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This study investigated the effect of a pendulum tuned mass damper (PTMD) on the vi-
bration of a slender two-dimensional (2D) rigid body with 1:2 internal resonance. Focus
is placed on the damping effect of various parameters of the PTMD on preventing the
internal resonance of the system. The instruments used include fixed points plots, time
response and Poincaré maps, which were compared for confirmation of accuracy. The
Lagrange’s equation is employed to derive the equations of motion for the system. The
method of multiple scales (MOMS) is applied to analyzing this nonlinear vibration model.
The internal resonance conditions of the rigid body in vibration are obtained by the eigen-
analysis. Moreover, a 3D internal resonance contour plot (3D-IRCP) aided by various am-
plitude analysis tables is proposed for identification of the parameter combinations of the
PTMD for preventing internal resonance. This approach enables the designers to evaluate
the effectiveness of various parameter combinations of the PTMD prior to the design process.
The present study indicates that without changing the main configuration, the vibration
amplitudes in the main body can be greatly reduced under certain parameter combinations
of the PTMD.
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1. Introduction

Vibration in mechanical systems is unavoidable, often resulting in the loosening of
components, fatigue and structural damage. As a result, the need to identify proper
means of dampening vibration remains a challenge for engineers. Among the many
methods of vibration reduction, passive dampers are the most widely used, due to
their simplicity and low cost. But in some situations, they tend to be less effective
than the active counterparts. In this study, the conventional passive damper is
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modified as a pendulum tuned mass damper (PTMD), referred to as the pendulum
vibration absorber (PVA), taking into account various damping effects. With the
premise of preserving the original vibration configuration, the optimal damping
effects are achieved without excessive cost, simply by adjusting the location, mass,
and modulus of elasticity of the PTMD.

The tuned mass damper (TMD) is the most common approach to vibration ab-
sorption. The concept was first proposed by Ormondroyd and Den Hartog' in 1928,
following which a wide range of applications emerged. Vakakis and Paipetis® studied
the damping effects of a TMD with a single degree of freedom (SDOF) on the first
mode of a vibrating body with multiple DOFs. ASUS? also applied the TMD to the
development of a dynamic damper system for their CD-ROM drives. Zuo and
Nayfeh reported that a single damper with two degrees of freedom (2DOFs) can
provide better damping effect in the first two flexural modes of a free—free beam than
what would be possible using a single damper with SDOF or even two SDOF
dampers. Understanding this principle has provided the opportunity to design more
effective vibration absorbers (dampers). Generally, dampers have been used to re-
duce vibration in a single direction; however, Almazén et al.” presented a bi-direction
TMD capable of reducing transverse and rotational vibrations, as well as vibrations
in other directions.

To maintain the configuration of the main body, such that merely altering the
location of the dampers can achieve the effect of vibration reduction, Wang and
Chen® proposed position optimization of a mass-spring-damper vibration absorber
for a rotating mechanisms (such as optical disk drives, rotary-wings and deck coupled
systems). Wang and Chang’ studied the problem of nonlinear vibration in a rigid
body plate. Each of the four corners of the plate was supported by a nonlinear spring
to simulate the transverse-rotate-rotate nonlinear vibrations with two point-mass
shock absorbers suspended beneath the body. The positions of the two absorbers can
be adjusted to achieve the best vibration reduction effect. Recently, Wang and Lin®
examined how vibration absorbers influence the stability of nonlinear flow-solid in-
teraction systems. A novel approach was proposed in which both an internal reso-
nance contour plot (IRCP) and flutter speed contour plot (FSCP) were used for the
analysis of nonlinear dynamic stability. Meanwhile, they demonstrated that identi-
fying the optimal location for the damper can reduce vibration, an insight which
forms the inspiration of this study.

PTMD has been widely applied in engineering vibration problems. For example,
TMDs have been installed in tall buildings to reduce wind-induced sway as well as
for protection from seismic events.” Absorbers can be mounted on the rotor blades
of a helicopter for attenuation of aerodynamically induced vibrations.'® Wu'' used
an active rotational PVA to reduce the transverse vibration of a primary body.
Varying the rotational speed of the pendulum enables the tuning of the absorber
frequency, whereupon the inertial force of the revolving mass is helpful in reducing
vibration of the main body. These results have been improved upon in subsequent
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studies.!>'® A linear SDOF vibration system coupled with a parallel attached
nonlinear autoparametric PVA was considered by Vyas and Bajaj'? in their study of
1:1 and 1:2 internal resonances between the pendulum and primary oscillator.
The idea of a multiple array of auto-parametric absorbers has been suggested
and its effectiveness in enhancing the absorber bandwidth has been analytically
demonstrated.

Nayfeh'® described a number of nonlinear vibration systems, including the
Lindstedt—Poincaré method, the method of multiple scales (MOMS), and the
method of averaging. MOMS is more convenient for the analysis of general nonlinear
vibration systems with damping; for this reason it is adopted in the analysis of this
study. Ji and Zu'® investigated the shaft system of a Timoshenko beam and
employed the MOMS to calculate the natural frequency of the nonlinear system and
analyze its steady state responses. Chao et al.'” examined the automatic ball-type
balancer system (ABS) installed on optical disk drives (ODD), taking into account
the relative torsional motion between the ODD case and the spindle-disk-ABS-
turntable system. They also used the MOMS to analyze a steady state solution and
achieved a significant reduction in vibration.

In most of the existing works, either SDOF passive TMDs or active vibration
absorbers were indestigated. In this study, a PTMD was hung beneath the vibrating
main body with a coupled nonlinear extension and torsion spring, functioning as
2DOF's in the transverse and rotational directions. The main body vibration can be
absorbed in both the transverse and rotational directions simultaneously. A new
concept of 3D-IRCP was introduced to avoid main system internal resonance for
preliminary design of the PTMD. The Lagrange’s method was employed to derive
the equations of motion for the system and the MOMS was applied to dividing the
equations into multiple scales. Using the eigen-analysis, the internal resonance
conditions of the vibrating body were obtained. Under the circumstances of internal
resonance, the PTMD was suspended at various locations beneath the vibrating
body for studying the effect of various combinations of the damper mass ratio (),
extension spring constant (kg), and torsion spring constant (kz) in preventing the
internal resonance, while reducing the system vibration. The fixed points plots, along
with numerical analysis, were used to verify the accuracy of the frequency response
and time response calculated.

2. Theoretical Model

In this study, a slender rigid body with 2DOFs is considered, which is supported by a
nonlinear spring with a linear damper at both ends, as shown in Fig. 1. Beneath the
main body, a PTMD is suspended by a coupled nonlinear torsion spring and ex-
tension spring, which can move in the transverse direction as well as rotate.
Generally, when a simple pendulum is suspended beneath a body with a hinge, its
oscillating behavior will not be coupled with the main body. This is because the hinge
support can theoretically bear forces only in the vertical and horizontal directions,
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Fig. 1. Schematic diagram of the model.

but cannot resist moment, and thus, the oscillation of the PTMD itself won’t affect
the rotation of the vibrating body. For this reason, a torsion spring and an ex-
tension spring are installed at the point where the PTMD connects with the main
body to provide the transverse and rotational coupling effects. We used M and m
to denote the masses of the main body and PTMD, respectively. The transverse
displacement and rotation of the main body were represented by y and 0p, whereas
the transverse displacement and rotation of the PTMD were represented by u and
04. The system has a total of 4DOFs. The relevant parameters are defined as
follows: K = the linear spring coefficient of the extension springs supporting the
two ends of the main body; 8 = the nonlinear spring coefficient; C' = the coefficient
of the linear damper; kr = the coefficient of the torsion spring connecting the
PTMD to the main body, A = the coefficient of the nonlinear torsion spring;
kg = the coefficient of the extension spring connecting the PTMD to the main
body, a = the nonlinear extension spring coefficient; Iz and I, denote the moment
of inertia in the main body and the PTMD, respectively; I; = the center of mass of
the main body, and zp and x4 denote the location of the PTMD. Furthermore,
f = the harmonic force exerted on the system, and zp = the distance between the
external force and center of mass.

The Lagrange method is employed to derive equations of motion for the system.
The kinetic energy, potential energy, dissipation energy, and generalized coordinates
are denoted by T', V', R and ¢;, respectively, and the 4-DOF's of the system are y, 0, u
and 4. Lagrange’s equation is as follows:

d (8T> oI OR 0V

e e Y oW (=1~ 1
dt \0¢; 3Qi+af1i+8Qi QU n), M)

1450041-4



Int. J. Str. Stab. Dyn. Downloaded from www.worldscientific.com
by TAMKANG UNIVERSITY on 07/18/14. For personal use only.

Damping Effect of PTMD on Vibration of 2D Rigid Body

where

T—lM'Ml g 0 2+ '—Z—Aé ing ’

= 2 y 2m 2 ACOS A u 2 ASII’I A
1 . 1 .

+§IA91+5139§, (2)

1
V = §K[(y—|— ll SiHQB) + ﬂ(y-'— l1 sin93)3]2

+%K[(y — lysinOp) + By — lysin 0) "2
%kT[(HA —05) + A4 — 05)°)?
T %ks{[u — (y+z45n0p)]
+a[u—(y+37ASiﬂ93)]3}2+mg%A(1_COSHA)7 (3)
R= %C[(y + 0l cos 05)? + (i — Oply cos 05) 7). )

Substituting T', V and R, into Eq. (1), one can obtain the equations for the 4DOF's:
Equation of motion for the main body in the transverse direction:

Mij+ C (2§ + 0pl; cos 05 — Oly cos ) + K[(y + 1, sin0p) + 48(y + 1y sin 05)]

+ K[(y — lysinfg) + 48(y — lysin 05)3] + kg[(—u + y + x4 sin 0p)

+ da(—u+y+z,8in0p)°% = f. (5)
Equation of motion for rotation of the main body:
Ip0p + C cos Ol (§ + Ol cosBg) — Iy (i) — Oply cos Op)]

+ %K[(l% sin 20 + 201y cos O) + 26(4110% + 1213y0% + 1217520 + 41,y°)]

+ %K[(l% sin 205 — 2lyycos O) + 26(4150% — 1213y0% + 12135205 — 4l,y°)]

— kp[(04 — 0p) +4A(04 — 05)°]

+ %ks[(—QU.’EA cos O + 22 4y cos O + x4 sin 20)

+ 28(—2ux 4 cos O + 2x 4y cos O + % sin 205)°%] = My,. (6)

Equation of motion for the PTMD in the transverse direction:
m|i 7%4(9.148111914 + 9'124 cosfy)| + kg{lu — (y + x4 sinbp)]

+ dafu — (y + x4 sin6p)]3} = 0. (7)

1450041-5



Int. J. Str. Stab. Dyn. Downloaded from www.worldscientific.com
by TAMKANG UNIVERSITY on 07/18/14. For personal use only.

Y.-R. Wang & K.-E. Hung

Equation of motion for rotation of the PTMD:

1 [ .1 .
5™|5 QAflA(usmﬁAJru@AcosQA) +IA0A+§mlAu9Acos0A

!
+ kT[(0A793)+4A(0A703)3]erg?AsinQA =0. (8)

To facilitate solution of the above equations of motion, the Taylor series expan-
sion (to the third-order terms) is adopted for the trigonometric functions. The ex-
panded equations of motion are then nondimensionalized. The definitions of the
dimensionless coefficients and variables are presented in Appendix A. Furthermore,
we set the scales of all the nonlinear terms and external force terms as ¢! to facilitate
the perturbation analysis. The results of the dimensionless equations of motion are as
follows.

Equation of motion for the main body in the transverse direction:

d ?_J B N _1—72 ~ A 6 d6‘B -
F—l—y—kksy—k 93+ksxA93—ksu+€<§yd +Eyd—(l —1y)
& dbp 0 5 = a9 A =952 32
— Z d—GB(ll — 12) — 12OékSZAU — 24]{75041'Ay03714 + 6ﬂy03(ll + 12)
T

+ 12k,az450% + 12k, ayu® + (668(1; — 1y) + 12k,a24)y%05

— 12k,ap%u + 12k,ai 40502 — 12k,az40%0 + (48 + 4k,a)y® + (26(7% - l;)

bl
12

1A N ~ _
- 8’“‘9@1 + 4ksag;§4>933 — 4ksau3> =cf,. (9)

Equation of motion for rotation of the main body:

205 5 - - .
o+ @8,y — 1) + 6k, 20)7 + (@3, (11 +13) + 6k,7% + 12k1)0p — Ok, T4u
) dy - - dy 0% - do ,
— 12k, + e ( &, 72 (= 1o) = o, 72 2 (= o) + &0, 2 (T +13)
by 5 - -
geBegd—f(liﬂ ) — 4803,k Briy0pu + (1203, B3 +13) + 24w} k57
1 _ _ ~ n n
- 5@?)3@1 —1y) — 3k, 72)y0% + 24005 k. Brayu® + 240 k. BTH05u>

+ 48k A0p0% + (—24@5 kBT + 3k, 74)0%u — 48k A0%0,
+ (1205, BT +13) + 24075 k. B7%)5%05 — 2407 k. BT,5%0
+ (425,81 +1y) + 805, k,574)7° + (45,8011 +15) — 4k,7%
2 5 s - L PO L _
- ngB(zf +13) + 48kpA)0% — 803 k Bz a® — 48kTA93A> = eM,,.

(10)
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Equation of motion for the PTMD in the transverse direction:

1y d%0 Iy (dO4\?

d2u
d—;; — D2y —a)—@2T405+ s(—

— 1202az3y0% — 1202ayu? — 1202634520, + 1202 ay%u — 1202674002

1
+1202azi0%u — 402ay® + (zm;zomci’1 + 5@ xA> 0% + 4wiau3) —0.

(11)
Equation of motion for rotation of the PTMD:
d2e 3 3 d2u 9 =
dT;‘ LU9A93+(W@A+2(UPD>9A+E( EPHA—ngAAQBHi
~ 1
+12(.A.)9 AoBGA—ZlLL)() A03+(4UJ9AA—ZLD2PD>9A> —0 (12)

An observation of Egs. (9) and (10) reveals that, although the dimensionless co-
efficient I%T of the torsion spring connecting the PTMD and main body does
not influence the displacement of the main body in the transverse direction,
it exerts a degree of influence on the rotation of the main body (6p). In the linear
portion of Eq. (10) (the first five terms), the scope of the influence from ks
is limited to the rotation of the main body (6p, the third item on the left-hand side
of Eq. (10) (@3 (15 +13) + 6ksz% + 12ks)05)) and the PTMD (4,4, the fifth
item on the left-hand side of Eq. (10) (—12kz6,4)). In addition, the coefficient in
the front is fixed (12]2:T), indicating that the influence of kr does not change with
the location of the PTMD. However, looking at the 6, in the fifth term (12I%T0A)
on the left-hand side of Eq. (10), we observe that the factors determining 6,
still lie in the equation of motion for rotation in the damper, Eq. (12), where a
number of influential factors can be found (such as m and l4). The nonlinear
portion of Eq. (10) also shows the products of kp and 64 as well as kp and 65,
which makes this nonlinear problem even more complex. Not only is the linear
equation unable to predict the influence of the various parameters, but the results
cannot be understood simply by glimpsing a single equation of motion. The di-
mensionless extension spring constant (l%s) influences gy, fp and the multiplying
variable T4, which indicates that the location of the PTMD and the value of /%S
both influence the vibration of the main body. These factors will be discussed at
length in Sec. 4.

To facilitate analysis of the conditions capable of reducing internal resonance in
the main body, as well as the frequency responses of the main body when there is no
PTMD, one can choose to eliminate the equations of motion for the PTMD, thereby
deriving the following equations of motion for the main body:
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Dimensionless equation of motion for the main body in the transverse direction:

A2y _ -1 €, db &, do L _
ﬁ+y+ 12 293+5<§yd7+2‘yd73(1112)ZdTBQZB(llh)JFGﬂ(l%
Y o _ e a1 —1 _
+12)50% +65(L — 12)5°0p + 455" + (25(1? ~13) - 2)9%) =cfy

(13)
Dimensionless equation of motion for rotation of the main body:

dy 913 7

dz0 -9 = dy ~
7 @b, (1~ L)y + @3, (17 +l§)63+e(£93d—§( b) =&, o (= 1)

dr 12

do -
b6, TP 413) — 6,03 20 (03 413

1, —1 s -
+ (—%MJF 12w53ﬁ(z§+l§)>y923

2 -9 = _
g@%s(l%+lg)>033) :5M93' (14)

Analysis of Egs.(13) and (14) will be presented in Sec. 3.2.

3. Analysis of Nonlinear System
3.1. System with PTMD

The MOMS is adopted to divide the nonlinear equations of motion into two different
time scales. Let Ty = 7 for fast time change terms and 77 = e7 for slow time change
terms; € served as a small parameter for perturbation analysis. The approximation to
the solutions can be expressed as follows:

y(1,e) = %%o(To, Ty) + 91 (To, Th),
0p(1,e) = €%p(To, Th) + €01 (To, Th),
a(r,e) = ey (T, Ty) + etay (Ty, Th),

04(1,€) = €%040(T0, Th) + €100 (Tp, Th).

For the sake of conciseness, we simplify the equations and present the coefficients
in letters, the details of which are presented in Appendix B. As ¢ is a small value, we
ignore ¢ terms with orders equal to or greater than 2. Therefore, using MOMS, the
equations of motion for the system (Egs. (9)—(12)) can be divided into:

Equations containing £°:

2

02 _ _ _
?yo+ngo+PloeBo+P11Uo=0’ (15)

P
1(.30
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Q273 8T2 Op0 + Qo¥o + Qro0p0 + Q11 + Q12040 = 0, (16)
2
Ry ——5 1 + RyYo + Rigbpy + Ri1tig =0, (17)
oT¢
0?
Si 7y 9T 040 + S100py + S120.40 = 0. (18)

Equations containing ¢!
2

0
5‘T2 U1+ Pyyy + Pyl + Py

0%y, o 90p 00 p
—2h OT,0T; 5 Ty, T, T,

— Pty — Pis¥00p0 — PrrBpotio — Pis¥oto — ProOpotio — Paooto — Po¥i

— Py 0%y — Pyt — Por§o070 + for

0%0 — Pis¥00noto — Prybpo

— 2P, + P,

(19)
Q2 g 8T 931 + Qo1 + Quobp1 + Quity + Q1204
0
9*0p0 -0 8y0 Qs 3930 —Q 8930 02 9050
T, oT, ° 0T, 2 aT Sor, ' TR o,
— Q13Y00potig — QlﬁyoaBo — Q7m0 (2) ngl_/oﬂo — Q0o
— QuYoug — Quyf — Qaubhy — Qs — QurY00 30 — Qas00050

— Q050040 — Qsogio + Mﬁga (20)
0% _ _ _
Ry a7z ™ + Royy + Ryp0pi + Ryiuy
0

= —2Q,

0%u _ _ _ 9 _
—2R; 8T08;“ Ry3900poug — Rlﬁy(Q)@BO - Rlsyguo - R17930u2
- R19930U0 — Ry (2) RZl@g - R2493é0 - R26ﬁg - R2727092Bo
020 90 4\ 2
— R310,9 8T§0 Rg; ( 871%)()) ; (21)
02
Si79 o7 041 + S100p1 + S12041
020
= -25, (’)TOOAI()} — S040%0 — Sag0p00%0 — S200400%0 — 30040
02%u
= S g - (22)

Using Egs. (15)—(18), the general solutions containing the £° scale can be written as:
@0 — Al V'lleiwlToe—iﬂl + A2 ‘/'126734027106—7:@72 + A3 ‘/'13671403%6—1'113
+ A Ve he i 4ce., (23)
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aBO — AlwleiwlToe*iﬂl +A2V'22eiw2Toe*iﬂ2 +A3V'23eiw3Toe*iﬂ:s

+ Ay Ve Te=h 4 cc., (24)
g = Ay Vgie™De™ 1 A, Vise™ Tre = 4 Ay Vige™sToe =1
+ A Ve De= 4cc., (25)
040 = Ay Ve Toe= 4 A, Vype™2Toe = 4 Ay Vise™sToe =
+ A Ve he i 4cc., (26)
where A, denotes the amplitude; V;; represents the eigenvectors of the system; (3, is

the phase angle and c.c. indicates the complex conjugate.

3.2. Conditions of internal resonance

In this study, a PTMD is utilized to prevent internal resonance in the main body and
reduce vibrations. The concern here is to identify the conditions that cause internal
resonance in the main system. First, we consider the equation of motion for vibration
in the main body. Using MOMS, we divide the equations of motion for the main body
without PTMD (Egs. (13) and (14)) into two time scales.

Equations containing £°:

02 _ _
P1W240+P9y0+P10930:07 (27)

Q277500 + Qoo + Q190p0 = 0. (28)

8T2

Equations containing e

92
Py —5 1 + Pyyy + PipOp
8T02 1 1
7 0? Yo Iy 30p 90py o
= — 2P, — P, — 2P, Py— — P,
fy 1 O, 0T, 5 Ty, 6 a1, + £ a7, 0500 14950
- PlGZ_JoeBo*leyO*PzﬁBo*PwyoeBo: (29)
020 B
Qs 8T? + QoY1 + Q10p1
~ 020 aZ/o Q5 30py o 8030 o 00p
=M, —2 - il
1o~ 2 g P = Qs Gt 5 O — Qo G+ Qulth
— Q1675080 — Qo — Q24930 — Qa1 Y00 %0- (30)

The coefficients in Eqgs. (27)—(30) are presented in letters, the details of which are
presented in Appendix C. Equations (27) and (28) are rewritten in matrix form as
follows:

B (1)]{;22:;L//aa:22}+ llg}g@l—zz) igB(Zzi )—/ji)]{ﬂy;o}:{g}
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Clearly, the solution can be considered as a simple harmonic motion, for which it is

assumed ¥, = ¥oe™", Opy = 0 goe™”, where w is the natural frequency. The associated
eigen-equation is:

Let A = w? in which X is the eigenvalue, we can derive that

)\1:

1, - - —
Yo = 5 +505,01+13) \/1+ 1 418 — 402 14D,

1
2

where Ip= (MI?/12)+ M((1/2) —1;)® and @ZB = (KiI?/Iz)/(2K/M) =3/(2 -
61, + 62%). Supposing that [ =1, then I, = 1 —1;. The simplified eigenvalues are thus

and

2 4121, +1217 2

1, 317 +13) Ly 901 +21315+1y) 6Ly
(2-6l,+601)% 1—31,+30:

2 4120, +1217 2

5

1, 317 +13) Ly 901 +21315+1y) 6Ly
(261, +603)>2 1—31,+30;

For the condition 0 < I; < 1, the following typical cases are considered:

(a) If the ratio of the two eigenvalues is 1:1, then [; cannot satisfy the aforemen-
tioned conditions.

(b) If the ratio of the two eigenvalues is 1:4, then I; = 0.17837 or 0.82163.

(c) If the ratio of the two eigenvalues is 1:9, then I; = 1.1565 or —0.15646 and
therefore does not satisfy the aforementioned conditions either.

In the above discussion, it is found that the 1:2 internal resonance (w,:wy, = 1:2 or
A1: Ay = 1:4) may occur at I; = 0.17837 or 0.82163.

3.3. Frequency response

Using the MOMS, we divide the equations of motion (Egs. (9)—(12)) in the system
into equations comprising £° terms (Egs. (15)—(18)) and ! terms (Egs. (19)—(22)),
of which the set of equations comprising ¢ terms can be written as:

92X,

A82

+BX, =0,
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in which
P P P P Py Py Pu Py
A — Q1 Q Q3 Qq . B= Qo Qu Qu Qu and
Ry Ry, Ry Ry Ry Ry Ru Rp
Sy S S S Sy S S Sie

XT=[yy Opo wo Oaol-
The equations comprising ! terms can also be written as:

92X,

A
or?

+BX, =F.

We multiply both of these equations by the inverse (V1) of the eigenvector (V) in

the system, in which X; = VY,

Vi Vi Vig Ve
Vo Voo Vo V5

v [ YT (g 0 @ 04] and
VESI ‘/232 VESB ‘/54
Vi Vi Vig Vi

FT: [F1 F2 F3 F4}

Based on the orthogonality of the eigenvector, we can decouple ¢! equations and

rewrite them as:
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To observe the influence of external excitation on different DOFs, we hypothesize
that the external force term is

f: }'eiQTO _ j‘ei(wiJrsa)To — ]AceiwiToeitrsTO _ ‘}A('eiwir Z‘O’Tl. (37)

By respectively substituting Eqs. (33)—(36) into Eq. (32), we can obtain I',,, which,
when successively substituted into Eq. (31), gives us the secular terms for the DOF in
question. It is worth mentioning that the so-called secular terms (divisor terms) in
MOMS refer to the terms on the right side of the dynamic equation (Eq. (31)). If this
frequency is equal to the natural frequency of the system on the left-hand side of the
equation, then the system will have no convergent solutions, which are secular terms.
We thus select all of the harmonic terms on the right-hand side of the equation with
the same frequency as the natural frequency of the system and assume that the
equations comprising the secular terms are 0, which enable us to derive the solv-
ability conditions. The o in Eq. (37) is the detuned frequency. We then plot a
frequency response graph with o as the horizontal axis and amplitude as the vertical
axis so as to observe the changes in amplitude in the DOF near the resonance
frequency. Take, for example, the excitation of the first and second DOF's when the
main body is equipped with the PTMD. When the first DOF (y-DOF) is excited,
f= felQT = fe“’lTl e To where oy represents detuned frequency for exciting the
first DOF. To facilitate the solution process and obtain the steady-state response
solution, we set

04, 0A,

T, =0 and aT,
When the first DOF (y-DOF) is excited, we can derive the relationship between o
and the amplitudes of the excited DOF's from the solvability conditions, whereby we
can draw a Fixed Points plots. Furthermore, it is worth noting that the internal
resonance frequency previously found for the main body is wy :wy = 1:2. If the nat-
ural vibration frequency of this DOF equals w;, then the frequencies capable of
inducing resonance include wy —w; in addition to w;. In other words, the secular

=0.
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terms under these circumstances must include the terms e % and e#«:~“1)% on the
right-hand side of Eq. (31).

If the second mode is excited (f = fei®” = fei:Tiei:To) where o, represents the
detuned frequency for the second DOF, we can also use the above approach to obtain
the solvability conditions. Again, with the previously determined internal resonance
frequency of wy 1wy = 1:2, if the natural vibration frequency of the DOF is w,, then
when the second mode is being excited, the frequencies including w, as 2w; may
induce resonance.

4. Results and Discussion

This study examines the effect of vibration reduction of the mass ratio (), location,
extension spring constant (12: s) and torsion spring constant (l%T) of the PTMD
installed on a slender rigid body with 1:2 internal resonance. For a nonlinear system,
a number of parameters exist, for which we shall use the concept of an IRCP® and 3D
graphics to identify circumstances capable of preventing internal resonance. Under
such circumstances, we then derive the best combination of parameters that is ca-
pable of inhibiting vibration in the main body.

In particular, a 3D-IRCP aided by various amplitude analysis tables is proposed
in this study for the identification of PTMD parameter combinations capable of
preventing internal resonance. This approach enables designers to evaluate the ef-
fectiveness of various parameter combinations of the PTMD prior to the design
process. Due to the complicated nature of coupled nonlinear torsion-extension spring
of the PTMD, the experimental and analytical procedures in finding the optimal
combination of the PTMD parameters are beyond the present discussion.

4.1. Internal resonance analysis

We first confirm whether internal resonance exists in the main body, for which the
frequency responses of the main body under force without a PTMD are discussed.
Figures 2 and 3 respectively display the fixed points plots of the first and second
DOFs when the first DOF is under excitation by a force applied at X = 0.3 from
the center of mass of the main body. Furthermore, we include six small graphs
showing the time domain responses and Poincaré maps corresponding to various
frequencies for the confirmation of mutual accuracy. A comparison of the fixed-point
plots in Figs. 2 and 3 reveals that the amplitudes of the first DOF are greater than
those of the second DOF, which is normal in excitation. From Fig. 2, 0 = 4, we can
clearly observe the jump phenomenon, which refers to a structurally adverse con-
dition in which a frequency corresponds to two or more amplitudes, creating insta-
bility in the particular areas of the system. Time domain responses corresponding to
o = 4 and the chaos phenomena displayed in the Poincaré maps also present char-
acteristics of instability. Furthermore, the Poincaré maps corresponding to o = 0
and —10 are the L.C.O. (limit cycle oscillations).
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Fig. 2. No PTMD, first mode fixed points plots, X = 0.31, excite first DOF. (a) o = —10.0; (b) o = 0.0;
(c) o =4.0.

Figures 4 and 5 respectively show the fixed points plots of the first and second
DOF's when the second DOF is being excited by a force applied at X = 0.3] from the
center of mass of the main body. A comparison of the fixed-point plots in Figs. 4
and 5 indicates that the amplitudes of the first DOF are also greater than those of the
second DOF, which is an internal resonance phenomenon unique to nonlinear sys-
tems. This confirms the existence of internal resonance in the main body.

In Fig. 4, an unstable region is formed when ¢ = 3. The time domain responses
and Poincaré maps also clearly display characteristics of instability.

4.2. Vibration analysis of system with PTMD

Due to the existence of internal resonance and vibration characteristics in the main
body, we add a PTMD capable of swinging and moving in the transverse direction to
prevent internal resonance, while inhibiting vibrations. The purposes of the PTMD
are as follows: (1) to prevent internal resonance, (2) to identify the location for the
PTMD to effectively reduce vibration, and (3) to determine the influence of para-
meters including the mass ratio (m) of the PTMD, the suspension location of the
PTMD, the dimensionless extension spring constant (I%S), and the dimensionless
torsion spring constant (k7).
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Fig. 3. No PTMD, second mode fixed points plots, X = 0.31, excite first DOF. (a) o = —10.0; (b) ¢ = 0.0;
(c) o =4.0.

4.2.1. Prevention of internal resonance

Figure 6 shows a 3D-IRCP that considers four variables for preventing internal
resonance: the mass ratio (m), the location of the PTMD, the extension spring
constant (kg) and the torsion spring constant (k7). Frequency differences of less than
0.1% in the various combinations (meaning that there is a high chance of internal
resonance) are displayed using symbols. The X, Y and Z axes respectively denote the
dimensionless torsion spring constant (I%T), dimensionless extension spring constant
(kg) and location of the PTMD. The mass ratio (17) of the PTMD is presented using
various shapes and colors. We call this 3D graph of internal resonance occurring with
various combinations the 3D-IRCP, which reveals the capacity of various combi-
nations to prevent internal resonance and reminds designers of the combinations to
avoid, thereby maximizing the effectiveness of the PTMD. To facilitate discussion,
we divide Fig. 6 into two sections (0.09 < m < 0.25 and 0.3 < m < 0.5). An obser-
vation of Fig. 6 shows that the majority of the l%T variations appear in horizontal
lines (fixed values); therefore, we need to consider only the relationships among m,
k:S, and the location of the PTMD. Figure 7 shows the 2D-IRCP of Fig. 6 for
0.09 < m < 0.25, projecting various kT values onto the ks and PTMD location
plane. By comparison of the green square symbols (m = 0.1) and the yellow circle
symbols (m = 0.25), we find that within the range of 0.1 < 7 < 0.25, the range of 155
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Fig. 4. No PTMD, first mode fixed points plots, X = 0.31, excite second DOF. (a) o = —10.0; (b) ¢ = 0.0;
(c) o =3.0.

in which internal resonance may occur increases with m. In other words, when
i = 0.25, there are more PTMD locations and combinations of & s and l%T that will
induce internal resonance. The effectiveness in preventing internal resonance is re-
duced. Therefore, m = 0.25 should be avoided. Figure 8 shows the 2D-IRCP of Fig. 6
with 0.3 < m < 0.5, projecting the mass ratios related to various I%T values onto the
k s and PTMD location plane. In contrast, as m increases, we observe a narrowing in
the range of PTMD locations and kg in which internal resonance occurs. In other
words, within the range of 0.3 < m < 0.5, either a smaller mass ratio (m = 0.3)
shows a smaller range of k s values to prevent internal resonance, or a greater mass
ratio (m = 0.5) shows a greater range of PTMD locations and k g values capable of
preventing internal resonance.

To provide a more detailed explanation of the results in Fig. 8 and the effect of the
PTMD location in preventing internal resonance, we take m = 0.3 as an example
(Fig. 9). With mass ratios projected onto the ks and PTMD location plane with
regard to different lng values, we can see that when k g = 0.2, internal resonance can
be prevented as long as the distance between the PTMD and the left end of the main
body (xp) is less than 0.61. Also, when k s = 0.3, internal resonance can be prevented
as long as z) is less than 0.41. This demonstrates that adjusting the location of the
PTMD is an effective means of preventing internal resonance. To confirm the
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Position of PTMD

Fig. 6. 3D-IRCP of this system.
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Fig. 7. 2D-IRCP (0.09 < i < 0.25).

accuracy of Fig. 9, we select four stricter points in Fig. 9: (0.18, 0.6), (0.2, 0.6), (0.28,
0.4), and (0.3, 0.4). We then employ the fixed points plots in Figs. 1013, in which
the first DOF (y-DOF) and second DOF (05-DOF) are respectively excited to verify
the four points in Fig. 9. In Figs. 10-13, l%T is fixed at 0.5 and the location of the
PTMD is the same. Under these circumstances, slight adjustments to k g are suffi-
cient to prevent internal resonance. We find that internal resonance occurs at (0.2,
0.6) and (0.3, 0.4) in Fig. 9 and in their corresponding points in Figs. 11 and 13.
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Fig. 8. 2D-IRCP (0.3 < m < 0.5).
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Fig. 10. Fixed point plots of the case m = 0.3, kg = 0.18, position of PTMD = 0.6. (a) Excite first DOF,
resp. of first DOF; (b) excite first DOF, resp. of second DOF; (c) excite second DOF, resp. of first DOF;

(d) excite second DOF, resp. of second DOF.
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Fig. 11. Fixed point plots of the case m = 0.3, 1%5 = 0.2, position of PTMD = 0.6. (a) Excite first DOF,
resp. of first DOF; (b) excite first DOF, resp. of second DOF; (c) excite second DOF, resp. of first DOF;
(d) excite second DOF, resp. of second DOF.

Through mutual accuracy confirmation, the reliability of the graphs is enhanced. As
previously mentioned, l%T rarely changes, for which we first did not consider l%T in
Figs. 10-13. The influence of l%T on the system will be discussed later.

Figures 14 and 15 show the selection bases for k s and l%T, respectively, projecting
four PTMD mass ratios () from the IRCP with varying l%T and k g values onto the
I%S, l%T, and PTMD location planes. To prevent internal resonance, we select the
dimensionless spring constant based on these graphs. From the four different m
values in Fig. 14 and the range of possible internal resonance occurrence
(0.1 < ks < 0.55 in Fig. 14), we can still find a “better ks that enables a larger
range of PTMD locations to prevent internal resonance. We randomly select a better
I%S value from 0.1 < 1%5 < 0.55 in Fig. 14, indicated with a red arrow. From the four
mass ratios (m) of the PTMD in Fig. 15, we derive a correspondingly better kp. It is
worth noting that significantly greater or smaller spring constants can prevent in-
ternal resonance, but adversely affect damping. If the spring constant is too great,
the spring cannot lengthen easily, thereby hindering the movement of the PTMD
and limiting its influence. If the spring constant is too small, then the spring can be
stretched too easily, resulting in excessive motion of the PTMD, which can desta-
bilize the system. The red arrow in Fig. 15 indicates the better ks (which provides a
relatively greater number of PTMD locations to prevent internal resonance). An
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Fig. 12. Fixed point plots of the case m = 0.3, IQS = (.28, position of PTMD = 0.4. (a) Excite first DOF,
resp. of first DOF; (b) excite first DOF, resp. of second DOF; (c) excite second DOF, resp. of first DOF;
(d) excite second DOF, resp. of second DOF.

observation of Figs. 14 and 15 indicates that under the same m, changing I%S to
prevent internal resonance is considerably more effective than changing l%T. This is
the reason why we consider m and k g first, in our selection of PTMD parameters.
Figure 15 shows that in most circumstances, the probability of internal resonance
(black squared locations) does not vary significantly as I%T changes. This may be due
to the fact that changes in the I%T value have limited influence on changes in the
overall vibration frequency. For this reason, changing /%T is not an effective approach
to prevent internal resonance. The discussion above focuses only on the effectiveness
of changing spring constants for prevention of internal resonance. The effectiveness
of these parameters in vibration reduction will be discussed in later sections
(Sec. 4.2.3 and Table 10). It is actually not true that selecting a ks from Fig. 15 will
fail to prevent internal resonance in most PTMD locations, regardless of the I%T
value. We will therefore explain the means of selecting a kr in Fig. 16, which is the
IRCP of the PTMD mass ratio combinations with m = 0.09, 0.1, 0.3, 0.5. From
Fig. 15, we can see that when m = 0.09, a preferable torsion spring constant is
kp = 0.5. An observation of only Fig. 15 indicates that any PTMD located more
than 0.6/ from the left-end body is unable to prevent internal resonance. However,
Fig. 16 shows that if we select an appropriate k g, such as the combination of k 5=
0.5 and I%T = (.5, then internal resonance can be prevented, regardless of the PTMD
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Fig. 13. Fixed point plots of the case m = 0.3, l%s = 0.3, position of PTMD = 0.4. (a) Excite first DOF,
resp. of first DOF; (b) excite first DOF, resp. of second DOF; (c) excite second DOF, resp. of first DOF;
(d) excite second DOF, resp. of second DOF.

location. Similarly, we can derive the principles of selecting k7 from other PTMD
mass ratios (/m). For instance, when m = 0.1, the best kp is 0.45; when m = 0.3, the
best kg is 0.1, and when m = 0.5, the best value of kp is 0.35.

4.2.2. Influence of PTMD location on amplitude

We first install the PTMD at various locations to investigate its influence on the
vibration of the system. The peak amplitudes of each DOF in the main body are
presented in Tables 1-9 (including those without PTMD). We then divide the peak
amplitudes by those on the same DOF without PTMD (Amp. (Norm.)), add the four
amplitudes together, and plot them in Fig. 17. The delta, circle and square marks
represent the cases of Tables 1-3, 4—6 and 7-9, respectively. The red, green and blue
marks denote the cases of X = 0.31, 0.5 and 0.71, respectively. If the total of Amp.
(Norm.) is less than 4, then the PTMD is considered effective; otherwise, it is con-
sidered less than ideal. Due to the large number of possible combinations, we use the
IRCP (Fig. 6) as a foundation for selection and comparing the probability of internal
resonance occurring within the system. In this manner, we are able to select good and
poor PTMD mass ratios (m) for the compilation of tables with various PTMD
combinations. Take m = 0.1 (green) and m = 0.3 (pink) in Fig. 6 as an example.
When m = 0.3, the probability of internal resonance is higher (the pink portion is
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Fig. 14. 2D-IRCP on zp—kg plane for different m. (a) m = 0.09; (b) m = 0.1; (c) m = 0.3; (d) m = 0.5.

greater than the green portion). As a result, we can identify good and poor PTMD
mass ratios from Fig. 6 (m = 0.1 and m = 0.3) and then use the PTMD locations
most capable of preventing internal resonance (see Figs. 14 and 15) for the selection
of proper values for k s and kp and compared their damping effects.

The primary purpose of Tables 1-9 is to identify the PTMD combination with the
best damping effects (including m and PTMD location). In addition, we also consider
whether changing k S, I%T and the location of the PTMD can improve the effectiveness
of the PTMD even with a poor mass ratio (m). Tables 1-3 list the amplitudes in
various DOF's in the main body with m = 0.1, I%S = 0.5 and /%T = 0.45 when an
external force is applied at X = 0.31, 0.5/ and 0.7/ from the mass center of the main
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body. Two time response plots are included on the right for verification. The com-
binations corresponding to these plots are marked in bold front text in the tables.
With an external force applied at Xz = 0.3, 0.5] and 0.7] from the mass center of the
main body, Tables 46 show the amplitudes resulting from a PTMD mass ratio
deliberately selected for its high probablhty of internal resonance in conjunction with
a combination comprising a good k = 0.52 and a poor kT = 0.5. Tables 7-9 present
the amplitudes resulting from the same conditions as those in Tables 4—6 except with
a combination comprising a poor lgzs = 0.25 and a good I%T = 0.1. In Tables 7-9,
internal resonance occurred when the PTMD was more than 0.45] from the left end
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Position of PTMD

Table 1.

Fig. 16. 3D-IRCP for several typical m.

Amplitudes of the case of m = 0.1, kg = 0.5, kp = 0.45, Xp = 0.3.

Excite y-DOF

Excite 63-DOF

m=0.1, Xp =0.3, Total Amp.

k,=05,kp =045 y-Amp. O3-Amp. y-Amp. 6z-Amp. Norm. Remarks
No PTMD 23 16 115 0175 4 Posit. of TMD=0.30
Posit. of TMD = 0.05 1.78  0.011 1.0 x 10~ 0.195 1.895073758

Posit. of TMD = 0.10 1.8 0.019 5.0 x 1012 0.165 1.737340839 0006

Posit. of TMD =0.15 1.7 0015 10x10°'' 0125 1462791149 ;.

Posit. of TMD = 0.20 1.4 0013 1.0x10" 0085 1.102534938 £

Posit. of TMD = 0.25 1.8 0.02 1.0x10" 00417 1.03339441 0002

Posit. of TMD =030 185 0021 10x10°"' 0.003 0834615683

Posit. of TMD = 0.35 1.8 0.038 1.0x10-!' 0.035 1.006358696

Posit. of TMD = 0.40 1.9 0022 1.0x10-' 0.06  1.182694099 g 20000
Posit. of TMD = 0.45 1.9  0.033 1.0x10-1 009  1.360997671

Posit. of TMD = 0.50 1.75  0.031 1.0x 101 0.125 1.49453028 ‘

Posit. of TMD = 0.55 1.9  0.042 1.0x 101 0.145 1.680908385 Posit. of TMD=0.95
Posit. of TMD = 0.60 1.8 012 1.0x10-1 0.165 1.800465839 °°

Posit. of TMD =0.65 1.9 ~ 0.07 10x10°'' 0183 1915551242

Posit. of TMD =0.70 1.75  0.041 1.0x10~' 0.195 1.90078028

Posit. of TMD = 0.75 2 0.16 1.0x1071 0195 2.083850932 £,

Posit. of TMD = 0.80 1.95  0.17 1.0 x 10~ 0.195 2.068361801

Posit. of TMD = 0.85 2.1 0.175 1.0x10"1 0195 2.136704193 o4

Posit. of TMD = 0.90 2.3 017 1.0x10"1 0195 2.220535714 .
Posit. of TMD = 0.95 2.2  0.162 1.0x10"1 0.195 2.172057453 0 120000
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Table 2. Amplitudes of the case of m = 0.1, kg = 0.5, kp = 0.45, Xp = 0.5.

Excite y-DOF Excite 63-DOF

m=0.1, Xp = 0.5, Total Amp.
ks =05, kr =045 y-Amp. Op-Amp. y-Amp. 60p-Amp.  Norm. Remarks
No PTMD 2.3 1.6 1.68 0.265 4 Posit. of TMD=0.30

Posit. of TMD =0.05 1.78  0.011 1.0x10~7 028  1.838541568

Posit. of TMD =0.10 1.8  0.019 1.0x10°7 025  1.736498809 001
Posit. of TMD =0.15 1.7 0.015 1.0x10~7 019  1.465062244

Posit. of TMD =020 141  0.013 13x10~7 014  1.148567665 £0.005
Posit. of TMD =025 1.8  0.02 1.0x10~7 0069 1.051319447 *
Posit. of TMD =0.30 1.65  0.021 1.0 x10~7 0.005 0.745456819
Posit. of TMD =0.35 1.8  0.038 1.0x10~7 0.058 1.010612482
Posit. of TMD =0.40 1.9  0.022 1.0x10°7 0.11  1.246736911 0 20000
Posit. of TMD =045 1.9  0.033 1.0x107 016  1.439613687
Posit. of TMD =0.50 1.75  0.031 1.0 x 107 0.205 1.54371379
Posit. of TMD =0.55 1.9  0.042 1.0x10~7 024  1.741191838
Posit. of TMD =0.60 1.8 012 1.0x10~7 026 1.772321078
Posit. of TMD =0.65 1.9  0.07 10x10~7 031 2001762534 05
Posit. of TMD =0.70 2.1 0.041 1.0x1077 033 2168511742
Posit. of TMD = 0.75 1.95  0.16 1.0x10~7 036  2.215575972  E0.4 /NE,—
Posit. of TMD =0.80 1.95 017 1.0x 107 0.382  2.299520766

6 Posit. of TMD=0.95

Posit. of TMD = 0.85 2.1 0.175 1.0x10~7 0.4 2431119475  °°
Posit. of TMD = 0.90 2.3 017  10x1077 041 2557355056 ., ,
Posit. of TMD = 0.95 2.2 0.162 1.0x10°7 0.42 2.550810175 0 20000

of the main body. To better observe the influence of internal resonance on the
amplitude of the system, we excite the first DOF (y-DOF'), which results in greater
amplitudes in the first DOF than in the second DOF. When we excite the second
DOF (05-DOF), the amplitudes in the first DOF are still greater than those in the
second DOF. The peak amplitudes in the system with the PTMD at various locations
are recorded in Table 7. To save space, we list only the amplitude data from Tables 8
and 9, in which internal resonance is prevented.

From Tables 1-9, one observes that when the excitation is at y-DOF (in the
transverse direction) with various combinations of the PTMD and locations of ap-
plied force, the PTMD location nearest the mass center (0.17837]) exerts the greatest
damping effects for the y-DOF. In other words, the PTMD located at 0.2] contributes
to the smallest transverse amplitude in the main body in Tables 1-9. Using a PTMD
mass ratio of m = 0.1 and excitation of the §3-DOF, the PTMD located at 0.3 from
the left end of the main body exerts the most pronounced damping effects, regardless
of where the external force is applied. If the PTMD is moved away from this location
in either direction, the damping effects are diminished. This is likely due to the fact
the PTMD is below the mass center, whereby the PTMD mass ratio (m) and the
form of rotation cannot be used for damping. Clearly, the PTMD must be slightly
away from the mass center for it to have an effective lever arm with which to balance
vibrations. Nevertheless, if the lever arm is too long, then the vibration reduction
effects are diminished. Overall, the combinations with m = 0.1 have the best

1450041-27



Int. J. Str. Stab. Dyn. Downloaded from www.worldscientific.com
by TAMKANG UNIVERSITY on 07/18/14. For personal use only.

Y.-R. Wang & K.-E. Hung

Table 3. Amplitudes of the case of m = 0.1, kg = 0.5, ky = 0.45, Xp = 0.7.

Excite y-DOF Excite §3-DOF

m=0.1, Xp=0.7, Total Amp.
ky=05,kp =045 y-Amp. Og-Amp. y-Amp. 6p-Amp. Norm. Remarks
No PTMD 2.3 1.63 2.1 0.41 4 Posit. of TMD=0.30

Posit. of TMD = 0.05 1.77 0.013 1.0x 10" 0.57  2.16778458

Posit. of TMD = 0.10 1.8 0.016 1.9x10-1' 0.39 1.743644159 0.015
Posit. of TMD = 0.15 1.7 0.015 6.7x 10711 0.26  1.38247923
Posit. of TMD = 0.20 1.41  0.018 1.0x10-!1 0.2 1.111891301
Posit. of TMD =0.25 1.8  0.02 1.0x10-!! 0.1 1.038781073 0.005
Posit. of TMD = 0.30 1.85 0.02  1.0x 10-!! 0.0079 0.835886057
Posit. of TMD =0.35 1.8  0.038 1.0x 10~ 0.08  1.00104353
Posit. of TMD = 0.40 1.9  0.0225 1.0x 10-'1 0.15  1.205744296 0 20000
Posit. of TMD = 0.45 1.9  0.0325 1.3x10-!! 0.23  1.407001217

Posit. of TMD = 0.50 1.75 0.031 6.0 x 10~!! 0.298  1.506717238

Posit. of TMD = 0.55 1.9 0.041 1.0x10-!! 0.32  1.631728136 , Posit. of TMD=0.95
Posit. of TMD = 0.60 1.8  0.0425 1.0x10-!! 0.41  1.808682315

Posit. of TMD = 0.65 1.6  0.041 1.0x 10~ 0441 1.796415304 08
Posit. of TMD = 0.70 1.75 0.04 1.0x10-!! 0.5 2.004921638
Posit. of TMD = 0.75 2 008 1.0x10°!! 054 2235718143 goe——
Posit. of TMD = 0.80 1.95 0.0525 1.0 x 10~ 0.55  2.221498091

Posit. of TMD = 0.85 2.1 0.13  1.0x10°! 056  2.358651738 0.4
Posit. of TMD =0.90 2.3  0.061 10x10"1 058  2.452057459

Posit. of TMD = 0.95 2.2 0165 1.0x 10~ 0.605 2.533358489 U2 20000

0.01

Amp.

0

damping effects. Adjusting the location of the PTMD can result in a Total Amp.
(Norm.) of 0.75, which indicates that the amplitudes of the main body can be re-
duced to (0.75/4) ~ 18.75%.

Although the IRCP provides combinations capable of preventing internal reso-
nance, it cannot guarantee good damping effects when internal resonance does not
occur. Tables 1-9 illustrate that a PTMD mass ratio of m = 0.3 is not a good
combination to reduce vibrations. This is because larger m values mean that the
addition of the PTMD to the main body can change the system’s mass center.
Although this somehow prevents internal resonance, larger m values are also less
economical; sensitivity to rotation is heightened, and the overall damping effect is
reduced. Tables 4-9 show the damping effects of various combinations with m = 0.3.
From the IRCP, we can see that m = 0.3 is not necessarily a good choice for cases
involving internal resonance. The tables also indicate that these combinations are
ineffective in vibration reduction.

If the external force excites the 05-DOF, PTMD locations further away from
the left end of the main body, better damping effect can be achieved, regardless of
where the force is applied (excluding the combinations in which internal resonance
occurs). When m = 0.3, the Total Amp. (Norm.) can be reduced as low as 3.66
(Table 6, position of PTMD = 0.95). In other words, it can reduce the amplitudes by
(4 —3.66)/4 = 8.5%, and under adverse conditions, the overall amplitudes can be
decreased through selection of appropriate parameters. Even though the damping
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Table 4. Amplitudes of the case of m = 0.3, kg = 0.52, kp = 0.5, Xp = 0.3.

=03, Xp =03, Excite y-DOF Excite 65-DOF

I%S =0.52, l%T =05 y-Amp.  f0p-Amp. y-Amp. Op-Amp. Total Amp. Norm.
No PTMD 2.3 1.6 1.15 0.175 4

Posit. of TMD = 0.05 2.8 0.25 0 0.96 6.85935559
Posit. of TMD = 0.10 3.1 0.21 0.1 0.84 6.366032609
Posit. of TMD = 0.15 2.75 0.2 0 0.82 6.00636646
Posit. of TMD = 0.20 2.7 0.13 0.102 0.8 5.915287267
Posit. of TMD = 0.25 2.8 0.17 0 0.8 5.895069876
Posit. of TMD = 0.30 3.1 0 0.101 0.8 6.007080745
Posit. of TMD = 0.35 3.1 0.08 0 0.76 5.74068323
Posit. of TMD = 0.40 2.75 0.1 0.1 0.76 5.687965839
Posit. of TMD = 0.45 2.87 0.1 0 0.74 5.538897516
Posit. of TMD = 0.50 2.95 0.07 0.096 0.74 5.638408385
Posit. of TMD = 0.55 2.87 0.1 0 0.72 5.424611801
Posit. of TMD = 0.60 2.95 0.05 0.1 0.69 5.34367236
Posit. of TMD = 0.65 3.1 0.05 0.095 0.69 5.404541925
Posit. of TMD = 0.70 3.05 0.05 0.047 0.66 5.169635093
Posit. of TMD = 0.75 3.28 0.06 0.1 0.62 5.093400621
Posit. of TMD = 0.80 2.9 0.19 0 0.58 4.69390528
Posit. of TMD = 0.85 3.3 0.13 0 0.56 4.716032609
Posit. of TMD = 0.90 3 0.12 0 0.53 4.407919255
Posit. of TMD = 0.95 3.05 0.15 0 0.51 4.334122671

Table 5. Amplitudes of the case of m = 0.3, I%S =0.524, l%T =0.5, Xp =0.5.

M= 0.3, Xp = 0.5, Excite y-DOF Excite 63-DOF

l%s =0.52, l%T =05 y-Amp. fp-Amp. y-Amp. Op-Amp. Total Amp. Norm.
No PTMD 2.3 1.62 1.68 0.265 4

Posit. of TMD = 0.05 2.8 0.25 1.0 x 107 1.2 5.900020131
Posit. of TMD = 0.10 3.1 0.21 1.0 x 107 1.15 5.81708431
Posit. of TMD = 0.15 2.75 0.2 1.0 x 107 1.1 5.470058313
Posit. of TMD = 0.20 2.7 0.13 1.3 x 107 1.1 5.405109306
Posit. of TMD = 0.25 2.8 0.17 1.0 x 107 1.08 5.397807226
Posit. of TMD = 0.30 3.2 0 1.0 x 1075 0.992 5.134706527
Posit. of TMD = 0.35 3.1 0.08 1.0 x 1075 0.99 5.133063812
Posit. of TMD = 0.40 2.75 0.1 1.0 x 10-5 0.99 4.993235578
Posit. of TMD = 0.45 2.87 0.1 1.0 x 107 0.97 4.969937793
Posit. of TMD = 0.50 2.95 0.07 1.0 x 107 0.96 4.948466034
Posit. of TMD = 0.55 2.87 0.1 1.0 x 107 0.96 4.932201944
Posit. of TMD = 0.60 2.95 0.05 8.5 x 107 0.9 4.709749904
Posit. of TMD = 0.65 3.1 0.05 3.1x10°° 0.88 4.699463454
Posit. of TMD = 0.70 3.05 0.05 1.0 x 1075 0.88 4.677711823
Posit. of TMD = 0.75 3.28 0.06 1.0 x 1075 0.85 4.670677116
Posit. of TMD = 0.80 2.9 0.19 1.0 x 10-5 0.81 4.434763242
Posit. of TMD = 0.85 3.3 0.13 1.0 x 107 0.77 4.420695852
Posit. of TMD = 0.90 3 0.12 1.0 x 107 0.77 4.28408823
Posit. of TMD = 0.95 3.05 0.15 1.0 x 107 0.75 4.248874181
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Table 6. Amplitudes of the case of m = 0.3, kg = 0.52, kp = 0.5, Xp = 0.7.

= 0.3, Xp =07, Excite y-DOF Excite 3-DOF

k, =052, kr = 0.5 y-Amp. Op-Amp. y-Amp. 6Op-Amp. Total Amp. Norm.

No PTMD 2.3 1.63 2.1 0.41 4

Posit. of TMD = 0.05 2.85 0.25 0 1.35 4.685187595
Posit. of TMD = 0.10 3 0.21 0.17 1.3 4.68486627
Posit. of TMD = 0.15 2.8 0.2 0.12 1.25 4.446014036
Posit. of TMD = 0.20 2.7 0.13 0.1 1.25 4.35006718
Posit. of TMD = 0.25 2.85 0.17 0 1.218 4.34950573
Posit. of TMD = 0.30 3.1 0 0 1.21 4.346664647
Posit. of TMD = 0.35 2.98 0.08 0.1 1.21 4.343570488
Posit. of TMD = 0.40 2.87 0.1 0 1.21 4.30801434
Posit. of TMD = 0.45 2.87 0.1 0.1 1.21 4.30801434
Posit. of TMD = 0.50 2.95 0.07 0 1.21 4.276772993
Posit. of TMD = 0.55 2.87 0.1 0.1 1.13 4.112892389
Posit. of TMD = 0.60 2.98 0.05 0 1.08 3.960473362
Posit. of TMD = 0.65 3 0.05 0.11 1.05 3.948379235
Posit. of TMD = 0.70 3.05 0.05 0.14 1.03 3.926099782
Posit. of TMD = 0.75 3.2 0.06 0.11 1 3.919519506
Posit. of TMD = 0.80 2.9 0.19 0.11 0.97 3.798736078
Posit. of TMD = 0.85 3.1 0.13 0.11 0.95 3.797034811
Posit. of TMD = 0.90 3 0.12 0.11 0.92 3.674250849
Posit. of TMD = 0.95 3.05 0.15 0.1 0.9 3.660852495

Table 7. Amplitudes of the case of m = 0.3, l%s = 0.25, l%T =01, Xr=0.3.

=03, Xp =03, Excite y-DOF Excite 03-DOF

l;:s =0.25, I%T =0.1 y-Amp. 0p-Amp. y-Amp. Op-Amp. Total Amp. Norm.

No PTMD 2.3 1.6 1.15 0.175 4

Posit. of TMD = 0.05 4.05 0.13 0.11 0.88 6.966343168
Posit. of TMD = 0.10 3.6 0.32 0.1 0.86 6.766459627
Posit. of TMD = 0.15 3.5 0.3 0.13 0.84 6.622282609
Posit. of TMD = 0.20 34 0.28 0.1 0.82 6.434627329
Posit. of TMD = 0.25 3.7 0.26 0.1 0.81 6.430745342
Posit. of TMD = 0.30 3.4 0.24 0.1 0.8 6.286645963
Posit. of TMD = 0.35 3.7 0.2 0.1 0.77 6.220652174
Posit. of TMD = 0.40 3.7 0.2 0.1 0.77 6.220652174
Posit. of TMD = 0.45 3.7 0.17 0.1 0.75 6.08761646
Posit. of TMD = 0.50 3.8 0.16 1.75 0.75 7.559627329
Posit. of TMD = 0.55 3.7 0.16 1.9 0.65 7.07515528
Posit. of TMD = 0.60 4 0 1.76 0.63 6.869565217
Posit. of TMD = 0.65 3.8 0.11 1.85 0.6 6.758190994
Posit. of TMD = 0.70 3.81 0.14 1.07 0.59 6.045885093
Posit. of TMD = 0.75 3.81 0.1 2 0.58 6.772437888
Posit. of TMD = 0.80 3.81 0 2 0.58 6.709937888
Posit. of TMD = 0.85 3.8 0.17 1.9 0.53 6.439169255
Posit. of TMD = 0.90 4 0 1.7 0.53 6.245962733
Posit. of TMD = 0.95 4.2 0.16 1.95 0.5 6.478881988
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Table 8. Amplitudes of the case of m = 0.3, kg = 0.25, kp = 0.1, Xp = 0.5.

= 0.3, Xp =05, Excite y-DOF Excite 05-DOF

l%s =0.25, I%T =0.1 y-Amp.  60p-Amp. y-Amp. 0Op-Amp. Total Amp. Norm.
No PTMD 2.3 1.62 1.68 0.265 4

Posit. of TMD = 0.05 4.05 0.13 0.1 1.12 6.127055383
Posit. of TMD = 0.10 3.6 0.32 0.135 1.1 5.994048795
Posit. of TMD = 0.15 3.5 0.3 0.1 1.08 5.841919823
Posit. of TMD = 0.20 3.4 0.28 0.105 1.08 5.789072074
Posit. of TMD = 0.25 3.7 0.26 0.1 1.05 5.79097744
Posit. of TMD = 0.30 3.4 0.24 0.11 1.02 5.540941812
Posit. of TMD = 0.35 3.6 0.2 0.1 1 5.521782897
Posit. of TMD = 0.40 3.81 0.2 0.1 0.97 5.499879697
Posit. of TMD = 0.45 3.7 0.17 0.1 0.95 5.358063394

effect is less than ideal, internal resonance can still be prevented. We can see
that altering the position of the PTMD still plays an important role in vibration
reduction.

4.2.3. Effect of PTMD mass ratio (i) and other parameters

The effect of variance in m on the damping effect in the system is also worth dis-
cussing (Fig. 18). Figure 18 shows the normalized total amplitudes resulting from
the case when m = 0.5 (square marks) and the force is applied at X = 0.3] (red
marks), 0.5/ (green marks), and 0.7 (blue marks) from the mass center of the main
body. Based on Figs. 14 and 15, we select the combination of l%s =0.46 and
I%T = (0.35. The first objective is to use the IRCP to prevent internal resonance and
list the various amplitudes using the frequency responses before comparing their
damping effects. Figure 18 also shows the resulting amplitudes when m = 0.09 (circle
marks) and the force is applied at X = 0.3 (red marks), 0.5 (green marks) and 0.71

Table 9. Amplitudes of the case of m = 0.3, 1%5 =0.25, l%T =0.1, Xp =0.7.

=03, Xp = 0., Excite y-DOF Excite 63-DOF

I%S =0.25, kp =0.1 y-Amp.  0p-Amp. y-Amp. 0Op-Amp. Total Amp. Norm.

No PTMD 2.3 1.63 2.1 0.41 4

Posit. of TMD = 0.05 4.05 0.13 0 1.35 5.133307093
Posit. of TMD = 0.10 3.6 0.32 0.135 1.33 5.069724563
Posit. of TMD = 0.15 3.5 0.3 0.1 1.27 4.850968233
Posit. of TMD = 0.20 3.3 0.28 0.11 1.25 4.70772319
Posit. of TMD = 0.25 3.5 0.26 0.1 1.21 4.680086893
Posit. of TMD = 0.30 34 0.24 0.145 1.2 4.621377021
Posit. of TMD = 0.35 3.6 0.2 0.12 1.17 4.598718172
Posit. of TMD = 0.40 3.81 0.2 0.115 1.13 4.590080591
Posit. of TMD = 0.45 3.7 0.17 0.13 1.13 4.530992454
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(blue marks) from the mass center of the main body. Based on Figs. 14 and 15, we
select the combination of l%s = 0.5 and l%T = 0.5. Among the various PTMD mass
ratios, we discover that both m values are too large and those that are too small have
an adverse effect on damping. If the m is too large, then the system frequency can be
altered, which can effectively prevent internal frequency. However, this does not
benefit vibration reduction. Generally speaking, the entire system is dominated by
the main body, however, if m is too large, then the PTMD may dominate the system
instead. From an economic perspective, this is not a very good design concept. In
contrast, if the m is too small, such as 0.09, the damping effects is not necessarily
better than the case with m = 0.1, but they are better than the cases with m = 0.3 or
0.5. This implies that too small or too large m values do not reveal better damping
effect. Through observation, we discover that m = 0.1 is the best PTMD mass ratio,
capable of preventing internal resonance and providing excellent damping effects. It
is evident that the proposed method of creating an IRCP and sequentially selecting
PTMD parameters provides considerable reference value.

In Sec. 4.2.1, we observed that changing l%T is ineffective in preventing internal
resonance. Its influence on vibration in the main body is outlined in Table 10. Take
m = 0.1 as an example' By adopting fixed values for 1%5 or l%T, we can observe the
mﬂuence of changing k:T or k s on the amplitude. The upper half of Table 10 shows
the influence of changing kT on the damping effect. On the one hand, as kT increases
from 0.1 to 0.45, the damping effect is not significant even though the transverse
amplitudes from excitation to the the y-DOF decrease. On the other hand, the 05
amplitudes resulting from excitation to the §3-DOF decrease (from 0.021 to 0.003).
The lower half of Table 10 shows the influence of changing k g on the damping effect.
As k g increases from 0.2 to 0.5, the transverse amplitudes resulting from excitation
to the y-DOF decrease. However, the damping effect is insignificant. In contrast, the
05 amplitudes from excitation to the §5-DOF drops significantly (from 1.2 to 0.003).
From this, we discover that in terms of the 05-DOF, changing k g is much more

Table 10. Amplitudes of the case of m = 0.1, X = 0.3, for different spring constants.

Excite y-DOF Excite §3-DOF

y-Amp.  Op-Amp. y-Amp. O0p-Amp.  Total Amp. Norm.

i =0.1, Xp = 0.3, k, = 0.5, Posit. of TMD = 0.3

No &y 2.1 0.022  20x1071  0.051 2.17
kr =01 1.92 0.013  50x10°7 0.021 1.95
br=025 19 0.01 3.0x 10711 0.009 1.92
kp =045 1.85 0.021 1.0 x 1011 0.003 1.87
m=0.1, Xp = 0.3, by = 0.45, Posit. of TMD = 0.3

kg =02 L9 0.02 30x1071 1.2 3.12
k=035 1.87 0.022 1.0x 1071 0.0072 1.9
k=05 1.85 0.021 1.0x 10-1*  0.003 1.87
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effective than changing I%T with regard to vibration reduction. However, in the
transverse direction, the influence is not as pronounced.

Furthermore, unlike general PTMDs in which only a single extension spring
connects the PTMD to the main body, this study proposes the use of a torsion spring
and extension spring to connect the two. Added to the fact that the torsion
spring transforms the damping system into a 2D PTMD, the frequency of the overall
system is altered (which prevents internal resonance), thereby inhibiting vibrations
in the transverse and rotational directions. Take m = 0.1 as an example (Table 10),
the addition of the torsion spring resulting in total amplitudes of (1.87/2.17) ~
86.18% of those without the torsion spring. This demonstrates the effectiveness of
adding a torsion spring as a design device.

5. Conclusion

This study investigated a slender rigid body in vibration with 1:2 internal resonance,
exploring the influence of various damper parameters on damping effects and the
occurrence of internal resonance in the system. The instruments used include Fixed
Points Plots, time response and Poincaré maps, which were compared for confir-
mation of accuracy. Moreover, we proposed a 3D-IRCP aided by various amplitude
analysis tables for the identification of PTMD parameter combinations capable of
preventing internal resonance. This approach also enables designers to evaluate the
effectiveness of various parameter combinations of the PTMD prior to the design
process, in that the most effective PTMD parameters can be obtained in an eco-
nomical manner by only altering the location of the PTMD. The findings of this
study are summarized as follows:

(1) This study indicated that m = 0.1 is the best PTMD mass ratio. In addition to
preventing internal resonance, vibration amplitudes in the main body can also be
reduced to 18.75% under certain PTMD parameter combinations.

(2) With the same PTMD mass ratio, merely changing the extension spring constant
and torsion spring constant can also prevent internal resonance.

(3) With a fixed PTMD mass ratio, extension spring constant, and torsion spring
constant, we can also alter the location of the PTMD to prevent internal reso-
nance and reduce vibration.

(4) The use of a torsion spring as well as an extension spring for connections resulted
in a total amplitude of only 86.18% of that without a torsion spring, demon-
strating the effectiveness of this approach as a design aid.

(5) This study also proposed a procedure for the selection of PTMD parameters,
which involves selecting damper parameters using the 3D-IRCP to prevent in-
ternal resonance for the creation of amplitude analysis tables for vibration re-
duction. This procedure is an economical approach meant to enable designers to
evaluate the effectiveness of PTMDs quickly and precisely.
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