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─────────────────────────────────────────────────────── 

Abstract: The main objective of this study is to develop improved faulting prediction models for jointed concrete pavements using the 

Long-Term Pavement Performance (LTPP) database. The retrieval, preparation, and cleaning of the database were carefully handled in a 

systematic and automatic approach. The prediction accuracy of the existing prediction models implemented in the recommended 

Mechanistic-Empirical Pavement Design Guide (NCHRP Project 1-37A) was found to be inadequate. Exploratory data analysis of the 

response variables indicated that the normality assumption with random errors and constant variance using conventional regression 

techniques might not be appropriate for prediction modeling. Therefore, without assuming the error distribution of the response variable, 

several modern regression techniques including generalized linear model (GLM) and generalized additive model (GAM) along with 

quasi-likelihood estimation method and Poisson distribution were adopted in the subsequent analysis. Box-Cox power transformation and 

visual graphical techniques were frequently adopted during the prediction modeling process. By keeping only those parameters with 

significant effects and reasonable physical interpretations in the model, various tentative performance prediction models were developed. 

The resulting mechanistic-empirical model included several variables such as pavement age, yearly ESALs, bearing stress, annual 

precipitation, base type, subgrade type, annual temperature range, joint spacing, modulus of subgrade reaction, and freeze-thaw cycle for 

the prediction of joint faulting. The goodness of fit was further examined through the significant testing and various sensitivity analyses 

of pertinent explanatory parameters. The tentatively proposed predictive models appeared to reasonably agree with the pavement 

performance data although their further enhancements are possible and recommended.   
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Introduction 

12
 

 

Performance predictive models have been used in various pavement 

design, evaluation, rehabilitation, and network management 

activities. Faulting is one of the major distress types for jointed 

concrete pavements primarily caused by the accumulated traffic 

loads and environmental effects. Extensive research has been 

conducted to predict the occurrence of this distress type using 

various empirical and mechanistic-empirical approaches. 

Conventional predictive models usually correlate joint faulting to 

accumulated traffic, joint types, environmental effects, and several 

other design parameters [1-3]. As pavement design evolves from 

traditional empirically based methods toward mechanistic-empirical, 

the equivalent single axle load (ESAL) concept used for traffic 

loads estimation is no longer adopted in the recommended 

Mechanistic-Empirical Pavement Design Guide (MEPDG) (NCHRP 

Project 1-37A) [4]. The success of the new design guide 

considerably depends upon the accuracy of pavement performance 

predictions. Thus, this study will first investigate its goodness of fit 

and strive to develop improved faulting prediction models for 

jointed concrete pavements using the Long-Term Pavement 
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Performance (LTPP) database (http://www.datapave.com or LTPP 

DataPave Online) [5-7]. 

 

Review of Existing Mechanistic-Empirical 

Prediction Models 
 

The NCHRP Project 1-19 [1] was conducted with the primary 

objective of developing a system for statewide and nationwide 

evaluation of concrete pavement performance. A total of 410 JPCP 

and JRCP pavement sections representing 1297 miles of concrete 

pavement were collected from six states distributed in various 

climatic regions including Illinois, Georgia, Utah, Minnesota, 

Louisiana, and California. Eight additional JRCP pavement sections 

from Nebraska were also included in this database. The combined 

data represent about six percent of the total Interstate concrete 

pavements in the continental U.S. Several combinations of multiple 

regression, stepwise regression, and nonlinear regression techniques 

were used to develop various pavement performance prediction 

models using the SPSS statistical package.  

However, field-collected pavement database may not contain a 

wide range of design parameters which may limit the inference 

space and the results of data interpretation. To remedy this problem, 

starting from 1987, the LTPP program has been collecting a national 

pavement database in a factorial format with wider ranges of 

pavement designs, materials, and climatic zones. More than 2,400 

asphalt and Portland cement concrete pavement test sections across 

the North America have been monitored. Very detailed information 

about original construction, pavement inventory data, materials and 

testing, historical traffic counts, performance data, maintenance and 
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rehabilitation records, and climatic information have been collected. In 

the Strategic Highway Research Program Project 393 (SHRP-P-393) 

[2], an early sensitivity analysis study of the LTPP database was 

conducted and the following models were developed for the prediction 

of joint faulting: 
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in which, FAULTD is the average joint faulting (in.) for dowelled 

jointed pavements; CESAL is the accumulated 18-kip ESALs 

(millions); JTSPACE is the average transverse joint spacing (ft); 

KSTATIC is the modulus of subgrade reaction (psi/in.); AGE is the 

pavement age (years); EDGESUP represents edge support (l for 

concrete shoulders; 0 for AC shoulders); DOWEL is the dowel 

diameter (in.); FAULTND is the average joint faulting (in.) for 

nondowelled jointed pavements; PRECIP is the average annual 

precipitations (in.); FI is the freeze index (oF-days); and DRAIN is 

for drainage type. Also note that N is the number of observations; 

R2 is the coefficient of determination, and SEE is the standard error 

of estimates. 

Based on the results of NCHRP 1-30 verification study using the 

LTPP database, the 1998 AASHTO supplemental guide for rigid 

pavement structure and joint designs adopted the following two 

faulting models for dowelled and nondowelled jointed pavements, 

respectively: 
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where, Cd is the modified AASHTO drainage coefficient; BSTRESS 

is the calculated maximum concrete bearing stress based on the 

following closed-form solutions (psi); BASE is for base type (0 for 

unstabilized base, 1 for stabilized base); WIDENLANE is 0 if not 

widened or 1 if widened; hPCC is the slab thickness (in.); and 

DAYS90 is the number of days with maximum temperature above 

90℉. The other remaining parameters are defined the same as 

before [3]: 
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in which, fd is the distribution factor, )12/(122fd   . P is the 

applied wheel load, set to 9000 lbs; T is percent transferred load, set 

to 0.45; Kd is the modulus of dowel support, set to 1.5x106 psi/in 

(405 MPa/mm); BETA is the relative stiffness of the dowel-concrete 

system; OPENING is average transverse joint opening (in.); Es is  

the modulus of elasticity of the dowel, set to 29x106 psi; I is the 

moment of inertia of dowel bar cross section (in4), 
4)2/DOWEL(*25.0I  ;   is the radius of relative stiffness 

(in.), 25.023 )]k)1(*12/(Eh[   ; h is the slab thickness (in.); 

 is the Poisson’s ratio of the slab; k is the modulus of subgrade 

reaction (psi/in); CON is the adjustment factor due to base/slab 

frictional restraint, 0.65 if stabilized base or 0.80 if aggregare base 

or lean concrete base with bond breaker; ALPHA is the PCC 

thermal expansion coefficient, set to 0.000006/℉; TRANGE is the 

annual temperature range (℉); and e is the PCC drying shrinkage 

coefficient, set to 0.00015 strain. With better drainage in 

coarse-grained soil or base type, the possibility of pumping and loss 

of support are reduced and so does the occurrence of joint faulting. 

Sensitivity analysis of various parameters in the aforementioned 

models might be conducted. 

In the recommended MEPDG [4], the transverse joint faulting for 

JPCP is determined in an incremental manner based on more 

complicated Axle Load Spectra (ALS) concept [8]. A faulting 

increment is determined each month and its magnitude is affected 

by the current faulting level. The faulting at each month is 

determined as a sum of faulting increments from all previous 

months. No prediction model was proposed for JRCP pavements. 

Various artificial neural networks models were developed based on 

the ISLAB2000 finite element model to compute critical stresses 

and deflections. Monthly faulting increment is computed for 

different axle loads, load positions, and equivalent temperature 

differences over the analysis period. Traffic data is further 

processed to determine equivalent number of single, tandem, and 

tridem axles. Hourly pavement temperature profiles generated from 

the Enhanced Integrated Climate Model (EICM) is converted to 

monthly equivalent linear temperature differentials. Monthly 

relative humidity data is used to account for the effects of seasonal 

changes in moisture conditions on differential shrinkage and is also 

converted to effective temperature differentials. The joint load 

transfer efficiency (LTE) adjustment factor is also determined 

monthly. The proposed model is briefly summarized as follows: 

 

 

 
6

6

C

s

200EROD
5curling120

Cm

0j

EROD
5j70i

i
2

1i1i34i

m

1i

im

P

W etDaysP
Log5C1LogCFAULTMAX

5C1LogDECFAULTMAXFAULTMAX

DEFaultFAULTMAXCFault

FaultFault

























 
























 (6) 



Ker, Lee, and Lin 

660  International Journal of Pavement Research and Technology                                                          Vol.6 No.5 Sep. 2013 

in which, Faultm is  the mean joint faulting at the end of month m 

(in.); ΔFaulti is the incremental change (monthly) in mean 

transverse joint faulting during month i (in.); FAULTMAXi is the 

maximum mean transverse joint faulting for month i (in.); 

FAULTMAX0 is the initial maximum mean transverse joint faulting 

(in.); EROD is the base/subbase erodibility factor; DEi is the 

differential deformation energy accumulated during month i.; 

EROD  is the base/subbase erodibility factor; δcurling is the 

maximum mean monthly slab corner upward deflection PCC due to 

temperature curling and moisture warping; PS is the overburden on 

subgrade (lbs); P200 is the percent subgrade material passing #200 

sieve; WetDays is the average annual number of wet days (greater 

than 0.1 in. rainfall). C1 through C7, C12, and C34 are national 

calibration constants; FR is base freezing index defined as 

percentage of time the top base temperature is below freezing (32°F) 

temperature [9]. 

 

Database Preparation 

 

Initially, the DataPave 3.0 program was used to prepare a database 

for this study. However, in order to obtain additional variables and 

the latest updates of the data, the Long-Term Pavement 

Performance database retrieved from http://www.datapave.com (or 

LTPP DataPave Online, Release 18.0) [6] became the main source 

for this study. There are 8 general pavement studies (GPS) and 9 

specific pavement studies (SPS) in the LTPP program. Of which, 

only jointed plain concrete pavements (GPS3) and jointed 

reinforced concrete pavements (GPS4) were used for this study. 

This database is currently implemented in an information 

management system (IMS) which is a relational database structure 

using the Microsoft Access program. Automatic summary reports of 

the pavement information may be generated from different IMS 

modules, tables, and data elements. 

The thickness of pavement layers was obtained from the IMS 

Testing module rather than the IMS Inventory module to be 

consistent with the results of Section Presentation module in the 

DataPave 3.0 program. Several other material properties such as the 

percent passing no. 200 sieve were queried from the Inventory 

module. Detailed traffic counts and equivalent single axle load 

(ESAL) were obtained from the Traffic module. The cumulated 

ESAL during the performance analysis period was calculated by 

multiplying pavement age with mean yearly ESAL (or kesalpyr) 

which was estimated from the database. Environmental data were 

retrieved from the IMS Climate module and the associated Virtual 

Weather Station (VWS) link. The modulus of each pavement layer 

backcalculated using the ERESBACK 2.2 program [10] was 

retrieved from the IMS Monitoring module. The laboratory tested 

layer moduli were compared with the backcalculated moduli so as 

to have a better understanding of their associated variability in this 

study. The variability of the relationship between the laboratory 

tested (or static) and backcalculated (or dynamic) moduli could not 

be ignored [7, 11]. The average ratios of backcalculated versus 

laboratory tested moduli are approximately 1.4, 1.5, and 1.5 for 

surface, subbase, and subgrade layers for dense liquid foundation, 

respectively. In addition, the average ratios are roughly 1.0, 1.1, and 

3.0 for surface, subbase, and subgrade layers for elastic solid 

foundation, respectively [7, 11]. For consistency reasons, the 

recommendation of dividing the backcalculated modulus of 

subgrade reaction (or k-value) by 2 as the static k-value was used.  

The transverse joint faulting data was obtained from 

MON_DIS_JPCC_FAULT_SECT table in the IMS Monitoring 

module. Maintenance and rehabilitation activities could effectively 

reduce the distress quantities. Thus, the records in both Maintenance 

and Rehabilitation modules were used to assure that this study only 

chose the performance data of those sections without or before 

major improvements. For the purpose of this study, a Microsoft 

Excel summary table containing the pavement inventory, material 

and testing, traffic, climatic, and distress data was created using the 

relational database features of the Access program. The Excel table 

was then stored as S-Plus datasets [12] for subsequent analysis. The 

summary, table, cor, plot, pairs, and coplot functions were heavily 

utilized to summarize the information of interest for this study.  

A data cleaning process must be conducted before any 

preliminary analysis or regression analysis can be performed. With 

the help of graphical representation, joint faulting data were plotted 

against surveyed years for each section in the database with 

additional information displayed. For example, a plot as shown in 

Fig. 1 was used to examine the distress trends in order to identify 

possible data errors. The state code, SHRP identification number, 

joint spacing (m), dowel diameter (mm), construction year, and 

mean yearly ESAL (thousands) are labeled in each plot, respectively. 

Each section was carefully examined. Two additional codes were 

assigned to each section to indicate the findings of the examination, 

i.e., whether the joint faulting is reasonable according to the distress 

history, or which year of data is questionable and could be deleted if 

necessary. For example, comparing the first three data points of 

pavement section 28/4024 with the remaining data, it was found that 

this section probably had some maintenance or rehabilitation 

 

 
Fig. 1. Faulting History of Some Dowelled Jointed Pavements. 
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activities although not recorded in the database. Data correction and 

preparation were made in a way that could be easily traced back. By 

doing so, different subsets of the final database providing more 

reliable data might be analyzed for different purposes. 

 

Preliminary Analysis of the Joint Faulting Database 

 

Univariate Data Analysis 

 

Univariate data analysis consists of statistical methods for 

describing the distribution and spread of each individual variable. 

Some basic descriptive statistics of dowelled faulting regarding the 

data range, its variation, and the number of observations for each 

individual variable are given in Table 1. Univariate data analysis 

procedure is often used to investigate the possibility of data errors 

and potential distribution problem for each variable considered. A 

few extreme (or unusual) data points may be identified or deleted 

from the analysis. In which, age stands for pavement age (years); 

kesalpyr is yearly ESALs (thousands); jtspace is joint spacing (m); 

bstress is the maximum bearing stress (MPa); hpcc is slab thickness 

(cm); fi is yearly freezing index (oC-days); precip is mean annual 

precipitation (mm); kstatic is the modulus of subgrade reaction 

(MPa/m); days32 is the number of days temperature above 32 oC; 

trange is the difference of maximum and minimum mean annual 

 

Table 1. Univariate Statistics and Multiple Correlations of Dowelled Jointed Pavements. 

(a) Univariate Statistics: 

 N MEAN STD DEV SUM MIN MAX  
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(b) Correlation Matrix:  
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(c) Trimmed Correlation Matrix (Deleted 3 Percent of the Data): 
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Fig. 2. Exploratory Data Analysis: Dowelled Joint Faulting. 

 
temperature (oC); ft is yearly freeze-thaw cycle; and act.fault is the 

mean joint faulting (mm). 
A graph is far more perceptible than thousands of numbers. A 

single plot which well describes the spread of the data may be 

created by combining these univariate statistics with a histogram. A 

simplified distribution plot which graphically displays the 

variability of data including median, lower and upper quantiles, 95 

percent confidence intervals, and extreme points (if any) may be 

made in a boxplot. A boxplot displays not only the location and 

spread of the data but also the skewness as well. A histogram only 

displays a rough and crude shape of the distribution of data. The 

distribution of joint faulting of dowelled pavements revealing a 

relatively skewed distribution is shown in Fig. 2. 

 

Bivariate and Multivariate Analysis 

A correlation matrix of these variables is also given in Table 1. In 

addition, trimmed correlation matrices show the variable 

correlations after a certain portion of influential data points or 

possible outliers are eliminated (say 3 percent in this example) such 

that more reliable indices of the correlations are obtained. Note the 

difference between the resulting traditional correlation matrix and 

trimmed correlation matrix. A scatter plot matrix can graphically 

represent their relationships and scatters. Applying a data smoothing 

technique (lowess) on the same scatter plot matrix, the pairwise 

relationships as shown in Fig. 3 become clearer and possible data 

errors may also be identified. 

 

Investigation of the Goodness of Fit of the Existing Models 

 

To investigate the goodness of predictions, the aforementioned 

predictive models given in Eqs. (1) to (4) were used to predict the 

occurrence of joint faulting and the results were plotted against the 

actual observed data. Fig. 4(a)-(b) shows the goodness of prediction 

using SHRP-P-393 models for dowelled and nondowelled jointed 

pavements, respectively. Similarly, Fig. 5(a)-(b) depicts the results 

of this comparison using 1998 AASHTO models for dowelled and 

nondowelled jointed pavements. Visual graphical techniques such 

as condition plots were used to assist in the identification of the 

factors affecting the goodness of predictions. For example, the 

observations with relatively high bearing stress and faulting 

predictions were eliminated from the analysis due to their dowel bar 

diameters are smaller than 25.4 mm. 

 
Fig. 3. Scatter Plot Smoother and Matrix for Dowelled Jointed Pavements. 
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(a)                        (b) 

Fig. 4. Goodness of Prediction Using SHRP-P-393 (a) Dowelled; and (b) Nondowelled Models.  

 

0 2 4 6 8 10

Actual Faulting (mm)

0
1

2
3

4
5

P
re

d
ic

te
d

 F
a
u

lt
in

g
 (

m
m

)

JPCP & JRCP

     

0 2 4 6 8

Actual Faulting (mm)

0
1

2
3

4

P
re

d
ic

te
d

 F
a
u

lt
in

g
 (

m
m

)

JPCP

 
(a)                        (b) 

Fig. 5. Goodness of Prediction Using 1998 AASHTO (a) Dowelled; (b) Nondowelled Models.  

 
The prediction accuracy of the proposed models implemented in the 

recommended MEPDG (4) was further investigated. To avoid 

undesirable misunderstanding of the new guide’s prediction 

algorithm due to the complexity involved, it was decided to directly 

use the MEPDG software for the prediction of transverse joint 

faulting. The beta version of the software could be downloaded 

from http://www.trb.org/mepdg/ software.htm. A total of 23 

dowelled and nondowelled JPCP pavement sections containing 98 

data points were randomly selected for this analysis. The goodness 

of prediction using the SHRP-P-393 models, the 1998 AASHTO 

models, as well as the recommended MEPDG models is shown in 

Fig. 6(a)-(c). Unfortunately, the prediction accuracy of the existing 

prediction models was found to be inadequate. 

 

Development of Improved Joint Faulting Models 
 

The occurrence of joint faulting in field depends on various factors 

namely traffic, environment, structure, construction, maintenance 

and rehabilitation. Even though the use of an incremental approach 

and more complicated Axle Load Spectra (ALS) concept seems to 

be a logical approach, the integration of which with monthly or 

seasonal environmental factors such as humidity and temperature 

differentials often resulted in more variations in the predictions of 

joint faulting due to many uncertainties involved. To develop a 

more reliable predictive model for practical engineering problems, 

Lee and Darter [13] proposed a predictive modeling approach to 

incorporate robust (least median squared) regression, alternating 

conditional expectations, and additivity and variance stabilization 

algorithms into the modeling process. The robust regression was 

proposed due to its favorable feature of analyzing highly 

contaminated data by detecting outliers from both dependent 

variable and independent variables. Through the iterative use of the 

combination of these outlier detection and nonparametric 

transformation techniques, it was believed that some potential 

outliers and proper functional forms might be identified. 

Subsequently, traditional regression techniques can be more easily 

utilized for model development. Nevertheless, it has been extremely 

difficult to achieve a satisfactory predictive model for this set of 

data by using these regression techniques in many preliminary trials. 

Exploratory data analysis of the response variable as shown in 

Fig. 2 has indicated that the normality assumption with random 

errors and constant variance using conventional regression 

techniques might not be appropriate for prediction modeling. The 

distribution of joint faulting was tested for departures from 

normality using Shapiro and Wilk’s W-statistic [12]. Various 

transformations including logarithm of the joint faulting were tested. 

The W-statistic indicated that joint faulting is not lognormal 

distributed either. Thus, without assuming the error distribution of 

the response variable, generalized linear model (GLM) [14] along 

with quasi-likelihood estimation method and Poisson distribution 

were adopted in the subsequent analysis. Many factors including 

age, kesalpyr, cesal, jtspace, bstress, hpcc, fi, precip, kstatic, days32, 

trange, ft, dowel, basetype, edgesup. drain, and stype were 

considered in the beginning trial analysis. In which, basetype 

represents base types (0 for granular base, 1 for treated base); 

edgesup is 0 for AC shoulder and 1 for concrete shoulder; drain is 1 

if longitudinal drain and 0 if others; and stype is 1 for A1-A3 

coarse-grained soil, 0 for A4-A7 fine-grained soil. By keeping only 

http://www.trb.org/mepdg/%20software.htm
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Fig. 6. Goodness of Prediction Using (a) SHRP-P-393; (b) 

AASHTO 1998; and (c) DG2002 Models. 

 

those parameters with significant effects and reasonable physical 

interpretations in the model, various tentative prediction models 

were developed. 

Since the primary assumption of the above preliminary GLM 

models is that a linear function of the parameters was used in the 

model. Generalized additive model (GAM) extends GLM by fitting 

nonparametric functions using data smoothing techniques to 

estimate the relationship between the response and the predictors 

[15]. To further enhance the model fits, GAM techniques were 

adopted in the subsequent analysis. Box-Cox power transformation 

technique was routinely utilized to estimate a proper, monotonic 

transformation for each variable based on the resulting preliminary 
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Fig. 7. Goodness of Fit of the Proposed (a) Dowelled; and (b) 

Nondowelled Models. 

 

GAM model. The joint faulting data was refitted with these 

transformed predictors using GLM techniques. Visual graphical 

techniques as well as the systematic statistical and engineering 

approach proposed by Lee and Darter [13] were frequently adopted 

during the modeling process. After considerable amount of trails, 

the following preliminary models were developed for faulting 

predictions of dowelled and nondowelled pavements, respectively. 

As shown in Fig. 7, a plot of the observed versus the fitted values is 

provided to illustrate the goodness of the fit. 
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(a)                                           (b) 

 
(c)                                           (d) 

Fig. 8. Sensitivity Analysis of the Proposed Model for: (a)-(b) Dowelled; and (c)-(d) Nondowelled Jointed Pavements. 

 
Sensitivity Analysis of the Tentatively Proposed 

Models 

 

The goodness of the model fit was further examined through 

significant testing and various sensitivity analyses of pertinent 

explanatory parameters. Some plots showing the sensitivity of various 

factors in the tentatively proposed models are presented in Fig. 8. 

These plots were prepared based on the range of the actual data while 

setting the remaining parameters to the corresponding mean values. 

The plots show the relationships among yearly ESALs (kesalpyr, 

thousands), pavement age (age, years), annual precipitation (precip, 

mm), and the prediction of joint faulting (pred.fault, mm). The general 

trends of these effects seem to be fairly reasonable.   

 

Discussions and Conclusions 
 

Even though the use of an incremental approach and more 

complicated Axle Load Spectra (ALS) concept as recommended by 

the MEPDG seems to be a logical approach, the integration of 

which with monthly or seasonal environmental factors such as 

humidity and temperature differentials often resulted in more 

variations in the predictions of joint faulting due to many 

uncertainties involved. The prediction accuracy of the existing 

faulting models for jointed concrete pavements using the 

Long-Term Pavement Performance (LTPP) database was found to 

be inadequate and greatly in need for improvements. A relatively 

skewed distribution for actual joint faulting was identified, which 

also indicated that normality assumption using conventional 

regression techniques might not be appropriate for this study. Thus, 

generalized linear model (GLM) and generalized additive model 

(GAM) were adopted for the modeling process. After many trails in 

eliminating insignificant and inappropriate parameters, the resulting 

mechanistic-empirical model included several variables such as 

pavement age, yearly ESALs, bearing stress, annual precipitation, 

base type, subgrade type, annual temperature range, joint spacing, 

modulus of subgrade reaction, and freeze-thaw cycle for the 

prediction of joint faulting. The goodness of the model fit was 

further examined. The plot of the response versus fitted values 

indicated that the proposed dowelled faulting model has substantial 

improvements over the existing models. However, the goodness of 

prediction of the nondowelled faulting model still contains large 

variability. Sensitivity analysis of the explanatory variables 

indicated their general trends seem to be fairly reasonable. The 

tentatively proposed predictive models appeared to reasonably agree 

with the pavement performance data although their further 

enhancements are possible and recommended. 
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