) , (f,17)> 
< (d,10) , (f,10) , (a,17) , (f,18)> 

<b> 10 
20 
40 

1 
4 
7 

< (a,3) , (e,4) , (b,6) , (e,6) > 
< (e,4) , (b,7) , (e,9) > 
< (f9) , (a,15) , (b,16) , (e17) , (f,17)> 

<e> 10 
20 
30 
40 

4 
4 
10 
17 

< (b,6) , (e,6) > 
< (b,7) , (e,9) > 
< (a,11) , (c,14)> 
< (f,17)> 

<f> 40 
50 

9 
10 

< (a,15) , (b,16) , (e17) , (f,17)> 
< (a,17) , (f,18)> 

 
Step 3: Recursively call CAI-Prefix(X’, SX’) for each X’ with 
length 1. In the following, we use <a> as an example. 
 

Step 3.1 the set of all frequent items in S<a> are: { a:2, 
b :3, e:4, f:2 }. 

Step 3.2 Confidence constraint filtering: Since the 
confidence of <a,a> and <a,f> are both 2/5, which 
is less than min_conf. Therefore, only items b and e 
pass the 50% min_conf condition. Therefore, only 
event sequences <a,b> and <a,e> will be 
considered next. 

 
Step 4: Get-TimeInterval(’): Use <a,b> as an example. 
Table V shows the support counting for each accumulated 
interval. 
 
 
 
 

TABLE V 
Example Calculation of Minimal Time Interval for <a,b> 

 
From Table V, we could see that I1 is the shortest accumulated 
time interval  within which <a, b> satisfies the min_sup 
condition. Similarly, I1 is also the shortest accumulated time 
interval within which <a, e> satisfies the min_sup condition. 
Thus, we have the following level-2 patterns with prefix <a>: 
L2,<a> = { <a,I1,b>, <a,I1,e> }. 
 
Step 5: Recursively call CAI-Prefix(X’, SX’) for each X’ in L2. 
Using the same methods, we would obtain the set of all 
frequent patterns with prefix <a> : { <a, I1, b> , <a, I1., e> , 
<a, b, I0, e>, <a, e, I0, b> <a, b, I3, e> , <a, e, I2, b> , <a, e, 
I3., e> }. 
 
C.    Comparisons of PrefixSpan, I-PrefixSpan, and CAI-
PrefixSpan 
     
Table VI shows the results obtained from the PrefixSpan, I-
PrefixSpan, and CAI-PrefixSpan algorithms. With the 
partitioned time interval, the number of frequent patterns 
obtained from I-PrefixSpan is less than that from PrefixSpan. 
On the other hand, CAI-PrefixSpan only eliminate <a,a> and 
<a,f>, since they do not satisfy the min_conf constraint. 
Additionally, I-PrefixSpan would obtain patterns like <a, I1, 
e> and <a, I3, e>. On the other hand, with the concept of 
accumulated interval, CAI-PrefixSpan would only have <a, I1, 
e>, which implies for all I containing I1, <a, I, e> would hold.  

We could see from the comparison that unlike I-
PrefixSpan, CAI-PrefixSpan would not lose results obtained in 
PrefixSpan, except those that do not pass the min confidence 
condition.  

The pattern <a,(be)> obtained in PrefixSpan are now 
captured by the two timed sequential patterns in CAI-
PrefixSpan: <a, b, I0, e> and <a, e, I0, b>. The pattern 
<a,b,e> in PrefixSpan is not obtained in CAI-PrefixSpan, 
since  <a, b, I0, e> would cover <a, b, I, e> for all I. For cases 
that the users would like to distinguish between <a,(be)> and 
<a, b, e> in the timed sequential patterns, studies about 
handling the issues regarding combination of the 
“simultaneity” and “containment” relationships are under way.  

                              ID 
Interval 

10 20 40 
Total 

support 
I0 0 0 0 0 

I1 0 1 1 2 

I2 1 1 1 3 

I3 1 1 1 3 

I4 1 1 1 3 

TABLE III 
Example Database for CAI-SprefixSpan 



 
IV.   EXPERIMENTS 

 

To evaluate the performance and efficiency of CAI-
PrefixSpan, we implement CAI-PrefixSpan, along with 
PrefixSpan, in C++ under Windows XP Professional operating 
systems, with AM2 3800+ 2.01GHz CPU and 1G DRAM 
memory. The sequential databases are generated with the open 
source codes from the Quest project in IBM Almaden Lab. 
The starting time and the duration between two transactions in 
a sequence are produced with two Poisson distributions. 

We have three experiments with the following purposes: 
(1) Compare the performance and obtained patterns under 
different minimum support between CAI-PrefixSpan and 
PrefixSpan. (2) Examine the influence of database size to 
CAI-PrefixSpan and PrefixSpan to check the scalability of 
CAI-PrefixSpan. (3) Examine the influence of confidence to 
CAI-PrefixSpan with respect to performance and obtained 
patterns. The parameters we use in these experiments are in 
Table VII. 
 

Parameter Explanation 
D Number of sequences 
N Number of items 
C Average length of a sequence 
T Average number of items in a transaction  
S Average number of items in a sequential pattern 
I Average number of items in an association rule 

 

Experiment 1: With D=30000, N=1000, C=10, T=5, S=4, 
I=2.5, minimum confidence=20%, we have the performance 
and patterns for different minimum support displayed in 
Figure 5 and Figure 6. 

 

From Figure 5, we could find that execution time in CAI-
PrefixSpan is always smaller than that of PrefixSpan, 
especially when the minimum support is small. The reason is 
that CAI-PrefixSpan imposes the confidence constraints to 
filter out un-reliable patterns. Especially, the filtering in L2 
could reduce the number of projected databases dramatically. 
The smaller the minimum support, the more patterns obtained 
in L2 in PrefixSpan. The confidence constraints would reduce 
search space, and thus would reduce execution time. 

 
Experiment 2: With N=1000, C=10, T=5, S=8, I=2.5, 
minimum support = 0.01, minimum confidence=20%, we have 
the performance and number of obtained patterns for database 
size 10000 to 50000 displayed in Figure 7 and Figure 8. 
 

Algorithm Level of sequential patterns Total number 
of sequential 
patterns 1 2 3 

PrefixSpan <a> 
<b> 
<e> 
<f> 
 

<a,a> 
<a,b> 
<a,e> 
<a,f> 
<b,a> 
<b,b> 
<b,e> 
<(be)> 
<e,b> 
<f,a> 
<f,f> 

<a,(be)> 
<a,b,e> 
<a,e,b> 
<a,e,e> 
<b,a,b> 
<b,a,e> 
<b,a,b> 
<b,b,e> 
<f,a,f> 

24 

I-
PrefixSpan 

<a> 
<b> 
<e> 
<f> 
 

<a,I1, b> 
<a,I1, e> 
<a,I1, f> 
<a,I2,b> 
<a,I3,e> 
<b,I0, e> 
<b,I1, e> 
<b,I3,e> 
<f,I4, f> 

None 13 

CAI-
PrefixSpan 

<a> 
<b> 
<e> 
<f> 
 

<a,I1,b> 
<a,I1,e> 
<b,I4,a> 
<b,I3,b> 
<b,I0,e> 
<e,I0,b)> 
<e,I3,e> 
<f,I4,a> 
<f,I4, f> 

<a,b I0,e> 
<a,e I0,b> 
<a,e,I3,e> 
<b,a,I1,e> 
<b,a,I2,b> 
<b,b,I1,e> 
<f,a,I1, f> 

20 

TABLE  VI 
Comparison of Obtained Sequential Patterns 

TABLE  VII 
Parameters of the Experiment Databases 

Fig. 5 Comparison of Execution Time by Minimum Support 
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Fig. 6  Comparison of Number of Patterns by Minimum Support

Fig. 7  Comparison of Number of Patterns by Database Size 



 

From Figure 7, the slope for PrefixSpan is steeper than that 
for CAI-PrefixSpan. When the database size increases, the 
execution time of PrefixSpan would be affected severely. 
From Figure 8, in both PrefixSpan and CAI-PrefixSpan, the 
numbers of sequential patterns are about the same for different 
database sizes. However, for each database size, the difference 
in number of sequential patterns obtained by PrefixSpan and 
CAI-PrefixSpan is huge.  

Table VIII shows detailed number of sequential patterns 
with different lengths for database size = 10000, and minimum 
confidence=20%. 

 

Algorithm 
Level of Sequential patterns Total number 

of sequential 
patterns  1  2  3  4 

PrefixSpan 766 9201 6 1 9974 
CAI-PrefixSpan 766 109 1 None 876 

 
From Table VIII, we found that in PrefixSpan, there are 

9201 sequential patterns with length 2, while the minimum 
confidence of 20% in CAI-PrefixSpan would keep only 109 
sequential patterns. In this experiment, the filtering is caused 
from the parameters that the average number of items in a 
sequential pattern is 8, while Average number of items in an 
association rule is 2.5. 
 
Experiment 3: With D=30k, N=1k, C=10, S=4, minimum 
support = 0.005, we have the performance and number of 
obtained patterns for different minimum confidence. Figures 9 
and 10 shows the results for combinations of average number 
of items in a transaction (T) and average number of items in 
an association rule (I). 
 
From Figure 10, we found that when the minimum confidence 
level is increased from 0.2 to 0.4, the drop in number of 
patterns is more severe than the case from 0.4 to 0.6. However, 
the execution time reduction Figure 9 is not so obvious. In 
other words, requirements of minimum support and minimum 
confidence would affect each other. Users might have to try 
different combinations to find suitable parameters. 
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Fig. 9 Comparison of Execution Time by Average Number of Items in a 

Transaction and Number of Items in an Association Rule 
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Fig. 10 Comparison of Number of Patterns by Average Number of Items in a 

Transaction and Number of Items in an Association Rule 
 

V.   CONCLUSIONS 
 

    We proposed a new CAI-PrefixSpan algorithm to discover 
timed sequential patterns. We apply the confidence concept of 
association rules to filter the timed sequential patterns, so that 
the decision makers could be confident about the possibility of 
an event happening within certain time interval. With the CAI-
PrefixSpan algorithm, users could specify a looser minimal 
support requirement so that important and reliable sequential 
patterns would be discovered. The timed sequential patterns 
proposed supports the “within” relationship between shorter 
and longer time intervals. With the introduction of minimal 
confidence constraint, the performance of CAI-PrefixSpan is 
better than the PrefixSpan and I-PrefixSpan.    

Inheriting the advantage of PrefixSpan, CAI-PrefixSpan 
only needs to scan the database once. Additionally, through 
the recursive pattern growth, the requirement of confidence is 
checked in each extending. Therefore, when the support is low, 
CAI-PrefixSpan could eliminate huge numbers of sequential 
patterns with no reliable possibility of happening. When the 
database size is large, CAI-PrefixSpan may suffer from the 
shortage of memory. How to use distributed processing to ease 
up the memory burden would be an interesting future research 
topic. How to handle timing issues, like combination of the 
“simultaneity” and “containment” relationships, would need 
more investigation. Finally, applications of these timing 
related data mining algorithms in real cases are interesting. 
 
 

TABLE  VIII 
Comparisons of Number of Patterns in Each Level 
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