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We study the Cauchy problem for a parabolic system which is derived from a complex-
valued heat equation with an inverse nonlinearity. First, we provide some criteria for
the global existence of solutions. Then we consider the case when the initial data are
asymptotically constants and obtain that, depending on the asymptotic limits, the solution
quenches at space infinity or exists globally in time.
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1. Introduction

In this paper, we study the following equation

zt = zxx −
1
z
, (1.1)

where z = z(x, t) is a complex-valued function of the spatial variable x ∈ R and the time variable t ≥ 0. If we set z(x, t) =

u(x, t) + iv(x, t), where i =
√

−1 and u(x, t), v(x, t) ∈ R, then (1.1) can be written as a system of parabolic equations
ut = uxx − u/(u2

+ v2),

vt = vxx + v/(u2
+ v2).

(1.2)

If z(x, t) is real-valued (i.e., v ≡ 0), then the system is reduced to the equation

ut = uxx −
1
u
.

An initial boundary value problem for the above equation was first studied by Kawarada [7] in 1975. For more general nega-
tive power nonlinearity, we refer the reader to, e.g., [4,6,8] and the references cited therein. The goal of this paper is to study
the dynamics of solutions of the system (1.2) with v ≢ 0.

First of all, we consider a spatially homogeneous solution of (1.2), namely, (u, v) = (U(t), V (t)). We obtain that (U(t),
V (t)) satisfies the following ODE system:

Ut = −U/(U2
+ V 2),

Vt = V/(U2
+ V 2).

(1.3)
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Given (U(0), V (0)) ∈ R2
\ {(0, 0)}. By a simple computation, we obtain that

U(t)V (t) = U(0)V (0) := C, ∀t ≥ 0, (1.4)

for some constant C ∈ R.
If U(0) = 0, then the trajectory stays on the V -axis, exists globally and tends to ±∞ as t → ∞. On the other hand, if

V (0) = 0, then V (t) ≡ 0 andU tends to zero in finite time.When C ≠ 0, by (1.3) and (1.4)we have (U(t), V (t)) → (0, ±∞)
as t → ∞.

In this paper, we consider the initial value problem (P) for (1.2) with the initial condition

(u(·, 0), v(·, 0)) = (u0, v0). (1.5)

In the sequel, we shall always assume that

u0 > 0, v0 ≥ 0, u0, v0 ∈ L∞(R) ∩ C(R), inf
R

u0 + inf
R

v0 > 0.

Then the problem (P) has a unique solution (u, v) ∈ (C([0, T ); L∞(R)))2, where T = T (u0, v0) ∈ (0, ∞] is the maximal
existence time of the solution. Furthermore, we have either T = ∞, or

T < ∞ and lim inf
t→T

{inf
x∈R

u(x, t) + inf
x∈R

v(x, t)} = 0.

In the first case, we have the global existence. For the second case, we say that the solution of (P) quenches in a finite time T
in which T is called the quenching time. Moreover, we say that xQ ∈ R is a (finite) quenching point for (u, v) if there exists
a sequence {(xj, tj)} such that xj → xQ , tj ↑ T and u(xj, tj) + v(xj, tj) → 0 as j → ∞. We shall investigate the global and
non-global existence of solutions of (P).

The first result is about the global existence and (time) asymptotic behavior of the solution of the problem (P).

Theorem 1. Suppose that the initial data satisfy
u0(x) > 0, v0(x) > 0, ∀x ∈ R, u0 and v0 are bounded in R,
u0(x)v0(x) ≥ K , ∀x ∈ R, for some constant K > 0. (1.6)

Then the solution of (1.2) with (1.5) exists globally in time and (u, v) converges to (0, ∞) as t → ∞ uniformly in R.

For t ≥ 0, we set

R(t) :=

(u(x, t), v(x, t)) ∈ R2

; x ∈ R


to be the image of the solution on (u, v)-plane.We remark that, under the hypothesis of Theorem1, the closure of the convex
hull of R(0) lies in the first quadrant of (u, v)-plane. Indeed, under the condition (1.6), we shall see that R(t) stays in the
first quadrant for all t > 0. This implies the global existence of solutions.

On the other hand, if the initial data do not satisfy (1.6), in view of the dynamics of (1.3), it is interesting to see what
happens. One question is to see under what conditions the quenching occurs. From (1.2) it is easy to see that both u and v
quench simultaneously whenever quenching occurs. On the contrary, there might be non-simultaneous quenching in which
just one component quenches and the other remains bounded away from zero. For this, we refer the reader to, e.g., [1,9,11,
12,15].

To find solutions quenching in finite time,we consider the casewhen the initial data are asymptotically constants. Namely,
we impose the following conditions on initial data:

u0, v0 ∈ C1(R), u0 ≥ M, u0 ≢ M, v0 ≥ 0, v0 ≢ 0, (1.7)

lim
|x|→∞

u0(x) = M, lim
|x|→∞

v0(x) = N (1.8)

for some constantsM > 0 and N ≥ 0.
The following theorem shows that the solution of (1.2) with initial data satisfying (1.7) and (1.8) with N > 0 behaves

like the solution the ODE system (1.3) with (U(0), V (0)) = (M,N).

Theorem 2. Let (u, v) be a solution of (1.2) with initial data (u0, v0) satisfying (1.7) and (1.8). If N > 0, then the solution
of (1.2) with (1.5) exists globally for all t ≥ 0 and (u, v) converges to (0, ∞) as t → ∞ uniformly in R.

On the other hand, if the initial data of (1.2) satisfy (1.7) and (1.8) with N = 0, then the solution of (1.2) and (1.5) quenches
only at space infinity. Namely, there are no (finite) quenching points, while there exists a sequence {(xj, tj)} such that
|xj| → ∞, tj ↑ T and u(xj, tj) + v(xj, tj) → 0 as j → ∞.

Theorem 3. Let (u, v) be a solution of (1.2) and (1.5) with the initial data (u0, v0) satisfying (1.7) and (1.8) with M > 0 and
N = 0. Then the solution of (1.2) with (1.5) quenches at the finite time t = T = M2/2. Moreover, the solution quenches only at
space infinity.
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Note that the problem of quenching at space infinity for scalar equation was studied by Giga–Seki–Umeda [2,3]. In [2],
they characterized that, with suitable initial data, solutions of the following Cauchy problem ut = uxx/(1+ u2

x) − (n− 1)/u
quenching only at space infinity. In [3], they estimated its profile at the quenching time from above and below.

The motivation of this study is from a work of Guo–Ninomiya–Shimojo–Yanagida [5]. In [5], they considered, instead of
(1.1), the following complex-valued equation:

zt = ∆z + z2 (1.9)

where z = z(x, t) = u(x, t)+ iv(x, t) is a complex-valued function of x ∈ Rm(m ∈ N) and t ≥ 0. To obtain the asymptotical
behavior of the solution, our method is close to that in [5] by using an invariant set argument. But, instead of considering
the invariant subset in (u, v)-plane, we transform our problem in (u, w)-plane where w := 1/v. Also, the solution blows
up non-simultaneously at space infinity for the case (1.9) with asymptotically constant initial data. But, in our case (1.1),
quenching can only occurs simultaneously.

This paper is organized as follows. In Section 2, we provide a sufficient condition for the existence of global solutions
and study the asymptotic behavior of solutions as t → ∞. In Section 3, we study the solution of (1.2) with asymptotically
constant initial data.

2. Global existence and convergence

In this section we give a proof of Theorem 1. Let us first recall some properties about invariant sets (cf. [16]).

Lemma 2.1. Suppose that Ω(t) ⊂ R2 is convex for each t ≥ 0 and {Ω(t)}t≥0 is (positively) invariant under the flow (1.3) in
the sense that (U(t), V (t)) ∈ Ω(t) for all t > 0, if (U(0), V (0)) ∈ Ω(0). Then {Ω(t)}t≥0 is also invariant under the flow (1.2).
That is, if R(t0) ⊂ Ω(t0) for some t0 ≥ 0, then R(t) ⊂ Ω(t) for all t > t0.

To construct invariant sets, the following lemma is very useful.

Lemma 2.2. Let {Fi}1≤i≤m be a set of C1 functions from R3 to R. Suppose that Ω(t) is expressed as

Ω(t) =

m
i=1

{(u, v) ∈ R2
; Fi(u, v, t) < 0}, t ≥ 0.

Then {Ω(t)}t≥0 is invariant under the flow (1.3) if

d
dt

Fi(U(t), V (t), t) ≤ 0 on {(u, v) ∈ ∂Ω; Fi(u, v, t) = 0}

for all i = 1, . . . ,m.

With these lemmas, we are ready to prove the global existence of the solution of (1.2) and (1.5).

Proof of Theorem 1. Set

D1 :=

(u, v) ∈ R2

; u > 0, v > 0 and − uv + K ≤ 0

.

By assumption, we have R(0) ⊂ D1. For (U, V ) ∈ ∂D1, we compute

d
dt

(−UV + K) = −(UtV + UVt) = 0.

Thus D1 is invariant under the flow (1.3) by Lemma 2.2.
Since u0 is bounded, there exists a constant A > 0 such that u0(x) ≤ A, ∀x ∈ R. Set

D2 :=

(u, v) ∈ R2

; u > 0, v > 0 and u ≤ A

.

Note that D1 ∩ D2 is convex. For (U, V ) ∈ D1 ∩ ∂D2, we compute

d
dt

(U − A) = −
U

U2 + V 2
< 0.

Therefore, D1 ∩ D2 is invariant under the flow (1.3) by Lemma 2.2.
It follows from Lemma 2.1 that u(x, t) > 0, v(x, t) > 0, u(x, t)v(x, t) ≥ K and u(x, t) ≤ A for all x ∈ R and t ≥ 0, as

long as v stays finite. Using u2
+ v2

≥ 2uv ≥ 2K , we have

vt ≤ vxx + v/(2K).

From this, it follows that the solution of (1.2) and (1.5) with (1.6) exists globally in time.
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Next, we shall prove the asymptotic behavior of the solution (u, v) as t → ∞. We set w := 1/v. Then (1.2) is equivalent
to 

ut = uxx − uw2/(u2w2
+ 1),

wt = wxx − 2w2
x/w − w3/(u2w2

+ 1).

Moreover, it follows from (1.6) that
u0(x) > 0, w0(x) := 1/v0(x) > 0, u0(x), w0(x) are bounded, ∀x ∈ R,
u0(x) ≥ Kw0(x), ∀x ∈ R, for some constant K > 0. (2.1)

Therefore, it is enough to prove that (u, w) converges to (0, 0) as t → ∞.
For this, we first consider the spatially homogeneous solution (u, w) = (U(t),W (t)). Then (U,W ) satisfies the following

ODE system:
Ut = −UW 2/(U2W 2

+ 1),
Wt = −W 3/(U2W 2

+ 1).
(2.2)

We set

D3 :=

(u, w) ∈ R2

; u > 0, w > 0 and Kw − u ≤ 0

.

Then, by (2.1), we obtain that S(0) ⊂ D3. Hereafter S(t) := {(u(x, t), w(x, t)) ∈ R2
; x ∈ R}.

For (U,W ) ∈ ∂D3, we have

d
dt

(KW − U) = KWt − Ut

= −
KW 3

U2W 2 + 1
+

UW 2

U2W 2 + 1

=
−W 2(KW − U)

U2W 2 + 1
= 0.

Hence D3 is invariant under the flow (2.2) by Lemma 2.2.
Next, we set

D4 :=

(u, w) ∈ R2

; u > 0, w > 0 and − w + au2
≤ 0


for some positive constant a such that S(0) ⊂ D4. This can be done due to (2.1). Note that D3 ∩ D4 is convex and

∂D3 ∩ ∂D4 =

(0, 0), (1/(aK), 1/(aK 2))


.

For (U,W ) ∈ D3 ∩ ∂D4, we have

d
dt

(−W + aU2) = −Wt + 2aUUt

=
W 3

U2W 2 + 1
+ 2aU


−UW 2

U2W 2 + 1


=

W 2

U2W 2 + 1
[W − 2aU2

]

=
W 2

U2W 2 + 1
[aU2

− 2aU2
] =

−aU2W 2

U2W 2 + 1
≤ 0.

Hence D3 ∩ D4 is invariant under the flow (2.2).
Finally, we set

D5(t) :=

(u, w) ∈ R2

; u > 0, w > 0 and w − h(t) ≤ 0

, t ≥ 0,

where h(t) is a positive smooth decreasing function to be specified later. Note that D3 ∩ D4 ∩ D5(t) is convex. We choose
h(0) = 1/(aK 2) such that S(0) ⊂ D3 ∩ D4 ∩ D5(0). For (U,W ) ∈ D3 ∩ D4 ∩ ∂D5(t), we compute

d
dt

(W − h) = Wt − ht =
−W 3

U2W 2 + 1
− ht .

Hence {D3 ∩ D4 ∩ D5(t)}t≥0 is invariant under the flow (2.2), if

ht = sup
(U,W )∈D3∩D4∩∂D5(t)

−W 3

U2W 2 + 1
=

−h3

c2h2 + 1
, where c := 1/(aK) > 0. (2.3)



J.-S. Guo, C.-T. Ling / J. Math. Anal. Appl. 400 (2013) 153–160 157

Therefore, let h(t) be the solution of

c2 ln h(t) −
1

2h2(t)
= c2 ln h(0) −

1
2h2(0)

− t, (2.4)

we have that h(t) satisfies (2.3) and {D3 ∩ D4 ∩ D5(t)}t≥0 is invariant under the flow (2.2). Moreover, by (2.3) and (2.4) we
obtain that h(t) decreases to 0 as t → ∞. Therefore, (u, w) converges to (0, 0) as t → ∞. Since v = 1/w, we have (u, v)
converges to (0, ∞) as t → ∞. This completes the proof of the theorem. �

3. Asymptotically constant initial data

This section is devoted to the study the solution of (1.2) with asymptotically constant initial data. We first consider the
following ODE system:

Ut = −U/(U2
+ V 2),

Vt = V/(U2
+ V 2),

(3.1)

for t ≥ 0 with the initial condition (U(0), V (0)) = (M, 0) for some constant M > 0. Then it is easy to see that the solution
is given by (U(t), V (t)) := (

√
M2 − 2t, 0). Note that the quenching time of this ODE system is T = T (M) := M2/2.

Next, in order to estimate u(x, t) from below, we consider the following Cauchy problem:
ut = uxx − 1/u, x ∈ R, t ∈ [0, T ),
u(x, 0) = u0(x), x ∈ R,

(3.2)

where [0, T ) is the maximal existence interval of u. Also, we consider the following ODE problem corresponding to the
problem (3.2):

U t = −1/U, t ∈ [0, T ), U(0) = M. (3.3)

Note that the solution of (3.3) is given by U(t) =
√
M2 − 2t with T = T (M) := M2/2.

Motivated by an idea from [5], we have the following lemma.We also refer the reader to [10] for the Fujita equation, [13]
for a quasilinear parabolic equation, and [14] for a cooperative parabolic system.

Lemma 3.1. Let U be the solution of (3.3) and let u be the solution of (3.2) defined on R × [0, T ). Suppose that there exist
t0 ∈ [0,T ), r0 ∈ (0, ∞) and a constant θ > 1 such that

u(x, t) ≥ θU(t), for |x| ≤ r0, t0 ≤ t < T ,

whereT := min{T , T }. Then u has a positive lower bound in {|x| ≤ r0/2} × [t0,T ).

Proof. We shall construct a suitable subsolution of (3.2) as follows

w(x, t) := θ
M2 − 2t + h(x),

whereθ ∈ (1, θ) and

h(x) := ε cos2


πx
2r0


with small ε > 0 to be specified later.

By a simple computation, we obtain that

wt − wxx +
1
w

=

θ
w

2 
−1 −

1
2
h′′

+
h′2

4(M2 − 2t + h)
+


1θ
2



≤

θ
w

2 
−1 −

1
2
h′′

+
h′2

4h
+


1θ
2


.

By the choice of h, we obtain that both |h′′
| and h′2/h are of order ε for |x| ≤ r0. Hence, if we choose ε > 0 sufficiently small

such that

ε ≤ (M2
− 2t0)


θθ
2

− 1


, −1 −

1
2
h′′

+
h′2

4h
+


1θ
2

≤ 0,
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then we havewt ≤ wxx − 1/w, |x| ≤ r0, t0 ≤ t < T ,
w(x, t0) ≤ u(x, t0), |x| ≤ r0,
w(x, t) ≤ u(x, t), |x| = r0, t0 ≤ t < T ,

(3.4)

where we have used the factθ ∈ (1, θ).
Then it follows from (3.4) and the comparison principle that w(x, t) ≤ u(x, t) for |x| ≤ r0 and t0 ≤ t < T . Therefore, we

have

u(x, t) ≥ θ
M2 − 2t + h(r0/2) = θ

M2 − 2t + ε/2 ≥ θ
ε/2 > 0

for any |x| ≤ r0/2 and t0 ≤ t < T . The lemma follows. �

Hereafter, we assume

u0 ∈ C1(R), u0 ≥ M, u0 ≢ M, (3.5)

lim
|x|→∞

u0(x) = M. (3.6)

Note that by (3.2), (3.3) and (3.5) we have U ≤ u. Therefore, we obtain T ≥ T and soT = T .
The following lemma shows that quenching can occur only at space infinity.

Lemma 3.2. Let u be a solution of (3.2) satisfying (3.5) and (3.6) for some constant M > 0. Then u has a positive lower bound
in Ω × [0, T ) for any compact set Ω ⊂ R.

Proof. In view of Lemma 3.1, sinceT = T , it suffices to show that, for any given R > 0 there exist t0 ∈ [0, T ) and θ > 1
such that

u(x, t) ≥ θ

M2 − 2t, |x| ≤ 2R, t0 ≤ t < T . (3.7)

For this purpose, we let γ (x, t) := u(x, t)/U(t). Then the function γ = γ (x, t) satisfies

γt = γxx +
1

U
2


−

1
γ

+ γ


≥ γxx,

since γ ≥ 1. Moreover, by (3.5) and (3.6) we obtain

γ (·, 0) =
u0

M
≥ 1, γ (·, 0) ≢ 1.

From the strong maximum principle, we have that γ (x, t) > 1 for all x ∈ R and t > 0. Therefore, for any given R > 0, there
exist θ > 1 and t0 ∈ (0, T ) such that

γ (x, t) ≥ θ, |x| ≤ 2R, t0 ≤ t < T .

This gives (3.7). Therefore we complete the proof. �

To investigate the behavior of the solution of (1.2) at space infinity, we recall the following useful property (cf. [5]). We
also refer the reader to [14] for the blow-up problem for a cooperative parabolic system.

Theorem 4. Let u andu be solutions of
ut = Duxx + f(u), x ∈ R, t > 0,
u(x, 0) = u0(x), x ∈ R,

(3.8)

where u(x, t) = (u(x, t), v(x, t)) ∈ R2, f = (f1, f2) is a smooth mapping from R2 to R2, D = diag(1, 1), with initial data u0,u0 ∈ (L∞(R) ∩ C(R))2, respectively. Suppose that there exist sequences {rn}∞n=1 ⊂ (0, ∞) and {an}∞n=1 ⊂ R with rn → ∞ as
n → ∞ such that

lim
n→∞

∥u0 −u0∥L∞(B2rn (an)) = 0.

Then

lim
n→∞

∥u(·, t) −u(·, t)∥L∞(Brn (an)) = 0,

for any t ∈ (0,T ), whereT = min{T (u0), T (u0)}.
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Notice that the following corollary is applicable to our system (1.2). Since its proof is exactly the same as the one given
in [5, Corollary 4.2], we omit it here.

Corollary 3.3. If some solutions of

Ut = f(U) (3.9)

quenches in a finite time, then there exists a spatially inhomogeneous solution of (3.8) which quenches in a finite time.

In the following, we shall focus on the Cauchy problem for (1.2) with initial data satisfying (1.7) and (1.8).

Lemma 3.4. Let u be a solution of (3.2) satisfying (3.5) and (3.6) for some constant M > 0. Then u quenches at the finite time
T = M2/2.

Proof. First, we set u(x, t) = u(x, t),u(x, t) = U(t), |an| = 4n, and rn = n. By (3.6), we have

lim
n→∞

∥u0 −u0∥L∞(B2rn (an)) = 0. (3.10)

Notice that u andu are solutions of (3.2) and (3.3) with initial data u0 andu0, respectively. Let f(u) = −1/u, f(u) = −1/U .
Applying Theorem 4 to (3.2) and (3.3), we obtain

lim
|x|→∞

u(x, t) = U(t), ∀t ∈ [0, T ).

On the other hand, by (3.2), (3.3) and (3.5), and the comparison principle, we have u(x, t) ≥ U(t) for all x ∈ R and t > 0.
Combining the above two facts, we have the quenching time T = T = M2/2. �

Now we prove Theorem 2 by using Theorems 1 and 4.
Proof of Theorem 2. First, we have the local existence of (u, v) for t ∈ [0, σ ] for some σ > 0. Let u(x, t) =

(u(x, t), v(x, t)),u(x, t) = (U(t), V (t)) and

f(u) =


−u

u2 + v2
,

v

u2 + v2


,

where (u, v) and (U, V ) are solutions of (1.2) and (1.3), respectively. By applying Theorem 4 to (1.2) and (1.3) with |an| = 4n
and rn = n, we have

lim
|x|→∞

u(x, t) = U(t), and lim
|x|→∞

v(x, t) = V (t), ∀t ∈ [0, σ ]. (3.11)

Also, it follows from (1.4) and (1.8) with N > 0 that

lim
|x|→∞

u(x, t)v(x, t) = U(t)V (t) = U(0)V (0) = lim
|x|→∞

u0(x)v0(x) = MN > 0.

Hence the assumption (1.6) is satisfied for all xwith |x| ≥ R at t = σ for some constants R sufficient large and K > 0.
Moreover, by the strongmaximum principle, we obtain v > 0 in R×[0, σ ]. It implies that the assumption (1.6) holds for

all xwith |x| ≤ R at t = σ with the positive constant K (taking a smaller one if necessary). Therefore, by applying Theorem 1
to the Cauchy problem (1.2) starting at t = σ , we obtain that the solution (u, v) exists globally in time and (u, v) converges
to (0, ∞) as t → ∞. This completes the proof of Theorem 2. �

Finally, we give a proof of Theorem 3.
Proof of Theorem 3. We choose u0 = u0. Then, by the comparison principle, we obtain

u(x, t) ≥ u(x, t), x ∈ R, for t > 0 such that u and u exist . (3.12)

Suppose that the solution (u, v) quenches at time T ∗. By (3.12), we have T ∗
≥ T . On the other hand, by Lemmas 3.2 and 3.4,

the solution u quenches at finite time T = M2/2 only at space infinity. Thus the inequality (3.12) implies that

u ≥ u > 0 in R × [0, T ). (3.13)

Moreover, we set u(x, t) = (u(x, t), v(x, t)),u(x, t) = (U(t), V (t)) = (U(t), 0) and

f(u) =


−u

u2 + v2
,

v

u2 + v2


,

where (u, v) and (U, V ) are solutions of (1.2) and (3.1), respectively. Applying Theorem 4 to (1.2) and (3.1) with |an| = 4n
and rn = n again, we have

lim
|x|→∞

u(x, t) = U(t), lim
|x|→∞

v(x, t) = V (t) = 0, ∀t ∈ [0, T ). (3.14)

Hence we obtain T ∗
= T . From Lemma 3.2, u quenches only at space infinity. Combining this with (3.13), we conclude that

the quenching of the solution (u, v) occurs only at space infinity. This proves the theorem. �
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