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a b s t r a c t

This paper describes a novel design of an on-line Takagi–Sugeno (T–S) fuzzy-neural controller for a
class of general multiple input multiple output (MIMO) systems with unknown nonlinear functions
and external disturbances. Instead of modeling the unknown systems directly, the T–S fuzzy-neural
model approximates a virtual linearized system (VLS) of a real system with modeling errors and external
disturbances. Comparedwith previous approaches, themain contribution of this paper is an investigation
of more general MIMO unknown systems using on-line adaptive T–S fuzzy-neural controllers. In this
paper, we also use projection update laws, which generalize the projection algorithm, to tune the
adjustable parameters. This prevents parameter drift and ensures that the parameter matrix is bounded
away from singularity. We prove that the closed-loop system controlled by the proposed controller is
robust stable and the effect of all the modeling errors and external disturbances on the tracking error
can be attenuated. Finally, two examples covering four cases are simulated in order to confirm the
effectiveness and applicability of the proposed approach in this paper.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The Takagi–Sugeno (T–S) fuzzy approach (Takagi & Sugeno,
1985) has been extensively used to model nonlinear systems.
Two methods are often employed to construct T–S fuzzy models,
namely approximated modeling (Tanaka, Iwasaki, & Wang, 2001)
using local linearization techniques, and exactmodeling (Lian, Chi-
ang, Chiu, & Liu, 2001) using nonlinear combination techniques. In
Cao, Rees, and Feng (1997) and Feng, Cao, Rees, and Chak (1997),
the authors proved that the T–S fuzzy system can approximate any
continuous function to any precision. Many studies (Chien, Wang,
Li, & Su, 2006; Lam & Leung, 2007; Lee, Kuo & Wang, 2004) com-
bining fuzzy logic with neural networks, called fuzzy-neural net-
works, have been carried out to improve the efficiency of function
approximation. This paper is focused on stability analysis and con-
troller design of on-line T–S fuzzy-neural control for general un-
known nonaffine nonlinear systems.

I This work was supported by the National Science Council, Taiwan, under Grant
NSC 97-2628-E-003-002-MY2. The material in this paper was not presented at
any conference. This paper was recommended for publication in revised form by
Associate Editor Kazuo Tanaka under the direction of Editor Toshiharu Sugie.
∗ Corresponding author. Tel.: +886 2 77343536; fax: +886 2 22428155.
E-mail addresses:wywang@ntnu.edu.tw, wayne@mail.fju.edu.tw

(W.-Y. Wang), t6319007@ntut.edu.tw (Y.-H. Chien).

0005-1098/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2010.02.024
Recently, some adaptive control schemes for nonlinear systems
via fuzzy-neural networks have been proposed (Leu, Wang, & Lee,
2005;Wang, Cheng, & Leu, 2004). By using thewell-known off-line
tuning algorithms, an initial fuzzy-neural model with adjustable
parameters can be constructed for unknown nonlinear systems.
However, the derived fuzzy-neural model with the off-line tuned
parameters cannot cope with parameter changes arising from
external disturbances (Park & Cho, 2004). Thus, off-line algorithms
cannot be applied to situations where real-time processing is
required, such as adaptive control and signal processing. In Hou,
Liao, and Yan (2007), Lam and Leung (2007) and Wang, Tanaka,
and Griffin (1996), the stabilization problem for the systems
represented in T–S fuzzy-neuralmodelswas addressed, but studies
concerning tracking controller design based on T–S fuzzy-neural
models for unknown nonlinear systems are relatively few. In Lin,
Wang, and Lee (2006) and Park and Cho (2004), the authors only
consider the stabilization problem for affine systems. Moreover,
theoretical justification development presented in Leu, Wang, and
Lee (1999) and Wang et al. (1996) is valid only for SISO nonlinear
systems and so is hardly practical in real applications such as the
trajectory control of robot manipulators and space vehicles.
In Park and Cho (2004) and Zheng, Wang, and Lee (2002),

adaptive fuzzy controllers were developed for a nonlinear dyna-
mical system. Unfortunately, the singularity of the parameter
matrixwas not discussed. It iswell known that for a general update
law, the denominator of the multinomial may be singular at some
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Fig. 1. Configuration of a fuzzy-neural approximator.
time which leads to infeasibility of the controller design. Thus,
further improvement for the design algorithm is required, not
only to attenuate the effects caused by the unmodeled dynamics,
external disturbances, and modeling errors by using adaptive
update laws, but also to tune the adjustable parameters for
preventing parameter drift and ensuring the parameter matrix is
bounded away from singularity.
It is therefore the objective of this paper to develop a novel

method for more general MIMO unknown systems by using on-
line adaptive T–S fuzzy-neural control. We prove that the closed-
loop system controlled by the proposed controller is robust stable
and the outputs of the system can asymptotically track the desired
output trajectories.
Section 2 describes the T–S fuzzy-neural model and fuzzy-

neural networks. Section 3 introduces the T–S fuzzy-neural model
for virtual linearized systems (VLS). Section 4 presents a controller
design for on-line modeling and robust tracking by using projec-
tion update laws. Several examples are illustrated in Section 5.
Conclusions are drawn in Section 6.

2. T–S fuzzy-neural model

There are several ways to model a system by applying fuzzy
techniques, such as the Mamdani model, the Takagi–Sugeno (T–S)
model and combinations of these models. Mamdani was the
first practical application of fuzzy logic control that implemented
Zadeh’s fuzzy theory. The T–S model was first introduced in 1985
by the Japanese scholars Takagi and Sugeno (1985). T–S fuzzy
systems are nonlinear systems described by a set of IF-THEN rules.
Such a model can approximate a wide class of nonlinear systems.
Fig. 1 shows the configuration of the T–S fuzzy-neural model

(Leu et al., 1999), which is a typical T–S fuzzy inference system
(Takagi & Sugeno, 1985) constructed from a neural network
structure. It has a total of six layers. The T–S fuzzy-neural model
is essentially a multi-model approach in which a set of linear
models are combined to describe the global behavior of the
system (Leu et al., 1999; Yen, Wang, & Gillespie, 1998). The T–S
fuzzy-neural model is appropriate for developing fuzzy-neural
controllers becausemany systems can be expressed locally in some
form of linear mathematical model. The T–S fuzzy-neural model
approximates a nonlinear system with a combination of several
linear systems. It is formed by fuzzy partitioning of the input space.
The premise of a fuzzy implication indicates a fuzzy subspace of the
input space and each consequent expresses a local input–output
relation in the subspace corresponding to the premise part (Park &
Cho, 2004). The T–S fuzzy-neural model is defined as

R(i) : If z1 is F i1 and · · · zn is F
i
n and · · · zn+m is F

i
n+m

Then ȳl = pil1z1 + p
i
l2z2 + · · · + p

i
l(n+m)zn+m

(1)

where z = [z1 z2 · · · zn+m]T ∈ <n+m is a vector of linguistic
variables, ȳl represents the output of the fuzzy-neural network,
F ij (j = 1, 2, . . . , n+m) are fuzzy sets, and p

i
lk (i = 1, 2, . . . , h, l =

1, 2, . . . , n, k = 1, 2, . . . , n+m) are adjustable parameters which
are called the weighting factors.

3. T–S fuzzy-neural model for virtual linearized system (VLS)

Suppose that the general MIMO unknown nonaffine nonlinear
system is

ẋ1 = f1(x,u)+ dd1
ẋ2 = f2(x,u)+ dd2
...
ẋn = fn(x,u)+ ddn

(2)

where x = [x1 x2 · · · xn]T ∈ <n denotes the state vector;
u = [u1 u2 · · · um]T ∈ <mis the input vector; dd =
[dd1 dd2 · · · ddn]T represents external disturbances; fi : <n+m

→ <
1 (i = 1, 2, . . . , n) are unknown functions whose first

derivativeswith respect to x andu exist.Without loss of generality,
we assume a solution for (2) exists. The control objective is to steer
all the states in x = [x1 x2 · · · xn]T to asymptotically track
the virtual desired variables xr = [xr1 xr2 · · · xrn]T .

Definition 1. Suppose a function f is continuous in the closed
interval [x̄, x] and differentiable in the interval’s interior (x̄, x),
where x̄ = t1x, 0 < t1 < 1. Then for some x∗ between (x̄, x), we
have f ′(x∗) = (f (x)− f (x̄))/(x− x̄). We call x̄ a critical point and x∗
a differential mean point of f on (x̄, x). Fig. 2 shows an illustration
of the mean value theorem (Grossman & Derrick, 1998).

By using the mean value theorem (Vidyasagar, 1993), there
are points x∗ij (i = 1, 2, . . . , n, j = 1, 2, . . . , n) and u∗ik (i =
1, 2, . . . , n, k = 1, 2, . . . ,m) in the linear segments joining xj
to x̄j (j = 1, 2, . . . , n) and uk to ūk (k = 1, 2, . . . ,m) for every
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3)
ẋ =


f1(x̄, ū)
f2(x̄, ū)
...

fn(x̄, ū)

+

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 xξ +

b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
. . .

...
bn1 bn2 . . . bnm

uξ + dd

=


f1(x̄, ū)(x1 − x̄1)−1 + a11 a12 . . . a1n

a21 f2(x̄, ū)(x2 − x̄2)−1 + a22 . . . a2n
...

...
. . .

...

an1 an2 . . . fn(x̄, ū)(xn − x̄n)−1 + ann

 xξ

+


b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
. . .

...
bn1 bn2 . . . bnm

uξ + dd

=


a′11 a′12 . . . a′1n
a′21 a′22 . . . a′2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn

 xξ +

b11 b12 . . . b1m
b21 b22 . . . b2m
...

...
. . .

...
bn1 bn2 . . . bnm

uξ + dd
= Axξ + Buξ + dd (

Box I.
Fig. 2. The illustration of the mean value theorem.

function fi (i = 1, 2, . . . , n). Therefore, the unknown nonaffine
nonlinear functions can be formed as follows:

fi(x,u) = fi(x̄, ū)+
∂ fi(x∗i ,u

∗

i )

∂x1
(x1 − x̄1)+

∂ fi(x∗i , u
∗

i )

∂x2
(x2 − x̄2)

+ · · · +
∂ fi(x∗i , u

∗

i )

∂xn
(xn − x̄n)+

∂ fi(x∗i , u
∗

i )

∂u1
(u1 − ū1)

+
∂ fi(x∗i ,u

∗

i )

∂u2
(u2 − ū2)+ · · · +

∂ fi(x∗i , u
∗

i )

∂um
(um − ūm)

where x∗i = [x
∗

i1 x
∗

i2 · · · x
∗

in]
T and u∗i = [u

∗

i1 u
∗

i2 · · · u
∗

im]
T are

mean points of fi (i = 1, 2, . . . , n). Note that we can get different
mean value points x∗i (i = 1, 2, . . . , n) and u

∗

i (i = 1, 2, . . . , n) for
different functions.
Thus, we can transform the real system (2) into (3) by a

virtual linearized system (VLS) as shown in Box I, where x̄ =[
x̄1 x̄2 · · · x̄n

]T
= t1x and ū =

[
ū1 ū2 · · · ūm

]T
=

t2u with 0 < t1, t2 < 1 are vectors of critical points, xξ =
[xξ1 xξ2 · · · xξn]T = x − x̄, uξ = [uξ1 uξ2 · · · uξm ]T
= u − ū, aij = ∂ fi(x∗i , u

∗

i )/∂xj, and bik = ∂ fi(x∗i , u
∗

i )/∂uk,
i = 1, 2, . . . , n, j = 1, 2, . . . , n, k = 1, 2, . . . ,m. We can choose
the parameters of t1 and t2 to find the values of x̄ and ū.

Remark 1. The virtual linearized system (VLS) models the un-
known nonlinear system (2). Because the nonlinear functions of
the general systems (2) are unknown, traditional T–S fuzzy control
methods can rarely model and control them. Instead of modeling
the unknown systems (2) directly, the T–S fuzzy-neural model in
(1) (or Fig. 1) is used to approximate the virtual linearized system
(VLS) in (3) in Box I which is used tomodel the unknown nonlinear
system (2).
From (1) and Fig. 1, the coefficient, plk (l = 1, 2, . . . , n, k =

1, 2, . . . , n+m), of the T–S fuzzy-neural model is

plk =

h∑
i=1
pilk

(
n+m∏
j=1

µF ij
(zj)

)
h∑
i=1

(
n+m∏
j=1

µF ij
(zj)

) (4)

where µF ij (zj) is the value of the membership function. For the

tuning of the weighting factors pilk, we define

wi ≡

n+m∏
j=1

µF ij
(zj)

h∑
i=1

(
n+m∏
j=1

µF ij
(zj)

) , i = 1, 2, . . . , h. (5)

The antecedent part of the fuzzy implication describes the
conditions of the state deviations and input deviations [xTξ ,u

T
ξ ]
T .

The consequent part of the fuzzy implication represents the
virtual linearized system (VLS) in (3) in Box I. For the purpose of
approximating the virtual linearized system (VLS) in (3) in Box I,
the ith fuzzy implication (1) can be described as

R(i) : If xξ1 is F i1 and · · · xξn is F
i
n and uξ1 is F

i
n+1

and · · · uξm is F in+m
Then ˙̂x = Âixξ + B̂iuξ

(6)

where

Âi =


pi11 pi12 . . . pi1n
pi21 pi22 . . . pi2n
...

...
. . .

...

pin1 pin2 . . . pinn


and
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B̂i =


pi1(n+1) pi1(n+2) . . . pi1(n+m)
pi2(n+1) pi2(n+2) . . . pi2(n+m)
...

...
. . .

...

pin(n+1) pin(n+2) . . . pin(n+m)


=
[
B̂i1 B̂i2 · · · B̂

i
m

]
. (7)

After applying (4), (5) and some commonly used defuzzification
strategies, the real system (2) or the VLS (3) in Box I becomes

ẋ = ˙̂x+ dd + df =
h∑
i=1

wi
{
Âixξ + B̂iuξ

}
+ dd + df

=


p11 p12 . . . p1n
p21 p22 . . . p2n
...

...
. . .

...
pn1 pn2 . . . pnn

 xξ

+


p1(n+1) p1(n+2) . . . p1(n+m)
p2(n+1) p2(n+2) . . . p2(n+m)
...

...
. . .

...
pn(n+1) pn(n+2) . . . pn(n+m)

uξ + dd + df (8)

where df =
(
A−

∑h
i=1w

iÂi
)
xξ +

(
B−

∑h
i=1w

iB̂i
)
uξ , and

pij (i = 1, 2, . . . , n, j = 1, 2, . . . , n + m) is used to approximate
a′ij (i = 1, 2, . . . , n, j = 1, 2, . . . , n) and bij (i = 1, 2, . . . , n, j =
1, 2, . . . ,m) of the virtual linearized system (VLS) in (3) in Box I
which exactly equals the unknown nonlinear system (2). In this
paper, (3) in Box I is a state equation and (8) is an approximate
state equation. x̂ is the estimation of the state vector x. Considering
approximation error df , (3) and (6), we can obtain (8)

ẋ = ˙̂x+ dd + df .

4. On-line modeling and robust tracking controller design
using projection

To design a robust controller for (2), the following assumptions
are required.

Assumption 1 (Chien et al., 2006; Wang et al., 2004). Let xξ and uξ
belong to the compact sets Ux and Uu, respectively, where

Ux = {x ∈ Rn : ‖x‖ ≤ mx <∞} and
Uu =

{
u ∈ Rm : ‖u‖ ≤ mu <∞

}
andmx,mu are design parameters. We define φlj = [p1lj p

2
lj · · · p

h
lj],

l = 1, . . . , n, j = 1, 2, . . . , n + m. It is known that the optimal
adjustable parameters φ∗lj lie in some convex regions

Mφlj =
{
φlj ∈ Rh : ‖φlj‖ ≤ mφlj

}
,

l = 1, 2, . . . , n, j = 1, 2, . . . , n+m

where the radiimφlj are constant, and

φ∗lj = arg min
φlj∈Mφlj

[
sup

xξ∈Ux,uξ∈Uu

∣∣pilj(xξ ,uξ )− p̂ilj(xξ ,uξ |φlj)∣∣
]
,

l = 1, 2, . . . , n, j = 1, 2, . . . , n+m.

According to Assumption 1, we define the optimal adjustable
matrices as

A∗i =


p∗i11 p∗i12 . . . p∗i1n
p∗i21 p∗i22 . . . p∗i2n
...

...
. . .

...

p∗in1 p∗in2 . . . p∗inn

 and
Fig. 3. Illustration of the projection update law for preventing parameter drift.

B∗i =


p∗i1(n+1) p∗i1(n+2) . . . p∗i1(n+m)
p∗i2(n+1) p∗i2(n+2) . . . p∗i2(n+m)
...

...
. . .

...

p∗in(n+1) p∗in(n+2) . . . p∗in(n+m)

 .

Lemma 1 (Vidyasagar, 1993). Suppose that a matrix 3 ∈ <n×n is
given. For every symmetric positive definite matrix Q ∈ <n×n, the
Lyapunov matrix equation 3T0 + 03 = −Q has a unique solution
for 0 = 0T > 0 if and only if 3 ∈ <n×n is a Hurwitz matrix.

Let e = x − xr = [e1 e2 · · · en]T denoted the tracking error
for the state variables and a coefficient matrix is represented as
follows:

3 =


−λ1 0 · · · 0
0 −λ2 · · · 0
...

...
. . .

...
0 0 · · · −λn

 (9)

where the coefficients, λ1, λ2, . . . , λn, are selected such that the
matrix 3 is a Hurwitz matrix. From (3) in Box I, based on the
certainty equivalence approach, a control input can be chosen as

uξ = (BTB)−1BT (−Axξ + ω− us) (10)

where ω =
[
ω1 ω2 · · · ωn

]T
= ẋr + 3e and us is an

error compensator which is designed to compensate for dd. But
the right side of (3) in Box I is unknown, so we replace A and B by∑h
i=1w

iÂi and
∑h
i=1w

iB̂i in (8), respectively. Moreover, we define
Ω =

∑h
i=1w

iB̂i. The inverse of the square matrix ΩTΩ can be
derived as(
ΩTΩ

)−1
=
[
αI− (−ΩTΩ + αI)

]−1
= α−1I+ α−2(−ΩTΩ + αI)+ α−3(−ΩTΩ + αI)2

+α−4(−ΩTΩ + αI)3 + · · ·

= α−1
N∑
k=0

(
α−1(−ΩTΩ + αI)

)k
+ dΩ (11)

where α is required to be sufficiently large so that all eigenvalues
of α−1(−ΩTΩ+αI) havemagnitudes less than 1 (Chen, 1999) and

dΩ = α−1
∞∑

k=N+1

(
α−1(−ΩTΩ + αI)

)k
.

From (10) and (11), we redesign the fuzzy-neural control input
as

u =

(
α−1

N∑
k=0

(α−1(−ΩTΩ + αI))k
)
ΩT

×

(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)
+ (1− β)d∆ + βu∆ + ū
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where

d∆ = dΩΩT
(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)
= [d∆1 d∆2 · · · d∆m]T .

If
∣∣ΩΩT ∣∣ > ε, we set β = 0. The fuzzy-neural control input

becomes

u =

(
α−1

N∑
k=0

(α−1(−ΩTΩ + αI))k
)
ΩT

×

(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)
+ d∆ + ū

= (ΩTΩ)−1ΩT

(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)
+ ū (12)

where ε is a small positive constant.
If
∣∣ΩΩT ∣∣ ≤ ε, we choose β = 1. The fuzzy-neural control input

becomes

u =

((
α−1

N∑
k=0

(α−1(−ΩTΩ + αI))k
)
ΩT

×

(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)
+ d∆

)
+ (u∆ − d∆)+ ū

=

(
α−1

N∑
k=0

(α−1(−ΩTΩ + αI))k
)
ΩT

×

(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)
+ u∆ + ū (13)

where u∆ is designed to estimate d∆.

Remark 2. We consider two cases based on the determinant of
(ΩTΩ). If

∣∣ΩTΩ∣∣ > ε, (12) can be calculated. However, if∣∣ΩTΩ∣∣ ≤ ε, we use u∆ to approximate d∆. Then the controller
u becomes (13). In second case, we use projection algorithms
(Ioannou&Datta, 1991; Luenberger, 1969;Wang, Leu, &Hsu, 2001)
which can be applied to solve the parameter drift problem. The
principal idea behind such approaches is to project the directions of
adaptations (i.e. ˙̂Ai, ˙̂Bi, q̇k, q̇∆j), whenever they has the tendency to
move into or stay at

∣∣ΩTΩ∣∣ < ε, so that the determinant of (ΩTΩ)
can become larger or equal ε.

Fig. 3 shows the use of the projection update law for preventing
parameter drift. If the parameter vector is on the boundary of the
constraint setΩa but moving toward the inside ofΩa, then project
the gradient vector onto the tangent ofΩa.
Suppose that the adaptive law of B̂i =

[
B̂i1 B̂i2 · · · B̂

i
m

]
is

chosen as

˙̂Bji =


η2w

ieuξ j, if
∣∣ΩTΩ∣∣ > ε or(∣∣ΩTΩ∣∣ = ε and B̂iTj wieuξ j ≤ 0) ,

Pr(η2wieuξ j), if
∣∣ΩTΩ∣∣ = ε and B̂iTj wieuξ j > 0,

i = 1, 2, . . . , h, j = 1, 2, . . . ,m

where the projection operator (Ioannou&Datta, 1991; Luenberger,
1969; Wang et al., 2001) is given as

Pr(η2wieuξ j) = η2wieuξ j − η2
B̂iTj w

ieuξ j∥∥∥B̂ij∥∥∥2 B̂ij.
From ė = ẋ− ẋr and substituting (12) and (13) for (8), the error
dynamic equation of the VLS becomes

ė = ẋ− ẋr
= ˙̂x+ dd + df − ẋr

=

h∑
i=1

wiÂixξ +
h∑
i=1

wiB̂iuξ + dd +

(
A−

h∑
i=1

wiA∗i
)
xξ

+

(
B−

h∑
i=1

wiB∗i
)
uξ +

h∑
i=1

wi(A∗i − Âi)xξ

+

h∑
i=1

wi(B∗i − B̂i)uξ − ẋr

=

h∑
i=1

wiÂixξ +

(
−

h∑
i=1

wiÂixξ + ẋr +3e− us

)

+

h∑
i=1

wi(A∗i − Âi)xξ +
h∑
i=1

wi(B∗i − B̂i)uξ

+

(
dd +

(
A−

h∑
i=1

wiA∗i
)
xξ +

(
B−

h∑
i=1

wiB∗i
)
uξ

)
− ẋr − βΩd∆ + βΩu∆

= 3e+
h∑
i=1

wiÃixξ +
h∑
i=1

wiB̃iuξ + d̃− us

−βΩd∆ + βΩu∆ (14)

where Ãi = A∗i − Âi, B̃i = B∗i − B̂i, and d̃ = dd +(
A−

∑h
i=1w

iA∗i
)
xξ +

(
B−

∑h
i=1w

iB∗i
)
uξ = [d̃1 d̃2 · · · d̃n]T .

We define us (the error compensator) and e∆ as

us =


sign(e∆1) 0 · · · 0
0 sign(e∆2) · · · 0
...

...
. . .

...
0 0 · · · sign(e∆n)

 d̂
= Diag[sign(e∆)]d̂ (15)

and

e∆ = eT0 = [e∆1 e∆2 · · · e∆n] (16)

where d̂ = [d̂1 d̂2 · · · d̂n]T and 0 > 0 is a Lyapunov
matrix. The fuzzy implications are defined to obtain d̂, which is the
estimate of d̃, as follows:

If e∆1 is F ie∆1 and ‖x‖ is F
i
‖x‖ then d̂1 = q

i
1

If e∆2 is F ie∆2 and ‖x‖ is F
i
‖x‖ then d̂2 = q

i
2

...

If e∆n is F ie∆n and ‖x‖ is F
i
‖x‖ then d̂n = q

i
n.

(17)

After applying some commonly used defuzzification strategies, we
have

d̂k =

hd̂∑
i=1
qik
(
µF ie∆k

(e∆k)µF i
‖x‖
(‖x‖)

)
hd̂∑
i=1

(
µF ie∆k

(e∆k)µF i
‖x‖
(‖x‖)

)

=

hd̂∑
i=1

τ ikq
i
k, k = 1, 2, . . . , n (18)
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where
qk = [q1k q2k · · · q

hd̂
k
]
T , k = 1, 2, . . . , n

and
τk = [τ 1k τ 2k · · · τ

hd̂
k
]
T

=

 µF1e∆k
(e∆k)µF1

‖x‖
(‖x‖)

hd̂∑
i=1

(
µF ie∆k

(e∆k)µF i
‖x‖
(‖x‖)

)
×

µF2e∆k
(e∆k)µF2

‖x‖
(‖x‖)

hd̂∑
i=1

(
µF ie∆k

(e∆k)µF i
‖x‖
(‖x‖)

) · · ·

×

µ
F
hd̂
e∆k

(e∆k)µ
F
hd̂
‖x‖
(‖x‖)

hd̂∑
i=1

(
µF ie∆k

(e∆k)µF i
‖x‖
(‖x‖)

)

T

, k = 1, 2, . . . , n. (19)

Moreover, we define u∆ and ē∆ as

u∆ =


sign(ē∆1) 0 · · · 0
0 sign(ē∆2) · · · 0
...

...
. . .

...
0 0 · · · sign(ē∆m)

 d̂∆
= Diag[sign(ē∆)]d̂∆ (20)

and

ē∆ = eT0Ω = [ē∆1 ē∆2 · · · ē∆m] (21)

where d̂∆ = [d̂∆1 d̂∆2 · · · d̂∆m]T and 0 > 0 is a Lyapunov
matrix. The fuzzy implications are defined to obtain d̂∆, which is
the estimate of d∆, as follows:

If ē∆1 is F iē∆1 and ‖x‖ is F
i
‖x‖ then d̂∆1 = q

i
∆1

If ē∆2 is F iē∆2 and ‖x‖ is F
i
‖x‖ then d̂∆2 = q

i
∆2

...

If ē∆m is F iē∆m and ‖x‖ is F
i
‖x‖ then d̂∆m = q

i
∆m.

(22)

After applying some commonly used defuzzification strategies, we
have

d̂∆j =

hd̂∆∑
i=1
qi∆j

(
µF iē∆j

(ē∆j)µF i
‖x‖
(‖x‖)

)
hd̂∆∑
i=1

(
µF iē∆j

(ē∆j)µF i
‖x‖
(‖x‖)

)

=

hd̂∆∑
i=1

τ i∆jq
i
∆j, j = 1, 2, . . . ,m (23)

where

q∆j = [q1∆j q2∆j · · · q
hd̂∆
∆j
]
T , j = 1, 2, . . . ,m

and

τ∆j = [τ 1∆j τ 2∆j · · · τ
hd̂∆
∆j
]
T

=


µF1ē∆j

(ē∆j)µF1
‖x‖
(‖x‖)

hd̂∆∑
i=1

(
µF iē∆j

(ē∆j)µF i
‖x‖
(‖x‖)

)

×

µF2ē∆j
(ē∆j)µF2

‖x‖
(‖x‖)

hd̂∆∑
i=1

(
µF iē∆j

(ē∆j)µF i
‖x‖
(‖x‖)

) · · ·

×

µ
F
hd̂∆
ē∆j

(ē∆j)µ
F
hd̂∆
‖x‖

(‖x‖)

hd̂∆∑
i=1

(
µF iē∆j

(ē∆j)µF i
‖x‖
(‖x‖)

)

T

, j = 1, 2, . . . ,m. (24)

Assumption 2 (Chien et al., 2006; Wang et al., 2004).
∣∣∣d̃k∣∣∣ ≤

τTkq
∗

k (k = 1, 2, . . . , n) and
∣∣d∆j∣∣ ≤ τT∆jq

∗

∆j (j = 1, 2, . . . ,m),
where q∗k and q

∗

∆j are the optimal adjustable vectors, qk and q∆j
represent the estimates of q∗k and q

∗

∆j, respectively.

On the basis of the above discussion, the following theorem can
be obtained.

Theorem 1. Consider the general MIMO unknown nonaffine nonlin-
ear system (2), which is approximated as (8). If the controllers are de-
signed as (12) and (13) with update laws

˙̂Ai = η1wiexTξ , i = 1, 2, . . . , h (25)

˙̂Bji =



η2w
ieuξ j,
if
∣∣ΩTΩ∣∣ > ε or

(∣∣ΩTΩ∣∣ = ε and B̂iTj wieuξ j ≤ 0)
Pr(η2wieuξ j) = η2wieuξ j − η2

B̂iTj w
ieuξ j

‖B̂ij‖2
B̂ij,

if
∣∣ΩTΩ∣∣ = ε and B̂iTj wieuξ j > 0

i = 1, 2, . . . , h, j = 1, 2, . . . ,m (26)

q̇k = γ1τk |e∆k| , k = 1, 2, . . . , n (27)

q̇∆j = −γ2τ∆j
∣∣ē∆j∣∣ , j = 1, 2, . . . ,m (28)

where η1, η2, γ1 and γ2 are positive constants, then the closed-loop
system is robust stable and limt→∞ ‖e(t)‖ = 0.

Proof. Consider the Lyapunov-like function candidate

v =
1
2
eT0e+

1
2η1

h∑
i=1

tr(ÃiT0Ãi)+
1
2η2

h∑
i=1

tr(B̃iT0B̃i)

+
1
2γ1

n∑
i=1

(q∗i − qi)
T (q∗i − qi)

+
β

2γ2

m∑
j=1

(q∗∆j − q∆j)
T (q∗∆j − q∆j). (29)

We define q̃i = q∗i − qi (i = 1, 2, . . . , n) and q̃∆j = q
∗

∆j − q∆j (j =
1, 2, . . . ,m). Differentiating (29) with respect to time, we get

v̇ =
1
2
ėT0e+

1
2
eT0ė+

1
2η1

h∑
i=1

tr( ˙̃AiT0Ãi)

+
1
2η1

h∑
i=1

tr(ÃiT0 ˙̃Ai)+
1
2η2

h∑
i=1

tr( ˙̃BiT0B̃i)

+
1
2η2

h∑
i=1

tr(B̃iT0 ˙̃Bi)−
1
γ1

n∑
i=1

q̃Ti q̇i −
β

γ2

m∑
j=1

q̃T∆jq̇∆j. (30)

Inserting (14), (15) and (20) in the above equation yields
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v̇ =
1
2
eT (3T0+ 03)e+ eT0

h∑
i=1

wiÃixξ + eT0
h∑
i=1

wiB̃iuξ

+
1
η1

h∑
i=1

tr(ÃiT0 ˙̃Ai)+
1
η2

h∑
i=1

tr(B̃iT0 ˙̃Bi)+ eT0d̃

− eT0us − βeT0Ωd∆ + βeT0Ωu∆

−
1
γ1

n∑
i=1

q̃Ti q̇i −
β

γ2

m∑
j=1

q̃T∆jq̇∆j. (31)

From Lemma 1, substituting3T0+ 03 = −Q in (31), we have

v̇ = −
1
2
eTQe+ eT0

h∑
i=1

wiÃixξ + eT0
h∑
i=1

wiB̃iuξ

+
1
η1

h∑
i=1

tr(ÃiT0 ˙̃Ai)+
1
η2

h∑
i=1

tr(B̃iT0 ˙̃Bi)+ eT0d̃

− eT0us − βeT0Ωd∆

+βeT0Ωu∆ −
1
γ1

n∑
i=1

q̃Ti q̇i −
β

γ2

m∑
j=1

q̃T∆jq̇∆j. (32)

When the determinant of the matrixΩTΩ is bigger than ε, we set
β = 0 and (32) becomes

v̇ = ∆+ eT0d̃− eT0Diag[sign(e∆)]d̂−
1
γ1

n∑
i=1

q̃Ti q̇i

= ∆+

n∑
i=1

e∆id̃i −
n∑
i=1

|e∆i| d̂i −
1
γ1

n∑
i=1

q̃Ti q̇i

≤ ∆+

n∑
i=1

|e∆i|
∣∣∣d̃i∣∣∣− n∑

i=1

|e∆i| d̂i −
1
γ1

n∑
i=1

q̃Ti q̇i

≤ ∆+

n∑
i=1

|e∆i|τTi q
∗

i −

n∑
i=1

|e∆i| τTi qi −
1
γ1

n∑
i=1

q̃Ti q̇i

= ∆+

n∑
i=1

|e∆i| τTi q̃i −
1
γ1

n∑
i=1

q̃Ti q̇i

= ∆+

(
|e∆1| τT1 −

1
γ1
q̇T1

)
q̃1 +

(
|e∆2| τT2 −

1
γ1
q̇T2

)
q̃2 + · · ·

+

(
|e∆n|τTn −

1
γ1
q̇Tn

)
q̃n (33)

where

∆ = −
1
2
eTQe+ eT0

h∑
i=1

wiÃixξ + eT0
h∑
i=1

wiB̃iuξ

+
1
η1

h∑
i=1

tr(ÃiT0 ˙̃Ai)+
1
η2

h∑
i=1

tr(B̃iT0 ˙̃Bi)

= −
1
2
eTQe+ tr

(
h∑
i=1

wiÃiT0exTξ −
h∑
i=1

ÃiT0 ˙̂Ai

η1

)

+ tr

(
h∑
i=1

wiB̃iT0euTξ −
h∑
i=1

B̃iT0 ˙̂Bi

η2

)
. (34)

When the determinant of the matrixΩTΩ is smaller than or equal
ε, we set β = 1 and (32) becomes

v̇ = ∆+ eT0d̃− eT0Diag[sign(e∆)]d̂− eT0Ωd∆ + eT0Ωu∆
−
1
γ1

n∑
i=1

q̃Ti q̇i −
1
γ2

m∑
j=1

q̃T∆jq̇∆j

= ∆+

n∑
i=1

e∆id̃i −
n∑
i=1

|e∆i| d̂i −
m∑
j=1

ē∆jd∆j +
m∑
j=1

∣∣ē∆j∣∣ d̂∆j
−
1
γ1

n∑
i=1

q̃Ti q̇i −
1
γ2

m∑
j=1

q̃T∆jq̇∆j

≤ ∆+

n∑
i=1

|e∆i|
∣∣d̄i∣∣− n∑

i=1

|e∆i| d̂i −
m∑
j=1

∣∣ē∆j∣∣ ∣∣d∆j∣∣
+

m∑
j=1

∣∣ē∆j∣∣ d̂∆j − 1
γ1

n∑
i=1

q̃Ti q̇i −
1
γ2

m∑
j=1

q̃T∆jq̇∆j

≤ ∆+

n∑
i=1

|e∆i| τTi q
∗

i −

n∑
i=1

|e∆i| τTi qi −
m∑
j=1

∣∣ē∆j∣∣ τT∆jq∗∆j
+

m∑
j=1

∣∣ē∆j∣∣ τT∆jq∆j − 1γ1
n∑
i=1

q̃Ti q̇i −
1
γ2

m∑
j=1

q̃T∆jq̇∆j

= ∆+

n∑
i=1

|e∆i| τTi q̃i −
m∑
j=1

∣∣ē∆j∣∣ τT∆jq̃∆j − 1γ1
n∑
i=1

q̇Ti q̃i

−
1
γ2

m∑
j=1

q̃T∆jq̇∆j

= ∆+

(
|e∆1| τT1 −

1
γ1
q̇T1

)
q̃1 +

(
|e∆2| τT2 −

1
γ1
q̇T2

)
q̃2 + · · ·

+

(
|e∆n| τTn −

1
γ1
q̇Tn

)
q̃n −

(
|ē∆1| τT∆1 +

1
γ2
q̇T∆1

)
q̃∆1

−

(
|ē∆2| τT∆2 +

1
γ2
q̇T∆2

)
q̃∆2 − · · ·

−

(
|ē∆m| τT∆m +

1
γ2
q̇T∆m

)
q̃∆m (35)

where∆ is the same as (34). If we select ˙̂Ai, ˙̂Bi, q̇k and q̇∆k as (25)–
(28), (33) and (35) become

v̇ = −
1
2
eTQe ≤ 0. (36)

Eqs. (29) and (36) only guarantee that e(t) ∈ L∞, but not that it
converges. The boundedness of e(t) implies the boundedness of
x(t). Since the operating states are finite, xξ is bounded. Based on
Assumption 1 and the boundedness of xξ ,uξ is bounded. Therefore,
ė(t) is bounded, i.e. ė(t) ∈ L∞. Integrating both sides of (36) yields

v(t)− v(0) ≤ −
1
2
λmin(Q)

∫ t

0
‖e(τ )‖2 dτ (37)

where λmin(Q) > 0 is the minimum eigenvalue of Q. When t tends
to approach infinity, (37) becomes∫
∞

0
‖e(τ )‖2 dτ ≤

v(0)− v(∞)
1
2λmin(Q)

. (38)

Since the right side of (38) is bounded, e ∈ L2. Therefore, by
usingBarbalat’s Lemma (Hornick, Stinchcombe, &White, 1989),we
have ‖e(t)‖ → 0 as t →∞. This completes the proof. �

Fig. 4 shows the overall scheme of the T–S fuzzy-neural
controller proposed in this paper. By using the proposed T–S
fuzzy-neural model controller, the states of the general unknown
nonlinear system with external disturbances can track the desired
variables effectively. Moreover, adjustable parameters of the T–S



W.-Y. Wang et al. / Automatica 46 (2010) 852–863 859
Fig. 4. The overall scheme of the T–S fuzzy-neural controller.
fuzzy-neural model cannot only be tuned to have a good tracking
performance but also ensure the parameter matrix is bounded
away from singularity through the proposed projection update
laws. It is an on-line identification algorithm for the T–S fuzzy-
neural model and a robust tracking controller for the general
unknown systems.

5. Illustrative example

This section presents the simulation results of the proposed
controller, showing that the tracking error of the closed-loop
system can be made arbitrarily small. In addition, the simulation
results confirm that the effect of modeling errors and external
disturbances on the tracking error is attenuated efficiently by the
proposed controller. The experiments use a personal computer
with a Pentium-4 2.4 GHz CPU, 1 GB RAM, and the programming
language MATLAB 7.0.4 to obtain the output responses of the
closed-loop systems. Tables 1 and 2 illustrate the calculating time
(constructing fuzzy sets, obtaining the control laws and update
laws, etc.).

Example 1. Consider an MIMO nonaffine nonlinear system:

ẋ1 = f1(x,u)+ dd1 = (1+ sin(x1x2))(u1 + eu1 − 3)+ dd1
ẋ2 = f2(x,u)+ dd2 = x1x2 + 10 log(2+ x21)u2 + 2u1 + dd2

(39)

where fi(x,u), i = 1, 2 are unknown nonlinear functions, u1
and u2 are the control inputs, and both dd1 and dd2 are external
disturbances which are assumed to be random values in the
interval [−0.1, 0.1]. In this example, two different cases are
simulated. The parameters t1 and t2 for critical points x̄ and ū are
both 0.5 in case 1, and are both 0.75 in case 2.

Five fuzzy sets over the interval [−6, 6] are defined for xξ =
[xξ1, xξ2]T with the term sets (PB, PS, Z, NS, NB) and three fuzzy
sets over the interval [−1400, 1400] for uξ = [uξ1 uξ2]T . The
design parameters are selected as η = 0.003, λ1 = 5, λ2 = 6
and Q = [1 0; 0 2]. The initial states of the system are assumed to
be x(0) = [2,−2]T (case 1) and x(0) = [−1, − 1]T (case 2). We
use the proposed control laws in (12) and (13) to control the state
x1 of the system to track the reference signal xr1 = 1.5 − 4e−0.5t
(case 1), sin(0.5t) + cos(t) (case 2) and to control the state x2 of
the system to track the reference signal xr2 = 2e−0.5t (case 1),
cos(0.5t)+sin(t) (case 2). Figs. 5 and 6 show the trajectories of the
state vector x, reference signal vector xr and control input vector
u (cases 1 and 2). The simulation results indicate that the effect of
modeling errors, and external disturbances on the tracking error is
attenuated efficiently by the proposed controller.
Table 1
Calculating time in Example 1.

Calculating time (time unit is second) Case 1 Case 2

Constructing fuzzy sets 0.013 0.015
Obtaining the control laws 0.047 0.052
Obtaining the update laws 0.058 0.068

Example 2. Consider a third order MIMO nonlinear system:

ẋ1 = f1(x,u)+ dd1 = x1u1u2 + 0.2u3 + dd1
ẋ2 = f2(x,u)+ dd2 = x1 + x22 + x3 + 3u1 + u2 + dd2
ẋ3 = f3(x,u)+ dd3 = x1 + 2x2 + 3x1x3

+u1 + 2(2+ 0.5 sin(x1))u2 + dd3

(40)

where fi(x,u), i = 1, 2, 3 are unknown nonlinear functions,
u1, u2 and u3 are the control inputs, and dd1, dd2 and dd3 are
external disturbanceswhich are assumed to be sinewaveswith the
amplitude ±0.1 and the period 2π . In this example, two different
cases are simulated. The parameters t1 and t2 for critical points x̄
and ū are 0.5 and 0.5, respectively, and are the same in both cases.

Five fuzzy sets over the interval [−6, 6] are defined for xξ =
[xξ1, xξ2, xξ3]T with the term sets (PB, PS, Z, NS, NB) and three fuzzy
sets over the interval [−1400, 1400] for uξ = [uξ1, uξ2, uξ3]T .
The design parameters are selected as η = 0.003, λ1 = 15,
λ2 = 30, λ2 = 60 and Q = [50 0 0; 0 50 0; 0 0 50]. The initial
states of the system are assumed to be x(0) = [1.5, 1.5, 1]T
(case 1) and x(0) = [0, 0, 0]T (case 2). We use the proposed
control laws in (12) and (13) to control the state x1 of the system
to track the reference signal xr1 = 1.5 − e−0.5t (case 1), 0.5 +
1
4 cos(0.25π t) +

1
4 sin(0.5π t) (case 2) and to control the state x2

of the system to track the reference signal xr2 = 0.5e−0.5t (case
1), 0.5 + 1

4 sin(0.25π t) +
1
4 sin(0.5π t) (case 2) and to control

the state x3 of the system to track the reference signal xr3 =
−0.25e−0.5t (case 1), −0.5 − 1

4 sin(0.25π t) −
1
4 sin(0.5π t) (case

2). Figs. 7 and 8 show the trajectories of state vector x, reference
signal vector xr and control input vector u (cases 1 and 2). The
simulation results indicate that the effect of modeling errors and
external disturbances on the tracking error is attenuated efficiently
by the proposed controller.

6. Conclusion

The nonaffine nonlinear functions of general systems are un-
known and traditional T–S fuzzy control methods can model and
control them onlywith great difficulty. Therefore, we proposed the
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Fig. 5. The trajectories of state vector x, reference signal vector xr and control input vector u in Example 1 (case 1).
Fig. 6. The trajectories of state vector x, reference signal vector xr and control input vector u in Example 1 (case 2).
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Fig. 7. The trajectories of state vector x, reference signal vector xr and control input vector u in Example 2 (case 1).
Fig. 8. The trajectories of state vector x, reference signal vector xr and control input vector u in Example 2 (case 2).
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Table 2
Calculating time in Example 2.

Calculating time (time unit is second) Case 1 Case 2

Constructing fuzzy sets 0.048 0.033
Obtaining the control laws 0.089 0.076
Obtaining the update laws 0.099 0.097

on-line identification algorithm for the virtual linearized system
(VLS) and put a significant emphasis on the robust tracking con-
troller design using an adaptive scheme for the general unknown
systems. In addition, we use the proposed projection update law
to tune the adjustable parameters to prevent parameter drift. The
tracking error of the closed-loop system can be made arbitrarily
small. Finally, simulation results are provided to demonstrate the
robustness and applicability of the proposed control scheme.
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