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Planning Progressive Type-I Interval Censoring Life
Tests With Competing Risks
Shuo-Jye Wu, Associate Member, IEEE, and Syuan-Rong Huang

Abstract—In this article, we investigate some reliability and
quality problems when the competing risks data are progressive
type-I interval censored with binomial removals. The failure times
of the individual causes are assumed to be statistically indepen-
dent and exponentially distributed with different parameters. We
obtain the estimates of the unknown parameters through a max-
imum likelihood method, and also derive the Fisher’s information
matrix. The optimal lengths of the inspection intervals are deter-
mined under two different criteria. The reliability sampling plans
are established under given producer’s and customer’s risks. A
Monte Carlo simulation is conducted to evaluate the performance
of the estimators, and also some numerical results are presented.

Index Terms—D-optimality, exponential distribution, maximum
likelihood method, multiple failure modes, reliability sampling
plan, variance-optimality.

ABBREVIATION

MLE maximum likelihood estimate(or)

TET total experimental time

NOTATION

failure time of the -th unit,

lifetime of the -th unit under risk ,

probability density function of

joint probability density function of risk and
failure time of the -th unit
joint cumulative distribution function of risk
and failure time of the -th unit
cumulative distribution function of

parameter of the exponential distribution under
risk ,
total of hazard rates for all risks

mean of the exponential distribution

number of test units

number of risks

number of inspections

the -th inspection time

number of failures at the -th stage due to risk
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total number of failures at the -th stage

total number of failures due to risk

total number of failures observed in a life test

number of removals at the -th stage

number of non-removed surviving units at the
beginning of the -th stage
probability of a unit to be removed at the -th
stage
probability of failure in due to risk

probability of failure in

likelihood function

Fisher’s information

producer’s risk

consumer’s risk

lower specification limit, i.e., the critical point
for accepting a lot
percentile of a standard statistical normal

distribution

I. INTRODUCTION

A product usually consists of many different components
with various risk factors so that a product may fail due to

one of several causes, called failure modes or competing risks.
In certain applications, product lifetime is defined to be the ear-
liest occurrence among all these risks. Nelson [25, Chapter 7]
enumerated engineering situations when a product fails because
of two or more risks. For instance, fatigue specimens of a certain
sintered super-alloy can fail from a surface defect or an interior
one. In ball bearing assemblies, a ball or the race can fail. A
cylindrical fatigue specimen can fail in the cylindrical portion,
in the fillet (or radius), or in the grip. A semiconductor device
can fail at a junction or at a lead. Some other situations in en-
gineering when competing risks occurred can be found in Kim
and Bai [18], and Craiu and Lee [11].
In reliability analysis, ignoring the information on causes of

failure may result in incorrect inference when improving the
reliability of the products. Thus, the data for these competing
risks models consist of the failure time, and an indicator vari-
able denoting the specific cause of failure of the product. Cox
[10] proposed the latent failure model to analyze the data with
multiple failure modes. The cause of failure may be assumed
to be statistically independent, or statistically dependent. In
most situations, it is usually assumed that these competing
risks are statistically independent. Although the assumption of
statistical dependence may be more realistic, there are some
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identifiability issues in the underlying model. Kalbfleisch and
Prentice [17], and Crowder [13] pointed out that, without the
information of the covariates, it is not possible using data to
test the assumption of statistical independence of failure times.
To avoid the problem of model identifiability, we consider
such latent failure time model formulations, and suppose the
latent failure times are statistically independent. Recently,
some studies about competing risks have been proposed by
several authors including Balasooriya and Low [5], Bunea and
Mazzuchi [7], Balakrishnan and Han [4], Pareek et al. [27],
Han and Balakrishnan [15], Pascual [28], Hiu and Qiu [21],
and Cramer and Schmiedt [12].
In addition to competing risks, the life test is important for

manufacturers to evaluate product reliability in the competitive
market. Censoring is also very common in life tests. Censoring
usually applies when the exact lifetimes are known for only a
portion of the products, and the remainder of the lifetimes are
known only to exceed certain values, or to be within an interval
of time. The most common censoring schemes are type-I cen-
soring, and type-II censoring. One important characteristic of
these two censoring schemes is that they do not allow for units
to be removed from the test at points other than the final termina-
tion point. The allowance of removing surviving units from the
test before the final termination point is desirable, as in the case
of studies of wear in which the study of the actual aging process
requires units to be fully disassembled at different stages of the
experiment. When a compromise between the reduced time of
experimentation and the observation of at least some extreme
lifetimes is sought, such an allowance is also desirable. There-
fore, a generalization of conventional censoring called progres-
sive censoring has arisen. An account of progressive censoring
can be found in the monograph by Balakrishnan and Aggarwala
[3], or in the review article by Balakrishnan [2].
In practice, it is often impossible to continuously observe the

testing process, even with censoring. The test units might be
able to be inspected intermittently. That is, we can only count
the number of failures in a time interval instead of measuring
failure time exactly. Such a life test is called interval censoring,
and data collected through this test are called grouped data. The
issues regarding interval censoring have been investigated by
several authors such as Cheng and Chen [8], Aggarwala [1],
Xiong and Ming [33], and Yang and Tse [34].
One of the purposes of this paper is to explore the choice of

the inspection interval length under progressive type-I interval
censoring. We propose two selection criteria which enable one
to choose the optimal value of the length. One is to minimize
the asymptotic variance of the mean lifetime, and the other is
to minimize the determinant of the variance-covariance matrix
of the estimators of model parameters. Some related research
results can be found in, for example, Lui et al. [22], Tse et al.
[30], Wu et al. [32], Lin et al. [20], and Wu and Huang [31].
The second purpose of this paper is to study the acceptance

sampling plan under progressive type-I interval censoring with
competing risks. In an acceptance sampling plan, the experi-
menter determines whether a batch of products could be ac-
cepted or not by inspecting some products randomly selected
from a batch. If the inspected characteristic of the products is
the lifetime, a life test should be performed. Acceptance sam-

pling plans used to determine the acceptability of a batch of
products, with respect to their lifetimes, are known as relia-
bility sampling plans. In the literature, reliability sampling plans
have been studied by many researchers such as Fernández [14],
Jun et al. [16], Chung and Seo [9], and Peréz-González and
Fernández [29].
The rest of this paper is organized as follows. Some for-

mulae and assumptions about competing risks are described in
Section II. The maximum likelihood estimators (MLEs) and the
Fisher’s information matrix are derived in Section III. The op-
timal lengths of the inspection interval under two different se-
lection criteria are investigated in Section IV. Given producer’s
and customer’s risks, a reliability sampling plan is proposed in
SectionV. Some numerical results and an example are presented
in Section VI. Extensions are provided in Section VII. Conclu-
sions and discussions are made in Section VIII.

II. MODEL AND ASSUMPTIONS

Suppose that, in a life test, a test unit may fail in dif-
ferent modes. We assume that the latent failure times follow
an exponential distribution with different parameters ,

. To avoid some identifiability issues, we assume
are statistically independent. Further, we have

. Thus,

where is the total of the constant hazard func-
tions for all risks.
Meeker and Escobar [23, p.79] indicated that the exponential

distribution is a popular distribution for some kinds of electronic
components such as capacitors and high-quality integrated cir-
cuits. Pal et al. [26, p.152] pointed out that the failure time
of electric bulbs, batteries, appliances, and transistors, etc., can
often be modeled with an exponential distribution.
Let us consider the competing risks data with progressive

type-I interval censoring. Suppose that units are simultane-
ously placed on a life test. Units are only inspected at pre-de-
termined times , where .
At the -th stage, let be the number of units known to have
failed in the interval due to risk , and let be the
number of surviving units being withdrawn from the test at time
, for , and , where . Thus, the

observed data from a progressive type-I interval censoring with
competing risks are .
For the given , we have the fact that
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is the probability that a unit fails in the time interval
due to risk , and

is the probability that a unit fails in the time interval ,
for and .
There are several different ways to decide the number of re-

movals at each stage. Here we assume that a unit being re-
moved from the life test is statistically independent of the others
but with probability at the -th stage. Then, we have

where is the total number of failures at the

-th stage, and is the number of
non-removed surviving units at the beginning of the -th stage,

.

III. MAXIMUM LIKELIHOOD ESTIMATION

Based on the competing risk data from a progressive type-I
interval censoring scheme, the likelihood function can be
written as the equation shown at the bottom of the page. Thus,
the likelihood equation for is

where is the total number of failures due to
risk , . From the likelihood equations, we deter-
mine that the solution to the likelihood equations must satisfy

(1)

where is the total number of failures

observed in the life test, and . Computing the

unique value for is defined below.

Plugging (1) back to the likelihood equations, one can get

(2)

Because the left-hand side of (2) is a function of , we can
write it down as . It is easy to show that
, , and

.
These results imply that is a strictly decreasing function
of , and hence has a unique solution of . Because
(2) has a unique solution of , one can solve this equation first,
and then use (1) to get the MLEs .
In the special case where the inspection time intervals are of

equal length, say , we can find the explicit form
for the MLE of as

(3)

Hence, the MLEs of , , can also be obtained in
explicit forms.
Under some mild regularity conditions, the asymptotic nor-

mality of the MLEs can be easily established. The elements of
the Fisher’s information matrix are

,

.

(4)

To obtain and in (4), let us compute
the expectations of , , and for
and . When , we have ,

,
and . Therefore,



514 IEEE TRANSACTIONS ON RELIABILITY, VOL. 63, NO. 2, JUNE 2014

When , we know that ,

and
. Hence,

It is easy to obtain that, by induction,

and also that

for , and . Hence, (4) can be written as
equation (5) at the bottom of the page.
To implement the life test conveniently, experimenters may

choose that the inspection time intervals are of equal length, and
the probabilities of removals at each stage are the same (i.e.,

, and ). The elements of the Fisher’s
information matrix can be simplified as

,

,

where .

IV. OPTIMAL INSPECTION LENGTH

In this section, we investigate the optimal lengths of the in-
spection intervals in a progressive type-I interval censoring with
competing risks. For simplicity of discussion, we only consider
the special case where , , and causes
of failure in the life test.
From Section III, we know the Fisher’s information matrix

with two competing risks is

The variance-covariance matrix is the inverse of the Fisher’s
information matrix,

Then, by asymptotic normality of the MLE, one can obtain that
is asymptotically normally distributed with mean , and

variance , where

Note that the mean lifetime is the reciprocal of . By the
invariance property of the MLE and the Delta method, the dis-
tribution of the estimator of the mean lifetime is ap-
proximately normal with mean , and variance .
We study two selection criteria which enable us to determine

the optimal value of .

A. Variance-Optimality

The mean lifetime is an important characteristic for analyzing
the reliability of products. To estimate the mean lifetime of the
products more precisely, we need to select the optimal value of
the inspection interval whichminimizes the asymptotic variance

,

.
(5)
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TABLE I
AVERAGE ESTIMATES AND ESTIMATED RISKS (IN PARENTHESES) OF MLES, ,

of the estimator of the mean lifetime. Note that the asymptotic
variance of the estimator of the mean lifetime is

Thus, the optimal length of the inspection interval is deter-
mined by minimizing

B. D-Optimality

It is well known that the determinant is propor-
tional to the volume of the asymptotic joint confidence region
for so that minimizing this determinant is equivalent to
minimizing the volume of the confidence region. A small value
of the determinant of the asymptotic variance-covariance matrix

results in a high joint precision of the estimators of
and . Therefore, the optimal value of the inspection length
is obtained by minimizing

V. SAMPLING PLANS WITH COMPETING RISKS

To illustrate the reliability sampling plans with competing
risks, the number of causes of failure is assumed to be .

We also suppose that the lengths of the inspection interval are
equal (i.e., ), and the removal probabilities at each
stage are all the same (i.e., ) in this section.
Suppose products whose mean lifetimes are smaller than a

lower specification limit, , are not of acceptable quality to the
consumer. From a batch of products, units are randomly se-
lected, and are tested under a progressive type-I interval cen-
soring life test. Comparing the estimate of mean lifetime
with , the batch is either accepted if , or rejected if

. Thus, the quality parameter is acceptable if it is greater
than , and a quality parameter less than is considered re-
ject-able, where . The values of and are decided by
an agreement between the producer and the consumer. Hence,
the reliability sampling plan tests the simple hypothesis system

versus with a desired power at
-level. Therefore, we have

where is the producer’s risk, and is the consumer’s risk.
Note that is the reciprocal of . Without loss

of generality, we assume that , and , where
. Then, we have . Now, set
, and , where .
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TABLE II
AVERAGE ESTIMATES AND ESTIMATED RISKS (IN PARENTHESES) OF MLES, ,

From the asymptotic normality of the MLE , we can obtain

(6)

and

(7)

where , and are evaluated at , and , respec-
tively. Here is the percentile of a standard normal
distribution.

VI. NUMERICAL RESULTS

In this section, some numerical results are presented. We first
conduct a Monte Carlo simulation to study the performance of
the MLEs in terms of the average estimates and the estimated
risks in Section VI-A. Secondly, a numerical study for investi-
gating the optimal length of the inspection interval is presented
in Section VI-B. Thirdly, in Section VI-C, some tables are pro-
vided for illustrating the use of the reliability sampling plan with
competing risks. Finally, in SectionVI-D,we apply the proposed
methods toarealdatasetpresentedinBoardmanandKendell [6].

A. Performance of Parameter Estimates

Here,we present aMonteCarlo simulation to evaluate the per-
formance of the parameter estimations. We only consider the
case of , which is two causes of failure in a life test.

We set , ,
, , and . Under

thesesettings, theaverageestimates,andtheestimatedrisksof the
MLEs based on 10000 simulated samples are listed in Tables I –
III. The tables show that the average estimates of theMLEsare all
close to the true parameters for different combinations of , , ,
and . Even though the sample size is small, theMLEs still per-
formwell in termsof the averageestimates.Largevaluesof or
lead tosmallvaluesof theestimatedrisksof theMLEs.As thepro-
portion of removals increases, the estimated risks of theMLEs
becomealittlebit large,especially for thesmall samplesize.

B. Optimal Plans

To obtain the optimal value of , we need to take the first
derivative of or with respect to . Then, the op-
timal value for these criteria must satisfy

or

The optimal values cannot be solved to explicit forms. However,
the equations for solving are all functions of . Therefore,
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TABLE III
AVERAGE ESTIMATES AND ESTIMATEDRISKS (IN PARENTHESES) OFMLES, ,

TABLE IV
OPTIMAL LENGTH OF THE INSPECTION INTERVAL WITH

one can set , and then obtain the optimal value of for
the given and . The optimal values of for the other values
of can be computed as , where is the optimal value of
with .
Let , and be the optimal lengths of the inspection in-

tervals according to the variance-optimality, and D-optimality,
respectively. Table IV presents the results for , and

when . Thefindings are as follows.
Theoptimallengthsundervariance-optimalityarealwayssmaller
than thoseunderD-optimality.Forbothcriteria,a largenumberof
stages results inashort lengthof the inspection interval.A larger
removalprobability makesa longeroptimal length.

C. Reliability Sampling Plan

To illustrate the use of the proposed sampling plan, we per-
form some numerical studies. Consider ,

, , ,
, , and , where satis-

fies . The number of test units and the
critical point are listed in Tables V – VII.
From these tables, we find the following results. As the

number of stages increases, the number of test units be-
comes fewer, and the value of the critical point becomes large.
However, the influence of the number of stages becomes
weak when the value of is getting large. If either the value
of , , or increases, the number of test units , and the
critical point become small. A larger removal probability
leads to more test units in a life test; however, it has a slight
effect on the critical point .
In addition to the above observed phenomena, we can find

another interesting result. Under the assumptions that ,
and , (6), and (7) can be written as

and
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TABLE V
NUMBER OF TEST UNITS AND CRITICAL POINT FOR

where , and are the values of
evaluated at , and ,

respectively. One can see that, when , , , and are fixed, the
value of remains unchanged for any pair of such that

is a constant. However, the value of will be multiplied
by the ratio between two values of . For example, from
Table V, when , , , and , we
have , and for . If we
choose , then the value of is still equal
to 46 because , and the value of is 51.57 because

.
Note that, if the test units have a large mean lifetime, then

one needs a longer experimental time to get enough informa-

tion. However, in practice, there may be a limitation on total
experimental time (TET). Thus, one might be interested in the
influence of TET on and . Table VIII lists the values of
and under the limitations that TETs are 1, 5, and 10. Because

, it means that a small implies a large
mean lifetime. From Table VIII, we can observe the following
results. If TET is small, the number of test units is increasing
in the number of inspections . One needs a large number of
test units to conduct the reliability sampling plan when TET is
short but the mean lifetime is long. If TET is medium, the re-
lation between and is from increasing to decreasing when
the mean lifetime is from large to small. If TET is large, and the
mean lifetime is small, becomes very large as is small. In
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TABLE VI
NUMBER OF TEST UNITS AND CRITICAL POINT FOR

addition, we can find that is not affected by TET. The patterns
and results for the other values of , , and are very similar
to those in Table VIII, and hence we do not present them here.

D. Illustrative Example

To illustrate the use of the methods proposed in this article,
the following example is discussed. Boardman and Kendell [6]
presented a grouped data set which consists of the frequency
of failure times of radio transmitters with two types of failures
modes. The original data were studied byMendenhall andHader
[24]. The sample was censored at 630 hours, and 44 of 369
transmitters had not failed. Cox [10] grouped the data by time of
failure, and then tested the assumption that these data come from

a double Poisson process. The goodness-of-fit test indicated
that this assumption cannot be rejected. For illustrative purpose,
we generate a progressive type-I interval censored sample with

, , and from Table II in Boardman and
Kendell [6]. The sample is listed in our Table IX. From (3), the
MLE of is . Hence, the MLEs of , and can
be computed as , and , respectively,
by using (1).
To find the optimal length of the inspection interval in a future

life test with progressive type-I interval censoring, we assume
that the parameters are equal to , our
MLEs obtained previously. The optimal lengths of the inspec-
tion intervals according to the variance-optimality and D-op-
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TABLE VII
NUMBER OF TEST UNITS AND CRITICAL POINT FOR

timality are equal to the values in Table IV divided by
. For example, when , and , one has

, and
.

Suppose that a quality engineer wants to design a reliability
sampling plan for a particular lot of radio transmitters with a
desired power at level . Assume that
the quality parameter is the mean lifetime. Thus, the quality pa-
rameter is acceptable if it is greater than or equal to 266.6667
(i.e., ), and a quality parameter less than or
equal to 177.7778 (i.e., ) is considered unacceptable.
From the result discussed above, we have , ,

, and . For the conve-

nience of the engineer, one can choose the inspection length to
be . Note that . We can
obtain and from Table VI. Therefore, the
engineer draws a random sample of size 63 from the lot, and puts
them on a 6-stage progressively type-I interval censored life test.
By comparing the values between the estimate of the mean
lifetime and the critical point

, we would accept the lot if ; otherwise, we
would reject it.

VII. EXTENSIONS

In Section IV, we investigated the optimal lengths of in-
spection intervals under the special case of equal inspection
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TABLE VIII
NUMBER OF TEST UNITS AND CRITICAL POINT FOR AND UNDER THE LIMITATION OF TET

TABLE IX
PROGRESSIVELY TYPE-I INTERVAL CENSORED SAMPLE GENERATED

FROM TABLE II IN BOARDMAN AND KENDELL (1970)

length and two competing risks. Now, we want to extend
the idea to the general case where three or more risks and
unequal inspection lengths are considered. Let
be the Fisher’s information matrix with competing risks
and unequal lengths of inspection intervals. The elements of

can be found in (5). Based on the asymptotic
properties of the MLE, converges in distribution
to the normal distribution with mean 0 and variance ,
where , and is an
1 vector. Thus, the variance-optimality is to find the values

of such that is minimum. Lin et al. [20],
and Lin et al. [19] suggested using the simulated annealing
algorithm to determine the inspection times for any specified
progressive type-I interval censoring plan. This suggestion can

be applied to the optimality problem discussed here. For D-op-
timality, one only needs to change the objective function to
the determinant , and then apply a simulated
annealing algorithm to get the optimal inspection times.
In Section V, we studied the reliability sampling plans with

two competing risks, and equal length of inspection interval.
Here we extend the proposed plan to the general case with three
or more risks and unequal lengths. Note that, with competing
risks, the mean lifetime is the reciprocal of .
We can still assume that , and

, where . Then, one has
. Equations (6), and (7) can be re-written as

, and

where , , and
and are evaluated at and , respectively.

VIII. CONCLUSIONS AND DISCUSSIONS

In this article, we propose the progressive type-I interval cen-
soring scheme with statistically independent competing risks
when the numbers of removals follow binomial distributions.
We use the maximum likelihood method to estimate the un-
known parameters, and derive the Fisher’s information matrix.
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Based on the asymptotic distribution of the MLEs, we propose
two criteria to decide the optimal lengths of the inspection in-
tervals, and also establish the reliability sampling plans. From
the Monte Carlo study, we find that the MLEs of the unknown
parameters perform well even though the sample size is small.
Here we only consider the case with two competing risks. How-
ever, the concept can be extended to the general cases with more
than two risks.
Finally, there are some open questionswhich have not been in-

vestigated in this paper. First, one practical problem arising from
designing a life test or establishing the reliability samplingplan is
the restricted budget of the experiment. The size of the budget al-
ways affects the decisions of the number of test units, the number
of inspections, and the length of the inspection intervals. Thus,
the problem of obtaining a precise estimation of life parameters
under a restricted experiment cost, and the problem of exploring
the optimumvalues of decision variableswith cost consideration
in conducting a reliability sampling planwith desired producer’s
and consumer’s risks are two important issues for the reliability
analyst. Second, the cause of failuremay be assumed to be statis-
tically independent or dependent. In most situations, it is usually
assumed that these competing risks are statistically independent.
Although the assumption of dependence may be more realistic,
there are some identifiability issues with the underlying model.
Thus, the optimal life test and reliability sampling plan with de-
pendent risks are twopossible futureworks.
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