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a b s t r a c t

In this paper, we study the inverse spectral problems for Sturm–Liouville operators with
Robin boundary conditions and show that if the potential q on the interval [0, α] for some
α ∈ [0, 1) is given a priori, then the potential q on thewhole interval [0, 1] can be uniquely
determined by a subset of pairs of eigenvalues and the weight numbers of the correspond-
ing eigenvalues or by parts of two spectra.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following Sturm–Liouville operator L := L(q, h0, h1) defined by

Ly := −y′′
+ q(x)y = λy, 0 < x < 1 (1.1)

with the boundary conditions

U0(y) := y′(0, λ) − h0y(0, λ) = 0, (1.2)

U1(y) := y′(1, λ) − h1y(1, λ) = 0, (1.3)

where hξ ∈ R for ξ = 0, 1 and q is a real-valued function and q ∈ L2(0, 1).
Numerous research results for the problem (1.1)–(1.3) have been established by renowned mathematicians, notably,

Borg [1] and Levinson [2], who independently showed that two spectra {λn, µn} uniquely determined the potential q
and coefficients h0, h1 of the boundary conditions. Hochstadt and Lieberman [3] initiated the study of the so-called ‘‘half
inverse problem’’ for the problem (1.1)–(1.3) and proved that if h0 is known a priori and q is prescribed on the interval
[1/2, 1], then one spectrum is enough to determine the potential function uniquely. After that, the half inverse problems for
differential operatorswere investigated bymany authors [3–14]. In particular, Suzuki [4] showed by some examples that the
fixed boundary condition (1.2) is necessary for the Hochstadt–Lieberman Theorem and that one spectrum cannot uniquely
determine the potential q if q is prescribed on


0, 1

2 − ε

for 0 < ε < 1

2 . Marchenko [15] adopted an alternative approach
to inverse spectral theory via the Weyl m-function and proved that the Weyl m-function of the Sturm–Liouville operator
uniquely determined the coefficients h0, h1 of the boundary conditions as well as the potential q. In fact, a lot of related
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results have been obtained by this approach [6,10,11,15,16,12–14,17–23] and one of the interesting results was achieved by
Gesztesy and Simon (see [12, Theorem 1.3]), which is a generalization of the Hochstadt–Lieberman Theorem [3]. They used
theWeylm-function to study the inverse spectral problem of the problem (1.1)–(1.3) with prescribed partial information on
the potential and parts of one spectrum. Wei and Xu [20] further demonstrated that if q is prescribed on the interval [0, α]

for some α ∈ [0, 1), then parts of {(λn, κn)} (see Section 2) are sufficient to determine the potential (see [20, Theorem 4.1]).
Since the spectral data {λ1n, λ2n}

∞

n=0, {(λn, κn)}
∞

n=0 and {(λn, αn)}
∞

n=0 are equivalent [23], this paper will address the inverse
problems for the problem (1.1)–(1.3) via parts of {λ1n, λ2n}

∞

n=0 or {(λn, αn)}
∞

n=0. Therefore, two uniqueness theorems for the
problem (1.1)–(1.3) are established on the basis of partial information on the potential and a subset of pairs of eigenvalues
and the weight numbers of the corresponding eigenvalues or on the basis of partial information on the potential and parts
of two spectra. The techniques used here are based on the Weylm-function and methods developed in Refs. [12,20].

This article is organized as follows. In Section 2, we present preliminaries for Sturm–Liouville operators. In Section 3, we
will prove the validity of main results.

2. Preliminaries

In this section, we present preliminaries for Sturm–Liouville operators with Robin boundary conditions.
Let S1(x, λ), S2(x, λ), u−(x, λ) and u+(x, λ) be solutions of Eq. (1.1) which satisfy the initial conditions:

S1(0, λ) = 0, S ′

1(0, λ) = 1, S2(0, λ) = 1, S ′

2(0, λ) = 0, (2.1)

u−(0, λ) = 1, u′

−
(0, λ) = h0, u+(1, λ) = 1, u′

+
(1, λ) = h1. (2.2)

Clearly, U0(u−) = U1(u+) = 0 and

u−(x, λ) = S2(x, λ) + h0S1(x, λ), (2.3)

u+(x, λ) = S2(1 − x, λ) − h1S1(1 − x, λ)
= U1(S1)S2(x, λ) − U1(S2)S1(x, λ). (2.4)

It is easy to show that 1

0
(yL(z) − zL(y)) = [y, z](1) − [y, z](0), (2.5)

where [y, z](x) := y(x)z ′(x) − y′(x)z(x) is the Wronskian of y and z.
Let

∆(λ) := [u+, u−](x, λ). (2.6)

Therefore ∆(λ) is independent of x and

∆(λ) = U1(u−) = −U0(u+), (2.7)

which is called ∆(λ) the characteristic function of the operator L, that is, zero values of ∆(λ) coincide with the eigenvalues
of L.

We know that all zeros λn(n ∈ N0 = {0, 1, 2, . . .}) of ∆(λ) are real and simple and satisfy the following asymptotic
formula [23]:

λn = nπ +
ω

nπ
+

cn
n

, (2.8)

where ω = h0 − h1 +
1
2

 1
0 q(x)dx, {cn} ∈ l2.

Let σ(L) = {λn}
∞

n=0 be the spectrum of the operator L and u−(x, λn) and u+(x, λn) be eigenfunctions of the corresponding
eigenvalue λn, then there exists κn such that

u+(x, λn) = κnu−(x, λn), (2.9)

where κn is called the normalization constant of the corresponding eigenvalue λn. Hence κn ≠ 0, ∞ and

u+(0, λn) = κn. (2.10)

Define the weight numbers αn by

αn :=

 1

0
u2

+
(x, λn)dx. (2.11)

The numbers {λn, αn} are called the spectral data of L. The following relation holds

κnαn = −∆̇(λn), (2.12)

where ∆̇(λn) =
d∆(λ)

dλ |λ=λn .
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We denote λ = ρ2 and τ = |Imρ| and then we have the asymptotic formulae of u−(x, λ) and u+(x, λ) as follows

u−(x, λ) = cos ρx + O

eτx

ρ


, 0 ≤ x ≤ 1,

u′

−
(x, λ) = −ρ sin ρx + O(eτx), 0 ≤ x ≤ 1,

(2.13)

u+(x, λ) = cos ρ(1 − x) + O

eτ(1−x)

ρ


, 0 ≤ x ≤ 1,

u′

+
(x, λ) = ρ sin ρ(1 − x) + O(eτ(1−x)), 0 ≤ x ≤ 1.

(2.14)

Consequently, for sufficiently large |λ|, we obtain the following asymptotic formula of the characteristic function ∆(λ) of
the operator L:

∆(λ) = −ρ sin ρ + O(eτ ). (2.15)

Let Gδ := {ρ : |ρ − kπ | > δ, k ∈ Z}, where Z := {0, ±1, ±2, . . .} and δ sufficiently small, then there exists a constant Cδ

such that for sufficiently large |λ|,

|∆(λ)| ≥ Cδ|ρ|eτ , ∀ρ ∈ Gδ. (2.16)

We define the Weylm-functionm(x, λ) by

m(x, λ) =
u′

+
(x, λ)

u+(x, λ)
.

From Ref. [15] we get the following asymptotic formulae:

m(x, λ) = iρ + o(1),
1

m(x, λ)
= −

i
ρ

+ o


1
ρ2


(2.17)

uniformly in x ∈ [0, 1 − δ] for δ > 0 as |λ| → ∞ in any sector ε < Arg(λ) < π − ε for ε > 0. The following two lemmas
are important for proofs of the main results in this paper.

Lemma 2.1 ([15]). Let m(α, λ)(α ∈ [0, 1)) be the Weyl m-function of the problem (1.1)–(1.3). Then m(α, λ) uniquely
determines coefficient h1 of the boundary condition as well as q on the interval [α, 1].

Lemma 2.2 ([12, Proposition B.6]). Let f (z) be an entire function such that

(1) sup|z|=Rk |f (z)| ≤ C1 exp(C2Rα
k ) for some 0 < α < 1, some sequence Rk → ∞ as k → ∞ and C1, C2 > 0;

(2) lim|x|→∞ |f (ix)| = 0.

Then f ≡ 0.

3. Main results and proofs

In this section, we study the uniqueness theorems for Sturm–Liouville operators with Robin boundary conditions and
intend to reconstruct the operator on the basis of arbitrary partial information on the potential q and a subset of eigenvalues
and the corresponding weight numbers or on the basis of arbitrary partial information on the potential q and parts of two
spectra. The techniques used here are analogous to the methods developed in Refs. [12,20].

Consider the following Sturm–Liouville operators Lkj := L(qk, h0j, h1k) defined by

Lkuk := −u′′

k + qk(x)uk = λuk, x ∈ (0, 1) (3.1)

with boundary conditions

U0j(uk) := u′

k(0, λ) − h0juk(0, λ) = 0, (3.2)
U1k(uk) := u′

k(1, λ) − h1kuk(1, λ) = 0, (3.3)

where h0j, h1k ∈ R, h01 ≠ h02 and qk ∈ L2((0, 1),R) for k, j = 1, 2.
We have the following uniqueness theorem.

Theorem 3.1. Let σ(Lk) = {λkn}
∞

n=0(k = 1, 2) be the spectrum of Eq. (3.1) with boundary conditions (1.2) and (3.3) and
S = {λ1n}n∈Λ ⊆ σ(L1)


σ(L2), Λ ⊆ N0 and coefficient h0 of the boundary condition be given a priori. Suppose the following

conditions

(1) q1 = q2 a.e. on the interval [0, α] for some α ∈ [0, 1),
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(2) α1n = α2n for all n ∈ Λ and the inequality

♯{λ ∈ S|λ ≤ t} ≥ (1 − α)♯{λ ∈ σ(L1)|λ ≤ t} +
α − 1

2
(3.4)

holds for all sufficiently large t ∈ R+.

are satisfied. Then q1 = q2 on [0, 1] and h11 = h12.

Proof. Let uk+(x, λ)(k = 1, 2) be the solution of Eq. (3.1) for qk under the terminal conditions uk+(1, λ) = 1 and
u′

k+(1, λ) = h1k. By Green’s formula, we have 1

0
Q (x)u1+(x, λ)u2+(x, λ)dx = [u1+, u2+](1, λ) − [u1+, u2+](0, λ)

= F(1, λ) − F(0, λ), (3.5)

where Q (x) = q2(x) − q1(x) and

F(x, λ) = [u1+, u2+](x, λ). (3.6)

From Q (x) = 0 on [0, α] together with the terminal conditions uk+(1, λ) and u′

k+(1, λ)(k = 1, 2), we get

F(0, λ) = h12 − h11 −

 1

α

Q (x)u1+(x, λ)u2+(x, λ)dx. (3.7)

Denote the entire functions ∆k(λ) by

∆k(λ) = −U0(u+) = −[u′

k+(0, λ) − h0uk+(0, λ)] (k = 1, 2). (3.8)

Then

F(0, λ) = [u1+, u2+](0, λ)

=

u1+(0, λ) u2+(0, λ)
u′

1+(0, λ) u′

2+(0, λ)


= −

u1+(0, λ) u2+(0, λ)
∆1(λ) ∆2(λ)

 . (3.9)

dF(0, λ)

dλ
= −

du1+(0, λ)

dλ
du2+(0, λ)

dλ
∆1(λ) ∆2(λ)

+
u1+(0, λ) u2+(0, λ)

∆̇1(λ) ∆̇2(λ)




. (3.10)

For all λ1n ∈ S, we obtain

dF(0, λ)

dλ


λ=λ1n

= −

du1+(0, λ)

dλ
du2+(0, λ)

dλ
∆1(λ) ∆2(λ)


λ=λ1n

+

u1+(0, λ1n) u2+(0, λ1n)

∆̇1(λ1n) ∆̇2(λ1n)




= κ2n∆̇1(λ1n) − κ1n∆̇2(λ1n). (3.11)

By virtue of the assumption α1n = α2n of Theorem 3.1 for n ∈ Λ together with (2.12), this yields

κ2n∆̇1(λ1n) − κ1n∆̇2(λ1n) = 0.

Hence

F(0, λ1n) = 0 and
dF(0, λ)

dλ


λ=λ1n

= 0. (3.12)

Therefore, we see that all λ1n ∈ S are zeros of F(0, λ) of order at least 2. SinceQ (x) = 0 on [0, α], we have F(0, λ) = F(α, λ).
Hence all λ1n ∈ S are also zeros of F(α, λ) of order at least 2. Without loss of generality, we assume all eigenvalues λkn > 1
of the problem (3.1), (1.2) and (3.3). By virtue of Ref. [23, p. 8], there exists a constant ck such that

∆k(λ) = ck

n∈N0


1 −

λ

λkn


(k = 1, 2). (3.13)

Define the functions

GS(λ) =


λ1n∈S


1 −

λ

λ1n


(3.14)
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and

K(λ) =
F(α, λ)

G2
S(λ)

. (3.15)

Then, K(λ) is an entire function in λ. Note that

F(α, λ) = u1+(α, λ)u′

2+(α, λ) − u′

1+(α, λ)u2+(α, λ)

= u′

1+(α, λ)u′

2+(α, λ)(m−1
1 (α, λ) − m−1

2 (α, λ)), (3.16)

where mk(α, λ) =
u′
k+(α,λ)

uk+(α,λ)
(k = 1, 2). From (2.14), (2.17), (3.16) and (3.8), we get

|F1(α, λ)| = o(e2τ(1−α)) (3.17)

and

|∆k(λ)| = O(ρeτ ). (3.18)

For convenience, we denote

NGS (t) = ♯{λ1n ∈ S|λ1n ≤ t}, N∆1(t) = ♯{λ1n ∈ σ(L1)|λ1n ≤ t}.

By virtue of (3.4), we obtain

NGS (t) ≥ (1 − α)N∆1(t) +
α − 1

2
. (3.19)

Since ∆1(λ) is an entire function in λ of order 1
2 , there exists a positive constant C such that

NGS (t) ≤ N∆1(t) ≤ Ct
1
2 . (3.20)

From the above assumption λ1n > 1 for all n ≥ 0, we get NGS (1) = N∆1(1) = 0. For a fixed real number y and |y| ≫ 1, we
have

ln |GS(iy)| =
1
2
lnGS(iy)GS(iy) =

1
2


λ1n∈S

ln

1 −

iy
λ1n


1 +

iy
λ1n



=
1
2


λ1n∈S

ln

1 +

y2

(λ1n)2


=

1
2


∞

1
ln

1 +

y2

t2


dNGS (t)

=
1
2
ln

1 +

y2

t2


NGS (t) |

∞

1 −
1
2


∞

1
NGS (t)d


ln

1 +

y2

t2


. (3.21)

Since

ln

1 +

y2

t2


= O


1
t2


, as t → ∞,

we obtain

lim
t→∞

ln

1 +

y2

t2


NGS (t) = 0

and

lim
t→∞

ln

1 +

y2

t2


N∆1(t) = 0.

By assumption (2) of Theorem 3.1, there exists a constant t0 ≥ 1 and C1 such that

NGS =


NGS (t) ≥ (1 − α)N∆1(t) +

α − 1
2

, t ≥ t0,
NGS (t) ≥ (1 − α)N∆1(t) − C1, t < t0.

Consequently, from (3.21) together with the following relation

y2

t3 + ty2
= −

d
dt


1
2
ln

1 +

y2

t2


,
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we get

ln |GS(iy)| =


∞

1

y2

t3 + ty2
NGS (t)dt

=

 t0

1

y2

t3 + ty2
NGS (t)dt +


∞

t0

y2

t3 + ty2
NGS (t)dt

≥ (1 − α)


∞

1

y2

t3 + ty2
N∆1j(t)dt +

α − 1
2


∞

1

y2

t3 + ty2
dt −


α − 1

2
+ C1

 t0

1

y2

t3 + ty2
dt

= (1 − α) ln |∆1(iy)| +
α − 1

4
ln(1 + y2) +

α − 1 + 2C1

4
ln

1 + y2

t20 + y2
+

α − 1 + 2C1

4
ln t0. (3.22)

This implies

|GS(iy)| ≥ C0|∆1(iy)|1−α(1 + y2)
α−1
2 , (3.23)

where C0 is constant.
From (3.17), (3.18) and (3.23), we have

|K(iy)| =

F(α, iy)
G2
S(iy)

 = o(1) (3.24)

for |y| sufficiently large.
Applying Lemma 2.2, we obtain

K(λ) = 0, ∀λ ∈ C.

Therefore

F(0, λ) = F(α, λ) = 0, ∀λ ∈ C. (3.25)

By virtue of (3.25) together with (3.16), this yields

m1(0, λ) = m2(0, λ), ∀λ ∈ C. (3.26)

This implies

q1 = q2 a.e. on [0, 1], and h11 = h12.

The proof of Theorem 3.1 is now completed. �

Remark 1. From the proofs of Theorem 3.1, we provide an alternative proof for Theorem 1.2.2 or Theorem 1.2.4
(see [23, Theorem 1.2.2, p.21 and Theorem 1.2.4, p. 24]).

Let α =
1
2 ; then we have the following corollary.

Corollary 3.2. Let σ(L) = {λn}
∞

n=0 be the spectrum of the problem (1.1)–(1.3). Assume that the coefficient h0 of the boundary
condition is given a priori and q on the interval


0, 1

2


is known a priori, then the even spectral data {(λ2n, α2n)}

∞

n=0 or the odd
spectral data {(λ2n−1, α2n−1)}

∞

n=1 is sufficient to determine the potential q on the whole interval [0, 1] and coefficient h1 of the
boundary condition.

In the rest parts of this section, we use partial information on the potential and parts of two spectra to establish the
following uniqueness theorem for Sturm–Liouville operators.

Denote σ(Lkj) = {λkjn}
∞

n=0(k, j = 1, 2) the spectrum of the problem (3.1)–(3.3). Since h01 ≠ h02, it is easy to prove
σ(Lk1)∩σ(Lk2) = ∅ for k = 1, 2. Applying the same arguments as that in the proof of Theorem3.1,we canprove Theorem3.3.
We omit the details here. The readers can follow the proofs of Theorem 3.1 to reach the following conclusions.

Theorem 3.3. Let σ(Lkj) be as that defined above, coefficients h01, h02 of the boundary conditions be given a prior, Sj =

{λ1jn}n∈Λj ⊆ σ(L1j)


σ(L2j), Λj ⊆ N0 for k, j = 1, 2 and (α0, α1, α2) ∈ [0, 1] × [0, 1/2] × [0, 1/2]. Suppose the following
conditions:
(1) q1 = q2 on the interval [0, α0],
(2) α0 − α1 − α2 = 0 and the inequality

♯{λ ∈ Sj|λ ≤ t} ≥ (1 − 2αj)♯{λ ∈ σ(L1j)|λ ≤ t} +
2αj − 1

2
(3.27)

holds for t ≫ 1 and j = 1, 2.
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are satisfied, then

q1 = q2 a.e. on [0, 1] and h11 = h12.

Remark 2. (1) Theorem 3.3 is also true for all other types of separated boundary conditions.
(2) For the case α0 = α1 = α2 = 0, Theorem 3.3 leads to the Borg theorem [1].
(3) If α0 =

1+α
2 , α1 =

α
2 , α2 =

1
2 , Theorem 3.3 leads to the Gesztesy–Simon theorem [16].

(4) Let α0 =
1
2 , α1 = 0, α2 =

1
2 , then Theorem 3.3 leads to the Hochstadt–Lieberman theorem [3].
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