
Timed Sequential Pattern Mining Based on
Confidence in Accumulated Intervals

Chichang Jou, Huan-Jyh Shyur, Chih-Yu Yen

Department of Information Management, Tamkang University
151, Yingzhuan Rd.

Tamsui, New Taipei City 25137, Taiwan
cjou@mail.tku.edu.tw, {shyur, arlu.yen}@mail.im.tku.edu.tw

 Abstract- Many applications of sequential patterns require a
guarantee of a particular event happening within a period of time.
We propose CAI-PrefixSpan, a new data mining algorithm to
obtain confident timed sequential patterns from sequential
databases. Based on PrefixSpan, it takes advantage of the
pattern-growth approach. After a particular event sequence, it
would first calculate the confidence level regarding the eventual
occurrence of a particular event. For those pass the minimal
confidence requirement, it then computes the minimal time
interval that satisfies the support requirement. It then generates
corresponding projected databases, and applies itself recursively
on the projected databases. With the timing information, it
obtains fewer but more confident sequential patterns. CAI-
PrefixSpan is implemented along with PrefixSpan. They are
compared in terms of numbers of patterns obtained and
execution efficiency. Our effectiveness and performance study
shows that CAI-PrefixSpan is a valuable and efficient approach
in obtaining timed sequential patterns.

I. INTRODUCTION

 With the universal deployment of internet and computer
technologies, the amount of accumulated electronic data has
been growing exponentially. Sequential pattern mining is one
of the successful data mining endeavors that extracts implicit
information inside these data. It obtains frequent sequential
patterns of items satisfying the condition that the number of
their occurrences, called support, in the item sequence
database is greater than or equal to a given threshold, called
minimum support. The obtained frequent patterns could be
applied to analysis and decision making in applications like
time-series stock trend, medical diagnosis, web page traversal,
customer purchasing behavior, content signature of network
applications, etc.

The existing sequential pattern mining algorithms can be
separated into two categories: Apriori-like (candidate-
generation-and-test) approaches ([1],[2],[10]) and pattern-
growth approaches ([6],[8]). The PrefixSpan algorithm [8]
divides the database into smaller projected databases and
solves them recursively. Since no candidate sequence needs to
be generated, the database need not be scanned multiple times,
thus making it faster than Apriori-like algorithms.

A timed sequential pattern could provide more valuable
information than a conventional sequential pattern. The issue
of mining sequential patterns with time constraints was first
addressed in [10]. Three time constraints, minimum-gap,
maximum-gap and sliding time-window, were specified to

enhance the semantics of sequence discovery, and to make the
obtained patterns more actionable. Since then, several studies
about mining sequential patterns with miscellaneous time
constraints have been proposed.

In addition to the minimum support constraint, many
applications of sequential patterns need to be confident in
terms of the percentage of a specific event occurring within a
time interval. For example, after a customer’s purchasing of
products A and B, a retailer would like to know the percentage
that he/she would return to buy product C within a week. The
guarantee is often more important than the timing. Most users
are willing to extend the time interval to meet the minimal
confidence requirement. We thus propose to check the
percentage that a specific event happens eventually first. After
that is confirmed, then we calculate the minimum time
required to satisfy the minimum support requirement. We take
advantage of the fact that time intervals have an intrinsic
nature: suppose time point t1 < t2. Then for events guaranteed
to happen within t1, they are also guaranteed to happen within
t2. Previous tackles over timed sequential patterns failed to
capture this containment nature of accumulated time intervals.

Applying the pattern growth approach, we propose CAI-
PrefixSpan to handle the timed sequential pattern mining. A
pattern is extended by first satisfying a minimum confidence
requirement that certain event would happen eventually. Then,
we compute the minimal time interval that satisfies the
minimum support requirement. A projected database would
then be obtained for the sequence in the extended timed
sequential pattern.

CAI-PrefixSpan is implemented along with PrefixSpan.
They are compared in terms of numbers of patterns obtained
and execution efficiency. Our effectiveness and performance
study shows that CAI-PrefixSpan is a valuable and efficient
approach in obtaining timed sequential patterns.

The rest of this paper is organized as follows: Section II
reviews literature on sequential pattern mining and timed
sequential pattern mining. Section III describes CAI-
PrefixSpan. Section IV presents the experimental results.
Finally, Section V concludes and discusses future research.

II. RELATED WORK

Agrawal and Srikant [2] extended the frequent itemset
mining algorithm [1] for non-serial transactions to sequential
pattern mining for serial transactions. With their approach,
candidate frequent sequential patterns can be obtained by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225235392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

joining shorter frequent sequential patterns. Srikant and
Agrawal [10] then proposed the GSP (generalizations and
performance improvements) algorithm, which uses a breadth-
first search and bottom up method to obtain the frequent
subsequences. It also considers mining sequential patterns
with timing constraints regarding the minimal time gap,
maximal time gap, and sliding window size.
 Chen et al., [3] developed two algorithms (I-Apriori and I-
PrefixSpan) for mining time-interval sequential patterns. They
assumed the time interval has already been partitioned into a
set of fixed time intervals. Fiot et al. [4] utilized fuzzy set to
extend the time constraint to soft time constraints. They
defined temporal accuracy of a sequential pattern. To handle
these constraints while, they designed a data mining algorithm
based on sequence graphs. Masseglia et al. [7] considered
handling time constraints in the earlier stage of the data
mining process to provide better performance.
 Guyet and Quiniou [5] handled the problem of quantitative
temporal pattern extraction from temporal interval sequences
where events are qualified by a type and a numerical date and
duration. Yang et al. [11] adopted an efficient encoding
strategy to speed up the efficiency of processing period
segments in an event sequence, and combined with the
projection method to quickly find the partial periodic patterns
in the recursive process. Shyur et al. [9] proposed to discover
frequent sequential patterns with probability of inter arrival
time of consecutive items. They imposed minimum time-
probability constraint on sequential patterns, so that fewer but
more reliable patterns will be obtained.

III. CAI-PrefixSpan Algorithm

A. Introduction

Chen et al. [3] proposed I-PrefixSpan to partition time
intervals into several equal-length sub-intervals. Concept of
the partitioned time intervals could be illustrated in Figure 1.

In Figure 1, I0 represents the instantaneous interval 0  t  0.
A pattern < e1, I0, e2> means events e1 and e2 happen at the
same time.

Let e1, e2, e3 denote events. And let I1 and I2 denote two
time intervals that do not overlap. Their frequent sequential
patterns are of the form <e1, I1, e2, I2, e3>, which means that
after the occurrence of event e1, event e2 would occur within
time interval I1, and then event e3 would occur within time
interval I2. A timed sequence is said to support a timed
sequential pattern if the events in the sequential pattern also
appear in the timed sequence with the same order and the time
differences between adjacent events are within each
corresponding interval. Based on checking the support counts
of patterns occurring in each interval, they obtain the frequent

patterns by extending the patterns step by step with an event
and an interval.

Their separate counting for partitioned (or non-overlapping)
intervals makes it possible that the same transaction be
counted as supports several times with different intervals,
which makes the meaning of support counting unclear. On the
other hand, due to separate support counting of disjoint time
intervals, frequent patterns obtained in PrefixSpan might not
pass the minimum support requirement. Thus, they would not
be collected as frequent patterns in I-PrefixSpan. Additionally,
their patterns could not capture the following intrinsic nature
of “containment” relationship among time intervals: Suppose
time point t1 < t2. An event happens within t1 implies that it
also happens within t2.

The length of the time intervals would affect the
discovered results in I-PrefixSpan. If the length is set too long,
then the timing information in the obtained patterns do not
convey enough information. If the length is set too short, then
most patterns would not pass the minimum threshold.

In many applications, the existence of more than one in-
between time intervals in I-PrefixSpan is too detailed to make
it useful. For example, in diagnosing a disease, after
appearances of several symptoms, a doctor would rather be
confident about symptoms would appear afterwards within
certain time interval. Thus, we propose that in a timed
sequential pattern, the prefix part of the event sequence does
not have to include the timing information. Only the interval
between the prefix and the last event needs to be specified.

In our model, the user could specify the cut-off-time that
he/she would like to collect timing information. Beyond the
specified cut-off-time, they are only interested in whether the
event would happen eventually. A timed pattern is of the form
<, I, e>, where  is an event sequence, I is an interval of the
form 0  t  ti for some time point ti, and e is the event
happening after the occurrence of . We call such intervals
accumulated intervals. They satisfy the intrinsic
“containment” relationship. Concept of the accumulated
intervals is illustrated in Figure 2.

 Our model could handle the cut-off-time cases by setting
the next-to-last interval as 0 < t  tc, for some cut-off-time tc,
and setting the last interval as 0 < t <. Granularity of the
time intervals could be adjusted based on the required
accuracy level, and it would not split the support counting,
which happened in I-PrefixSpan.

B. Model
We use purchasing transactions of customers in a retail

store as an example to explain the CAI-PrefixSpan algorithm.

Fig. 2 Accumulated time intervals

Fig. 1 Partitioned time intervals

Given a set of items A, a timed sequence is represented as
<(a1, t1), (a2, t2), …, (an, tn)>, where for all 1  j  n, tj-1  tj, aj
is an item in A, and tj is the time point at which purchasing of
aj occurs. Since a customer might purchase more than one
item in a transaction, we model this kind of transaction by
ordering the items alphabetically and by assigning the same
time points for them.

The accumulated intervals I0, I1, I2, … , Ir for a sequence of
time points t0, t1, …, tr-1, tr are defined as follows:

 t0 = 0, tr = , and for all 1  i  r-1, ti < ti+1.
 I0 is for purchasing events happening in the same

transaction, that is t = 0.
 Ij is used to denote that the time difference t between

two items satisfies 0 < t  tj.

Time point tr-1 is the cut-off-time. In the following, we will

denote Ir, the only time interval that includes all the time after
the cut-off-time, as I. The accumulated intervals satisfy the
following containment property:

 for all 1  i < r-1, Ii  Ii+1.
 for all 1  i < r, a discovered pattern <, Ii, b> means

after the event sequence , it is quite possible to
purchase item b within interval Ii.

In our model, when we have the extreme pattern <, I, b>
but not <, Ir-1, b>, it means that starting from the last
purchasing of the event sequence , after at least Ir-1,
purchasing of item b would happen with a guarantee above
the minimum confidence requirement.

Definition 1: Let A = { a1, a2, …, am } be the set of all items
and TI = { I0, …, Ir-1, I } be the set of all accumulated time
intervals. A sequence X = <x1, x2, …, xk-1, I, xk> is a
sequential pattern if for all 1  i  k, xi  A, and I  TI.
The number of events in X, that is k, is called the length of X.

Definition 2: A sequential pattern X is said to be contained in
a sequence s=<(a1, t1), (a2, t2), …, (an, tn)>,, denoted as X  s,
if exist integers 1  j1 < j2 …< jk  n such that:

1. a1 =
1j

x ,…, ak =
kj

x

2. time difference
1


kk jj tt is within the interval I.

Definition 3: For a timed sequence database S, support count
of a sequential pattern X with respect to S is defined as the
number of sequences in which X is contained:

support(X, S) = },|{ SssXs ididid 

A pattern X is called a frequent timed sequential pattern in a
database S if support(X, S) is greater than the minimum
support.

Definition 4: Confidence of an event sequence  =<x1,
x2, …,xk-1, xk> is defined as follows:

confidence() =
}|{

}|{

id1-k2-k21id

idk1-k21id

 s >x ,I ,x,… ,x ,x < s

 s >x ,I ,x,… ,x ,x < s








Confidence of  captures the percentage that the event xk
happens after the occurrence of event sequence <x1,…, xk-1>.
From the association rule mining, the confidence level is very
important for applications.

Definition 5: Confidence of a sequential pattern X =<x1,
x2, …,xk-1, I, xk> is defined as the confidence of the event
sequence  =<x1, x2, …,xk-1, xk>.

Note that confidence of a sequential pattern is independent
of its time interval I.

In the extending phase of CAI-PrefixSpan algorithm,
suppose we have found a pattern of the form <x1,x2…,I,xk-1>.
We will first find the set of frequent items in the projected

database
 12,1 ,..., kxxx

S . Then for each frequent item b, we first

calculate the confidence level of the extended sequence <x1,…,
xk-1, b>. They represent the percentage that item b are
guaranteed to eventually happen after the event sequence
<x1,…, xk-1>. For those items passing the requirement, we then
calculate the minimal time interval that satisfies the minimum
support requirement.

With the concept of accumulated intervals, the support
counting mechanism would be as follows: with the time
interval as the row and the sequence id as the column, we
check the containment of a sequential pattern with respect to
each sequence for each accumulated interval. The entry would
be 1 if an event occurs within that time interval. Note that if
the entry for a time interval Ii is 1, then the entry for all
intervals containing Ii would be 1. To explain the support
counting mechanism, we use the sequential database in Table I.

TABLE I

Example Database for Minimal Time Interval Calculation
Sequence id Timed Sequence
10 <(a,3)(d,8)>
20 <(a,1)(d,2)>
30 <(a,4)(d,11)>

Suppose I1: 0 < t  2, I2: 0< t  4, I3: 0 < t  6, I4:0 < t < ,

and the minimum support is 2. Starting with I0, from small to
large accumulated intervals, we find the minimal accumulated
interval satisfying the minimum support requirement. The
calculation of minimal time interval satisfying minimal
support of a sequence <a, d> is displayed in Table II.

In Table II, I3 is the shortest accumulated interval satisfying
the minimum support requirement. We thus obtain the
sequential pattern <a, I3, d> for the sequence <a, d>.

For data mining systems with a low minimal support
threshold, the inclusion of the confidence constraints is not
only to eliminate less confident patterns, but also to keep rare
but important patterns.

TABLE II
Example Calculation of Minimal Time Interval

id
interval

10 20 30
Total
support

I0 0 0 0 0
I1 0 1 0 1
I2 0 1 0 1
I3 1 1 0 2
I4 1 1 1 3
1: the sequence is in the accumulated interval
0: the sequence is not in the accumulated interval

C. The CAI-PrefixSpan Algorithm

We extend PrefixSpan with the confidence constraints in
accumulated intervals to obtain the CAI-PrefixSpan algorithm.
With the pattern growth approach, CAI-PrefixSpan would
extend currently obtained patterns, one item at a time, with
another frequent item. It would then impose the confidence
constraint to ensure that the percentage of the eventual support
of the newly generated patterns and that of the current patterns
is greater than or equal to the minimum confidence threshold.
Our support count would apply only to those patterns passing
the constraints.

In CAI-PrefixSpan, we would first scan the whole timed
sequential database to record number of occurrences of each
item. After eliminating those items with occurrence below the
minimum support, we obtain level-one sequential patterns L1.
Then we build the projected databases for each item in L1, and
record the happening time of the item. For each event
sequence, we would only record the one happening at the
earliest time. That would prevent redundant support counting
for a timed sequence. Then, in the projected databases, we
would extend them with a frequent item, and calculate the
confidence level of the resulting L2 sequence. If they pass the
minimum confidence constraints, then we would perform their
support counting mechanism for accumulated intervals. After
that, projected databases for the extended sequences would be
generated. The above procedures would be applied recursively
to the projected databases until no more projected databases
could be generated.

Definition 6: Given an event sequence s=<(a1, t1), (a2, t2), …,
(an, tn)> and a timed sequential pattern X=<(b1, b2, …, bk-1,, I,
bk> (for some k  n). Let i1 < i2 < … < is be the indexes of the
elements in s that matches the elements of X. A subsequence
s’ = <(a’1, t’1), (a’2, t’2), …, (a’p, t’p)> of s, where p = k + n - is,
is called a projection of s with respect to X if and only if the
last n-is elements of s’ are the same as the last n-is elements of
s.

Note that there might exist more than one projection

sequences for a pair of event sequence and a timed sequential
pattern. We would choose the one with the earliest occurrence
time, which will contain all the relevant information.

Definition 7: For a timed sequential pattern X, the set of
projections of all sequences in the original database S with

respect to X is called the projected database of S with respect
to X, and is denoted as SX.

Figure 3 and 4 display pseudo codes of the CAI-

PrefixSpan algorithm. Given timed sequential database S, we
would call CAI-PrefixSpan(< >,S) to obtain the set of all
timed sequential patterns.

CAI-PrefixSpan(X, SX)
Input: a sequential pattern X, projected timed-sequential
database SX.
// note that if X = “< >”, then SX = S
Parameters: minimum support min_sup, minimum
confidence min_conf, set of accumulated intervals TI
Output: All the frequent timed sequential patterns
satisfying both the min_sup and min_conf conditions
and with prefix equal to the event sequence in X
Steps:
1. Scan SX once to obtain all frequent items in SX
2. for each frequent item b:
 if X = “< >” then let X’ = .

 else {
 let  be the event sequence in X

append b to  to generate an extended sequence ’
if confidence(’)  min_conf, then {

 I’= Get-TimeInterval(’) //Figure 4
 let X’ = <, I’, b>

 }
output X’

 }
 Build the projected database SX’ .
 If SX’ is not , call CAI-PrefixSpan(X’, SX’)

Function Get-TimeInterval()
Input: an event sequence  =<x1, x2, …,xk-1, xk>
Parameters: minimum support min_sup, set of
accumulated intervals TI
Output: the shortest accumulated interval I such that
support (<x1, x2, …,xk-1, I, xk>)  min_sup
Steps:
For all I  TI, from small to large I
 If support (<x1, x2, …,xk-1, I, xk>)  min_sup then
 return I

EndFor

Fig. 3 Pseudo codes of CAI-PrefixSpan

Fig. 4 Pseudo code of Get-TimeInterval

 We illustrate the CAI-PrefixSpan algorithm with the
example database in Table III. Parameters are min_sup = 2,
min_conf = 50%, and accumulated intervals I1: 0 < t  2, I2: 0
< t  4, I3: 0 < t  6, I4:0 < t < .

Sequence id Timed Sequence

10 <(b,1) , (a,3) , (e,4) , (b,6) , (e,6) >

20 <(a,3), (b,4) , (e,4) , (b,7) , (e,9) >

30 <(a,5), (c,8) , (a,10) , (e,10) , (a,11) , (c,14)>

40 <(b,7) , (f,9) , (a,15) , (b,16) , (e17) , (f,17)>

50 <(a,8) , (d,10) , (f,10) , (a,17) , (f,18)>

Step 1: Obtain the set of all frequent items L1. The frequent
items and their support counts are L1 = { a:5, b:3, e:4, f:2 }.

Step 2: Build projected databases for each item in L1. Table
IV shows the obtained projected databases.

TABLE IV
Projected Databases for Level 1 Sequential Patterns

Prefix I
D

Starting
time

Projected database

<a> 10
20
30
40
50

3
3
5
15
8

< (e,4) , (b,6) , (e,6) >
< (b,4) , (e,4) , (b,7) , (e,9) >
< (c,8) , (a,10) , (e,10) , (a,11) , (c,14)>
< (b,16) , (e,17) , (f,17)>
< (d,10) , (f,10) , (a,17) , (f,18)>

 10
20
40

1
4
7

< (a,3) , (e,4) , (b,6) , (e,6) >
< (e,4) , (b,7) , (e,9) >
< (f9) , (a,15) , (b,16) , (e17) , (f,17)>

<e> 10
20
30
40

4
4
10
17

< (b,6) , (e,6) >
< (b,7) , (e,9) >
< (a,11) , (c,14)>
< (f,17)>

<f> 40
50

9
10

< (a,15) , (b,16) , (e17) , (f,17)>
< (a,17) , (f,18)>

Step 3: Recursively call CAI-Prefix(X’, SX’) for each X’ with
length 1. In the following, we use <a> as an example.

Step 3.1 the set of all frequent items in S<a> are: { a:2,
b :3, e:4, f:2 }.

Step 3.2 Confidence constraint filtering: Since the
confidence of <a,a> and <a,f> are both 2/5, which
is less than min_conf. Therefore, only items b and e
pass the 50% min_conf condition. Therefore, only
event sequences <a,b> and <a,e> will be
considered next.

Step 4: Get-TimeInterval(’): Use <a,b> as an example.
Table V shows the support counting for each accumulated
interval.

TABLE V
Example Calculation of Minimal Time Interval for <a,b>

From Table V, we could see that I1 is the shortest accumulated
time interval within which <a, b> satisfies the min_sup
condition. Similarly, I1 is also the shortest accumulated time
interval within which <a, e> satisfies the min_sup condition.
Thus, we have the following level-2 patterns with prefix <a>:
L2,<a> = { <a,I1,b>, <a,I1,e> }.

Step 5: Recursively call CAI-Prefix(X’, SX’) for each X’ in L2.
Using the same methods, we would obtain the set of all
frequent patterns with prefix <a> : { <a, I1, b> , <a, I1., e> ,
<a, b, I0, e>, <a, e, I0, b> <a, b, I3, e> , <a, e, I2, b> , <a, e,
I3., e> }.

C. Comparisons of PrefixSpan, I-PrefixSpan, and CAI-
PrefixSpan

Table VI shows the results obtained from the PrefixSpan, I-
PrefixSpan, and CAI-PrefixSpan algorithms. With the
partitioned time interval, the number of frequent patterns
obtained from I-PrefixSpan is less than that from PrefixSpan.
On the other hand, CAI-PrefixSpan only eliminate <a,a> and
<a,f>, since they do not satisfy the min_conf constraint.
Additionally, I-PrefixSpan would obtain patterns like <a, I1,
e> and <a, I3, e>. On the other hand, with the concept of
accumulated interval, CAI-PrefixSpan would only have <a, I1,
e>, which implies for all I containing I1, <a, I, e> would hold.

We could see from the comparison that unlike I-
PrefixSpan, CAI-PrefixSpan would not lose results obtained in
PrefixSpan, except those that do not pass the min confidence
condition.

The pattern <a,(be)> obtained in PrefixSpan are now
captured by the two timed sequential patterns in CAI-
PrefixSpan: <a, b, I0, e> and <a, e, I0, b>. The pattern
<a,b,e> in PrefixSpan is not obtained in CAI-PrefixSpan,
since <a, b, I0, e> would cover <a, b, I, e> for all I. For cases
that the users would like to distinguish between <a,(be)> and
<a, b, e> in the timed sequential patterns, studies about
handling the issues regarding combination of the
“simultaneity” and “containment” relationships are under way.

 ID
Interval

10 20 40
Total

support
I0 0 0 0 0

I1 0 1 1 2

I2 1 1 1 3

I3 1 1 1 3

I4 1 1 1 3

TABLE III
Example Database for CAI-SprefixSpan

IV. EXPERIMENTS

To evaluate the performance and efficiency of CAI-
PrefixSpan, we implement CAI-PrefixSpan, along with
PrefixSpan, in C++ under Windows XP Professional operating
systems, with AM2 3800+ 2.01GHz CPU and 1G DRAM
memory. The sequential databases are generated with the open
source codes from the Quest project in IBM Almaden Lab.
The starting time and the duration between two transactions in
a sequence are produced with two Poisson distributions.

We have three experiments with the following purposes:
(1) Compare the performance and obtained patterns under
different minimum support between CAI-PrefixSpan and
PrefixSpan. (2) Examine the influence of database size to
CAI-PrefixSpan and PrefixSpan to check the scalability of
CAI-PrefixSpan. (3) Examine the influence of confidence to
CAI-PrefixSpan with respect to performance and obtained
patterns. The parameters we use in these experiments are in
Table VII.

Parameter Explanation
D Number of sequences
N Number of items
C Average length of a sequence
T Average number of items in a transaction
S Average number of items in a sequential pattern
I Average number of items in an association rule

Experiment 1: With D=30000, N=1000, C=10, T=5, S=4,
I=2.5, minimum confidence=20%, we have the performance
and patterns for different minimum support displayed in
Figure 5 and Figure 6.

From Figure 5, we could find that execution time in CAI-
PrefixSpan is always smaller than that of PrefixSpan,
especially when the minimum support is small. The reason is
that CAI-PrefixSpan imposes the confidence constraints to
filter out un-reliable patterns. Especially, the filtering in L2
could reduce the number of projected databases dramatically.
The smaller the minimum support, the more patterns obtained
in L2 in PrefixSpan. The confidence constraints would reduce
search space, and thus would reduce execution time.

Experiment 2: With N=1000, C=10, T=5, S=8, I=2.5,
minimum support = 0.01, minimum confidence=20%, we have
the performance and number of obtained patterns for database
size 10000 to 50000 displayed in Figure 7 and Figure 8.

Algorithm Level of sequential patterns Total number
of sequential
patterns 1 2 3

PrefixSpan <a>

<e>
<f>

<a,a>
<a,b>
<a,e>
<a,f>
<b,a>
<b,b>
<b,e>
<(be)>
<e,b>
<f,a>
<f,f>

<a,(be)>
<a,b,e>
<a,e,b>
<a,e,e>
<b,a,b>
<b,a,e>
<b,a,b>
<b,b,e>
<f,a,f>

24

I-
PrefixSpan

<a>

<e>
<f>

<a,I1, b>
<a,I1, e>
<a,I1, f>
<a,I2,b>
<a,I3,e>
<b,I0, e>
<b,I1, e>
<b,I3,e>
<f,I4, f>

None 13

CAI-
PrefixSpan

<a>

<e>
<f>

<a,I1,b>
<a,I1,e>
<b,I4,a>
<b,I3,b>
<b,I0,e>
<e,I0,b)>
<e,I3,e>
<f,I4,a>
<f,I4, f>

<a,b I0,e>
<a,e I0,b>
<a,e,I3,e>
<b,a,I1,e>
<b,a,I2,b>
<b,b,I1,e>
<f,a,I1, f>

20

TABLE VI
Comparison of Obtained Sequential Patterns

TABLE VII
Parameters of the Experiment Databases

Fig. 5 Comparison of Execution Time by Minimum Support

D30k-N1k-C10-T5-S4-I2.5

0

200

400

600

800

0.01 0.015 0.02 0.025

minimum support

ru
n
ti
m

e(
se

c)

PrefixSpan

20% CTP

D30k-N1k-C10-T5-S4-I2.5

0

3000

6000

9000

12000

0.01 0.015 0.02 0.025
minimum support

nu
m

be
r
of

 f
re

qu
en

t
pa

tt
er

n PrefixSpan

20% CTP

0

200

400

600

800

1000

10000 30000 50000
number of sequence

ru
nt

im
e(

se
c)

PrefixSpan
20% CTP

Fig. 6 Comparison of Number of Patterns by Minimum Support

Fig. 7 Comparison of Number of Patterns by Database Size

From Figure 7, the slope for PrefixSpan is steeper than that
for CAI-PrefixSpan. When the database size increases, the
execution time of PrefixSpan would be affected severely.
From Figure 8, in both PrefixSpan and CAI-PrefixSpan, the
numbers of sequential patterns are about the same for different
database sizes. However, for each database size, the difference
in number of sequential patterns obtained by PrefixSpan and
CAI-PrefixSpan is huge.

Table VIII shows detailed number of sequential patterns
with different lengths for database size = 10000, and minimum
confidence=20%.

Algorithm
Level of Sequential patterns Total number

of sequential
patterns 1 2 3 4

PrefixSpan 766 9201 6 1 9974
CAI-PrefixSpan 766 109 1 None 876

From Table VIII, we found that in PrefixSpan, there are

9201 sequential patterns with length 2, while the minimum
confidence of 20% in CAI-PrefixSpan would keep only 109
sequential patterns. In this experiment, the filtering is caused
from the parameters that the average number of items in a
sequential pattern is 8, while Average number of items in an
association rule is 2.5.

Experiment 3: With D=30k, N=1k, C=10, S=4, minimum
support = 0.005, we have the performance and number of
obtained patterns for different minimum confidence. Figures 9
and 10 shows the results for combinations of average number
of items in a transaction (T) and average number of items in
an association rule (I).

From Figure 10, we found that when the minimum confidence
level is increased from 0.2 to 0.4, the drop in number of
patterns is more severe than the case from 0.4 to 0.6. However,
the execution time reduction Figure 9 is not so obvious. In
other words, requirements of minimum support and minimum
confidence would affect each other. Users might have to try
different combinations to find suitable parameters.

0

50

100

150

200

250

300

350

0.2 0.4 0.6
minimum confidence

ru
nt

im
e(

se
c) T2.5-I1.25

T5-I1.25

T5-I2.5

Fig. 9 Comparison of Execution Time by Average Number of Items in a

Transaction and Number of Items in an Association Rule

0

1000

2000

3000

4000

5000

6000

7000

8000

0.2 0.4 0.6

minimum confidence

nu
m

be
r

of
 f

re
qu

en
t

pa
tt

er
n

T2.5-I1.25

T5-I1.25

T5-I2.5

Fig. 10 Comparison of Number of Patterns by Average Number of Items in a

Transaction and Number of Items in an Association Rule

V. CONCLUSIONS

 We proposed a new CAI-PrefixSpan algorithm to discover
timed sequential patterns. We apply the confidence concept of
association rules to filter the timed sequential patterns, so that
the decision makers could be confident about the possibility of
an event happening within certain time interval. With the CAI-
PrefixSpan algorithm, users could specify a looser minimal
support requirement so that important and reliable sequential
patterns would be discovered. The timed sequential patterns
proposed supports the “within” relationship between shorter
and longer time intervals. With the introduction of minimal
confidence constraint, the performance of CAI-PrefixSpan is
better than the PrefixSpan and I-PrefixSpan.

Inheriting the advantage of PrefixSpan, CAI-PrefixSpan
only needs to scan the database once. Additionally, through
the recursive pattern growth, the requirement of confidence is
checked in each extending. Therefore, when the support is low,
CAI-PrefixSpan could eliminate huge numbers of sequential
patterns with no reliable possibility of happening. When the
database size is large, CAI-PrefixSpan may suffer from the
shortage of memory. How to use distributed processing to ease
up the memory burden would be an interesting future research
topic. How to handle timing issues, like combination of the
“simultaneity” and “containment” relationships, would need
more investigation. Finally, applications of these timing
related data mining algorithms in real cases are interesting.

TABLE VIII
Comparisons of Number of Patterns in Each Level

0

2000

4000

6000

8000

10000

12000

10000 30000 50000
number of sequence

nu
m

be
r
of

 f
re

qu
en

t
pa

tt
er

n

PrefixSpan

20% CTP

Fig. 8 Comparison of Number of Patterns by Database Size

REFERENCES

[1] Agrawal, R., and Srikant, R., 1994, Fast algorithms for mining

association rules, Proc. of International Conference on Very Large Data
Bases Conference, pp. 487–499.

[2] Agrawal, R., and Srikant, R., 1995, Mining sequential patterns, Proc. of
International Conference on Data Engineering (ICDE’95), pp. 3–14.

[3] Chen, Y.L., Chiang, M.C., Ko, M.T., 2003. Discovering time-interval
sequential patterns in sequence databases. Expert Systems with
Applications 25, 343–354.

[4] Fiot, C., Laurent,A., Teisseire, M., 2007, Extended Time Constraints for
Sequence Mining, Proc. of the 14th International Symposium on
Temporal Representation and Reasoning, pp. 105—116.

[5] Guyet, T., and Quiniou, R., 2011, Extracting Temporal Patterns from
Interval-Based Sequences, Proc. of the 22nd International Joint
Conference on Artificial Intelligence, pp. 1306-1311.

[6] Han, J., Pei, J., Yin, Y., 2000. Mining frequent patterns without candidate
generation, Proc. of International Conference on Management of Data,
pp. 1–12.

[7] Masseglia, F., Poncelet, P., Teisseire, M., 2009. Efficient mining of
sequential patterns with time constraints: reducing the combinations.
Expert Systems with Applications 36 (2), 2677–2690.

[8] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal,
U., Hsu, M.C., 2004. Mining sequential patterns by pattern-growth: the
prefixspan approach. IEEE Transactions on Knowledge and Data
Engineering 16, 1424–1440.

[9] Shyur,H., Jou,C., Chang, K., 2013. A data mining approach to
discovering reliable sequential patterns. Journal of Systems and
Software 86(8), 2196–2203.

[10] Srikant, R., Agrawal, R., 1996. Mining sequential patterns:
generalizations and performance improvements, Proceedings of the 5th
International Conference on Extending Database Technology, pp. 3–17.

[11] Yang, K., Hong, T., Chen, Y., Lan, G., 2013. Projection-based partial
periodic pattern mining for event sequences, Expert Systems with
Applications 40, p. 4231—p.4240.

