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We study the effect of an intrinsic curvature on the mechanical property of two-dimensional semiflexible biopolymers
and find that it can induce a discontinuous transition in extension. At zero temperature, we accurately show that the
extension of an intrinsically curved semiflexible biopolymer of finite length can undergo a multiple-step discontinuous
transition regardless of bending rigidity. The transition is accompanied by unwinding loops, and the critical force reaches
a limit quickly with decreasing number of loops so that, in the experiment, it is possible to observe the almost
simultaneous opening of several loops. However, the fluctuation or configurational average at a finite temperature
suppresses the sharp transition so that there is no discontinuous transition in a system of finite size. However, our results
obtained from Monte Carlo simulation reveal that, at a finite temperature, the extension of a biopolymer can undergo a
one-step first-order transition in the thermodynamical limit if the biopolymer has a sufficiently large bending rigidity.
The critical force increases with increasing intrinsic curvature or bending rigidity.

1. Introduction

The mechanical property of semiflexible biopolymers has
attracted considerable attention owing to its importance in
understanding the structure and function of biological
materials. For instance, it is crucial to determine the roles
of actin and actin homolog proteins in the regulation of cell
shape and the organization of the cytoskeleton in cells.
Moreover, the mechanical property also affects how double-
stranded DNA (dsDNA) wraps around histones and is packed
into phage heads. It is well known that a wormlike chain
(WLC) model clearly describes the entropic elasticity of
intrinsically straight semiflexible biopolymers.1–3) In the
WLC model, a chain extends smoothly with increasing
applied force so that no phase transition occurs. It is also
clear that adding a nonvanishing intrinsic torsion alone to
the WLC model cannot change the smooth variation in the
extension if we do not fix the initial tilting angle and cross
section of the chain, i.e., if we adopt a hinged boundary
condition (BC). In contrast, it has been reported that an
intrinsically curved and twisted biopolymer can form a stable
helix, and that the extension of a helix can undergo a
discontinuous transition even without considering the effect
of temperature (T ).4–9) One can then ask whether a
nonvanishing intrinsic curvature alone is enough to induce
a discontinuous transition. Intrinsically curved biopolymers
are common occurrence in nature. For instance, for short
dsDNA chains, special sequence orders favor a finite intrinsic
curvature.10–13) A good example is that tandem sequence
repeats of adenine tracts (A-tracts) can yield a constant
intrinsic curvature in dsDNA.11,12) It has also been reported
that, with a long-range correlation in sequence, dsDNA
develops a macroscopic (intrinsic) curvature so that the WLC
model fails to account for its property.14) Therefore, the
mechanical property of an intrinsically curved semiflexible
biopolymer is a significant topic. Moreover, many experi-
ments on semiflexible biopolymers have been performed in a
two-dimensional (2D) environment so that the property of
biopolymers in 2D has attracted growing interest.14–24)

Therefore, for simplicity, we focus on the 2D system in this
work. In this study, we accurately show that, at T ¼ 0, the
extension of an intrinsically curved biopolymer can undergo
a multiple-step discontinuous transition even with a finite

length, regardless of bending rigidity. In contrast, we find that
a finite T results in considerable changes and that a sharp
transition occurs only in the thermodynamical limit if the
biopolymer has a sufficiently large bending rigidity.

The paper is organized as follows. In Sect. 2, we describe
our model. In Sect. 3, we present the accurate calculations
for multiple-step discontinuous changes in extension at zero
temperature. In Sect. 4, we focus on the sharp transition of
extension at a finite temperature. The main text ends with
conclusions and a discussion. Finally, we present some
mathematical details in Appendix.

2. Model

2.1 Continuous model
A semiflexible biopolymer is often modeled as a filament.

In a 2D case, the configuration of a filament is determined by
a vector, t � dr=ds ¼ fcos�; sin�g, which is tangent to the
contour line of the filament, where r ¼ ðx; yÞ is the locus of
the filament, s is the arc length, and �ðsÞ is the angle between
the x-axis and t, as shown in Fig. 1(a). One end of the chain
(at s ¼ 0) is fixed at x ¼ 0. Applying a uniaxial force (along
the x-axis) Fx to another end at s ¼ L, we can write the elastic
energy of an intrinsically curved filament as14–16)

EL ¼ k

2

Z L

0

dsð _�� ~cÞ2 � FxxL

¼ k

2

Z L

0

dsð _�� ~cÞ2 � Fx

Z L

0

cos� ds; ð1Þ
where k is the bending rigidity, L is the contour length as well
as a constant so that the filament is inextensible, _� � _x €y� _y €x
is the signed curvature, ~c is the intrinsic signed curvature, and
xL � xðLÞ is the extension. ~c 6¼ 0 means that, when Fx ¼ 0,
the ground-state configuration (GSC, or the spontaneous
configuration, i.e., the configuration with the lowest energy)
of the filament is a curve of curvature ~c. The symbol “0”
represents the derivative with respect to s. ~c can be s-
dependent, but for simplicity, in this work, we consider only
an s-independent or constant ~c. ~c can also be either positive
or negative, but without loss of generality we assume ~c > 0

and Fx > 0. When ~c ¼ 0, it is reduced to the WLC model.

2.2 Discrete model
The force-extension relationship of the continuous model
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at a finite T and under a low or very strong force has been
studied.16) However, the mechanical property of the system
under a moderate force and at a finite T is yet elusive. To
solve this problem, we discretize the model and perform
Monte Carlo simulation with the Metropolis algorithm to
study it. In the discrete model, a filament consists of N
straight segments of length l0 joined end to end, as shown in
Fig. 1(b). The coordinates of the two ends of the i-th segment
are therefore fxi�1; yi�1g and fxi; yig with x0 ¼ y0 ¼ 0. By
replacing _� with ð�iþ1 � �iÞ=l0 and introducing the reduced
energy, EN , the elastic energy becomes

EN � EN

kBT
¼ �

2

XN�1

i¼1

ð�iþ1 � �i � cÞ2 � f
XN
i¼1

cos�i; ð2Þ

where kB is the Boltzmann constant, c � ~cl0, � � k=l0kBT ,
and f � Fxl0=kBT . We also scale the length by l0 so xN ¼PN

i¼1 cos�i and define the relative extension as zN ¼ hxNi=N,
where h� � �i denotes the configurational or thermal average.

3. Multiple-Step Discontinuous Changes in Extension at
Zero Temperature

3.1 General expressions
Extremizing EL, we obtain the shape equation and BC that

governs the configuration of the filament in the ground
state,16)

k €�� Fx sin� ¼ 0; ð3Þ
_�0 � ~c ¼ _�L � ~c ¼ 0; ð4Þ

where �0 ¼ �ð0Þ and �L ¼ �ðLÞ. Equation (4) means that
both �0 and �L are not fixed, i.e., it gives hinged BC. We do
not consider other forms of BC in this work since for a long
filament, the form of BC is in fact irrelevant.

For a short (L < 2�= ~c) filament the solution of Eq. (3) has
been studied analytically.16) In this work we extend it to a
more general case with L > 2�= ~c. The essential difference
between short and long filaments is that a long one can form
loops, as shown in Fig. 1(a), but a short one cannot.

From Eq. (3), we find (see Appendix)

L ¼ 2n

~c

Z �

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ 2

~c

Z �0L

0

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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cos� d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1þ Fðcos�0

L � cos�Þ
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� 2ðn�þ �0
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where F � 2Fx=ðk ~c2Þ, EL � EL=k ~c is the reduced energy,
n is the number of loops, �0

L ¼ �L � 2n� ¼ ��0, and
� � �0

L > 0. It is clear that, when F ¼ 0, n ¼ n0 �
IntðL ~c=2�Þ, where IntðXÞ gives the integer part of X. It is
also clear that n � n0 for a stable state. �L is dependent on L,
n, and F; xL is dependent on �L, n, and F. With L and F given,
we can find �LðLÞ from Eq. (5) and substitute it into Eqs. (6)
and (7) to find xL and EL, respectively. For convenience, at
T ¼ 0, we scale the length by 1= ~c so that L and xL are
dependent on ~c implicitly, whereas EL is dependent on ~c
explicitly.

3.2 Multiple-step discontinuous changes in extension for a
long filament

The force-extension relationship of a short filament
(n0 ¼ 0) was studied and no phase transition was found.16)

However, in this work, we find that, when n0 � 1, the result
is completely different. Intuitionally, this is because, if the
number of loops is unchanged, increasing F will increase
the _� of loops and the bending energy markedly, so that
unwinding loops can lower energy markedly at a strong
force.

We first note that xL and L diverge when and only when
cos�0

L ¼ 1� 1=F. More exactly, L ! � log 0þ ! 1 and
xL ! � log 0þ ! 1 when cos�0

L ! 1� 1=F. This is
because in this case, near � ¼ 0þ, 1þ Fðcos�0

L �
cos�Þ � F�2=2. It follows that, at a large F and a large L,
cos�0

L � 1� 1=F and �0
L ! 0 when F ! 1. In other

words, at a large force, the filament is close to a straight
line since n ¼ 0 and �0

L ¼ �L � � � 0 in integration, in
agreement with our daily life experience.

In the continuous model, we define the relative extension
as zL ¼ xL=L. Note that, when L ~c=2� is not an integer,
zL 6¼ 0 at F ¼ 0. This is quite different from that at a finite
temperature because we do not need to perform configura-
tional averaging at T ¼ 0. Evaluating Eqs. (5)–(7) numeri-
cally, we obtain four important conclusions as follows.

Firstly, at a given L, in general, �L, xL, and EL obtained
from Eqs. (5)–(7) are multiple-value functions of F, and we
can use n to denote different branches of each function. When
F < 0:5, the number of branches is dependent on F. This
is because, in this case, 1þ Fðcos�0

L � cos�Þ > 1� 2F,
so from Eq. (5) we know that L < 2�L= ~c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2F

p
. This

suggests that, when F is smaller than a bound (� F0 < 0:5),
a large L requires a large �L, or n cannot be much smaller
than n0, otherwise there would be no solution to Eq. (5). For
instance, when L ¼ 21�= ~c, we find that Eq. (5) has no real
solution to �L at a low F if n < 9, as shown in Fig. 2(a). F0 is
dependent on n, and the larger the n, the smaller the F0. For
example, with L ¼ 21�= ~c, we obtain F0 ¼ 0:237 when

(a)

(b)

Fig. 1. (a) Schematic diagram of a filament showing the notation used.
(b) Schematic diagram of the discrete model.
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n ¼ 8, but F0 ¼ 0:4979 when n ¼ 3, as shown in Fig. 2(a).
In contrast, when F > F0, we can find a solution to Eq. (5) at
any n � n0, so that, at a large F (� 0:5), �L, xL, and EL are
always multiple-value functions of F, the number of branches
of each function is equal to n0, and different n values give
different branches, as shown in Fig. 2(a). Moreover, from
Fig. 2(a), we can also see that, when F is large, there is no
crossover between the different branches of zL.

Secondly, at the same L and ~c, the different branches of the
energy curve (i.e., the relationship between EL and F) always
intersect, resulting in a transition in zL with varying F. The
transition is associated with unwinding loops. With the same
L and ~c, we find that at a low F, the state with a larger n has a
lower energy. But, at a large F, the state with a smaller n has a
lower energy. Therefore, at the given L and ~c, the different
branches of ELðFÞ always intersect at some forces, as shown
in Fig. 2(b) for a typical example. This means that we cannot
observe every branch of zLðFÞ [dotted lines in Fig. 2(a)] in
the experiment since they cannot all be in the lowest energy
state (i.e., the ground state). It follows exactly that the
observable zL is a piecewise function of F combined with
pieces in different branches, and shifts from one branch to
another at the crossover of the energy curve. Moreover, with
varying F, the energy curves with the nearest n always
intersect first. It follows that, with increasing F, the most
possible relation between zL and F shifts from the nth branch
to the (n� 1)th branch successively at a critical force Fn, as
shown in Figs. 2(a) and 3(a), in which an abrupt transition
(denoted by the vertical lines) occurs at Fn. Therefore, with

increasing F, the most possible zLðFÞ goes from one branch to
another, unwinding one loop at a time instead of opening
several loops simultaneously. Our calculations further show
that the larger the ~c, the smaller the Fn, as shown in Fig. 3.
However, since F ¼ 2Fx=ðk ~c2Þ, exactly the real critical force
is still smaller for a smaller ~c.

Thirdly, Fn tends to a limit quickly with decreasing n, as
shown in Figs. 2(a) and 3. The limit of Fn is clearly
dependent on ~c. The larger the ~c, the larger the limit. For
instance, when L ¼ 21�= ~c and ~c ¼ 0:5, F2 � F3 � 2:193 is
numerically indistinguishable, as shown in Figs. 2(a) and
3(a). This limit is almost independent of L. Therefore, it is
possible to open several loops all at once in the experiment
and it can give more than 30% jumps in zL, as shown in
Figs. 2(a) and 3.

Fourthly, opening a loop is always accompanied by a
discontinuous change in xL, but the energy is still continuous,
as we can see from Figs. 2, 3(a), and 4(b). From Fig. 4(a),
we also see that �0

L tends to arccosð1� 1=FÞ rapidly with
decreasing n. Figure 4(b) shows some configurations just
before and after transition. From Fig. 4(b), we find that there
is hardly a change in the shape of the loop, providing another
evidence that the change in extension is indeed dominated by
unwinding loops.

Our calculations also show that ELðFÞ with a given n
intersects with all other branches with the same L and ~c, as
shown in Fig. 2(b) for a typical example. This indicates that,
in the experiment, the jump may occur at some forces other
than Fn, if the rate of increasing or decreasing force is too

(a)

(b)

Fig. 2. (Color online) (a) The dashed lines represent different branches of
zL vs F for a filament with L ¼ 21�= ~c (n0 ¼ 10) and ~c ¼ 0:5. The solid line
represents the most possible path observed in the experiment. The vertical
solid lines correspond to Fn. (b) Different branches of EL vs F for a filament
with L ¼ 21�= ~c and ~c ¼ 0:5. n ¼ 10 (solid black), 9 (red dashed), 8 (green
dotted), 7 (blue dash-dotted), 6 (cyan short-dashed), 5 (yellow short-dotted),
and 4 (black short-dash-dotted). Reduced units are used.

(a)

(b)

Fig. 3. (Color online) (a) Most possible zL vs F for filaments with ~c ¼ 0:5,
L ¼ 8:2�= ~c (black dashed) and L ¼ 21�= ~c (black solid); ~c ¼ 0:3, L ¼
16:2�= ~c (green solid) and L ¼ 10:6�= ~c (green dashed); ~c ¼ 0:1, L ¼
16:6�= ~c (blue solid) and L ¼ 11:0�= ~c (blue dashed). (b) Fn vs n for
filaments with ~c ¼ 0:5, L ¼ 8:2�= ~c (open square) and L ¼ 21�= ~c (filled
square); ~c ¼ 0:3, L ¼ 16:2�= ~c (filled circle) and L ¼ 10:6�= ~c (open circle);
~c ¼ 0:1, L ¼ 16:6�= ~c (filled triangle) and L ¼ 11:0�= ~c (open triangle).
Reduced units are used.
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fast. The existence of multiple crossovers and F0 therefore
reveals the possibility of observing hysteresis in the experi-
ment. The discontinuous transition in zL and possible
hysteresis suggest that the extension of a long filament
undergo a typical multiple-step first-order transition at an
arbitrary k and a finite L.

Finally, note that all conclusions in this section are also
valid for a 3D filament. This is because, owing to symmetry,
with hinged BC and under a uniaxial force, the GSC of a 3D
filament must also lie in a plane, and so the results are the
same as those of the 2D system. We should also point out that
this conclusion is valid only for a twist-free filament.

4. Abrupt Transition at Finite Temperature

In the last section, we find a multiple-step discontinuous
transition at T ¼ 0 for an arbitrary k and a large but finite L.
The transition results from the existence of multiple solutions
in the shape equation for given L, F, and ~c, but the ground
state must have the lowest energy so that it is unique. At a
finite temperature, we need to average all possible config-
urations, and intuitionally such an average will smoothen the
change, especially if the jump in zL is small and Fn � Fn�1 is
large. Therefore, whether the transition still exists at a finite
temperature is an intriguing question. From the results in
Sect. 3.2, we know that the last step of transition opens
several loops almost simultaneously, resulting in more than
30% changes in zL, so we expect that the transition will also
occur at a finite T, at least when the bending rigidity is
sufficient large.

In our simulation, most of the initial configurations are set
randomly. We also set the initial configuration as a circle of
curvature c for a few samples but find no difference. We
equilibrate every sample from 5� 106 to 107 Monte Carlo
steps (MCS) before performing the averaging. The thermal
average for a sample are taken from 2� 107 to 3� 108 MCS,
and the larger the N or ¬ or c, the more the MCS. This is
because the thermal fluctuation becomes larger with increas-
ing N or ¬ or c. Moreover, we take N ¼ 20; 50; 100; 150;
200; 250; 300 to examine the finite size effect. c ¼ 0:1; 0:2;
0:3; 0:4; 0:5 and � ¼ 1; 2; 4; 6; 8 in most cases. However, for
c ¼ 0:1, we also take � ¼ 15; 20; 25 in the off-lattice system.
We do not consider a larger c because it is impractical. We
also do not consider a larger ¬ because it results in a very
large fluctuation. This should result from the existence of
metastable states (i.e., the states with a local minimum
energy), since a larger bending rigidity can result in a higher
energy barrier between different states and it follows that the
system may be trapped longer in a metastable state.

The thermodynamical limit in this work means that we
keep both l0 and c as constants but let N ! 1 so that the
total length L ¼ Nl0 ! 1. With such a convention, at the
same c, a larger N gives a larger n0 or more loops. Note that,
to compare the results at T > 0 with the results at T ¼ 0

exactly, one should decrease l0 gradually but keep k, Fx, ~c,
and L constant. However, such a procedure needs much more
computational effort and clearly it does not correspond to a
real system. We also do not expect that it can provide new
insights into the mechanical property of the filament, so that
we do not perform it in this work.

At a finite temperature, the fluctuation can suppress sharp
transition, especially for a finite-size system. Therefore, to
examine the occurrence of phase transition and to identify the
nature of transition, one often has to evaluate the finite size
effects. For this purpose, we study the specific heat CN , the
stretching strength �N , and the fourth-order cumulants of the
order parameter (UN) and energy (VN ).25) They are expressed
as

CN � hE2
Ni � hENi2

N
/ 1

N

@hEi
@T

; ð8Þ

�N � 1

N

@hxNi
@f

¼ hx2Ni � hxNi2
N

; ð9Þ

UN � 1� hx4Ni
3hx2Ni2

; VN � 1� hE4
Ni

3hE2
Ni2

: ð10Þ

It has been reported that, for the first-order transition, VN has
a minimum at the effective transition point f ¼ f	

N and
VN 6¼ 2=3 at the transition point f ¼ f	 as N ! 1.25)

However, by scaling analysis, it is found that, for higher-
order transitions, VN ! 2=3 as N ! 1 even at f	.25)

Meanwhile, for sufficient large N, curves for UN cross as a
function of f at the “fixed point” value U	 and the location of
the crossing “fixed point” gives a critical point. Moreover, by
scaling analysis, when N ! 1, UN ! 2=3 if f > f	, and
UN ! 0 if f < f	; at f	, UN tends towards a universal
value.

4.1 Results of lattice system
We have presented a brief report for the discrete model on

the triangle and square lattice systems.26) The main reason for

(a)

(b)

Fig. 4. (a) Different branches of �0
L vs F for a filament with ~c ¼ 0:5 and

L ¼ 10:6�= ~c. From bottom to top, n ¼ 10 (plus), 9 (open diamond), 8 (filled
diamond), 7 (open square), 6 (filled square), 5 (open triangle), 4 (filled
triangle), 3 (open circle), and 1 (filled circle). The top solid line is given by
cos�0

L ¼ 1� 1=F. (b) Critical configurations of a filament with ~c ¼ 0:3 and
L ¼ 16:2�= ~c. The y-coordinates are shifted for clarify. Reduced units are
used.
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carrying out simulation in lattice systems is that there are
energy gaps in these systems, so that intuitionally a small c
(<�=6 for a triangle lattice and <�=4 for a square lattice)
would favor a smooth varying of zN because the GSC is
always a straight line regardless of f ; however, a large c
would favor a discontinuous transition26) because clearly the
GSC is f-dependent. Therefore, if phase transition still occurs
at a small c, we expect that the same transition occurs in the
off-lattice system. For completeness and comparison, we
present here the main conclusions in the lattice systems but
with examples different from those in Ref. 26.

When both ¬ and c are small, we find that zN increases
monotonically with increasing f, but �N decreases monotoni-
cally with increasing f, as shown in the insets in Fig. 5 for a
typical result with � ¼ 1 and c ¼ 0:5. Therefore, there is no
phase transition in these cases. However, when � > 4 and
c � 0:2, we find that �N has a sharp peak at some f ¼ f	

N

values, and that the height of the peak increases with
increasing N. A typical sample with � ¼ 6 and c ¼ 0:5 is
shown in Fig. 5. We also find that CN has a similar behavior
to �N , as shown in Fig. 6(a). The sharp peaks in CN and �N

indicate the existence of phase transition in the thermody-
namical limit.

As shown in the inset of Fig. 6(b), we find that in our
simulations, VN 
 2=3 for a small f or a large f, but that VN

has a minimum at <2=3 at a moderate f. Meanwhile, in all the
cases, we do not find any intersection point in UN , and
UN ! 2=3 only when f is rather large, as shown in Fig. 6(b).
These results suggest that phase transition is of the first-order.

Finally, note that all conclusions in this subsection are
valid in both triangle and square lattice systems.

4.2 Results in off-lattice system
In lattice systems, we do not find discontinuous transition

when L is finite or ¬ is small, so the results are quite different
from those at T ¼ 0. As discussed in Ref. 24, when c is
small, the off-lattice system might favor a transition so that
the results in the off-lattice system might be different from
that in the lattice system. We should also remind everyone
that the 2D lattice system is very difficult to realize in the
experiment. Therefore, we also perform simulation in the off-
lattice system.

In the off-lattice system, firstly, as shown in Fig. 7, under a
low force, we find that at a large N the relationship between
zN and f approximately obeys zN ¼ 2f�=ð1þ 4c2�2Þ (dash-
dot-dotted lines) which comes from the analytical analysis for
the continuous model,16) and the larger the N, the better the
agreement. This result provides a robust proof of the
accuracy of the simulation results, particularly of the
irrelevance of the initial configurations. We should point
out that the results in the lattice systems do not follow such a
relation so that it is indeed necessary to study the off-lattice
system.

However, qualitatively, we obtain the same conclusions as
those for the lattice system.

Firstly, when both ¬ and c are small, we find that zN
increases monotonically with increasing f, but �N decreases
monotonically with increasing f, as shown in the insets of
Figs. 7(a) and 8(a) for a typical sample with � ¼ 2 and
c ¼ 0:2. Therefore, there is no phase transition in these cases.
However, at a large ¬ and a large c, we find that there is a
turning point in the zN � f relation so that �N and CN have

(a)

(b)

Fig. 5. (Color online) (a) zN vs f for triangle lattice when � ¼ 6, c ¼ 0:5

and � ¼ 1, c ¼ 0:5 (inset). The lengths are N ¼ 20 (black short-dashed), 50
(blue dotted), 100 (magenta dash-dotted), 200 (green dashed), and 300
(black solid). (b) �N vs f for triangle lattice when � ¼ 6, c ¼ 0:5 and � ¼ 1,
c ¼ 0:5 (inset). The lengths are N ¼ 20 (black empty-square), 50 (blue
empty-circle), 100 (magenta filled-triangle), 200 (green empty-triangle), and
300 (black filled-circle). Reduced units are used.

(a)

(b)

Fig. 6. (Color online) (a) CN vs f for triangle lattice when � ¼ 6 and
c ¼ 0:5. (b) UN and VN (inset) vs f for triangle lattice when � ¼ 6 and
c ¼ 0:5. The symbols are the same as those in Fig. 5. Reduced units are used.
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sharp peaks at some f ¼ f	
N , and the height of the peak

increases with increasing N. Meanwhile, the larger the N, the
sharper the peak. Two typical examples with � ¼ 6, c ¼ 0:5
and � ¼ 20, c ¼ 0:1 are shown in Figs. 7 and 8, respectively.
Note that � � 20 is not a too large value for a semiflexible
biopolymer. For instance, if l0 � 1 nm, for a dsDNA � � 50.
The growing sharp peaks in CN and �N again indicate the
existence of phase transition in the thermodynamical limit.
Moreover, the unique peak at a large N in �N and CN means
that the transition is a single step instead of multiple steps
occurring at T ¼ 0. It is reasonable to surmise that this
unique transition corresponds to the last step of transition at
T ¼ 0 since it can open several loops almost simultaneously,
resulting in more than 30% changes in zL. However, owing to
the very strong fluctuations up to a rather large force, we
cannot verify this conjecture by examining the changes in the
instantaneous configuration directly by simulation. However,
the fact that fluctuations eliminate the transition at a small c
and a small ¬ supports the conjecture since, in this case, the
energy differences between nearby configurations are small
so that GSC cannot dominate the configurational average.
Consequently, thermal average will remove all sharp jumps
in zN if ¬ is small, but can leave the largest jump if ¬ is large.
Meanwhile, we have to point out that CN always has a peak
even when both c and ¬ are small, as shown in the inset of
Fig. 8(b). However, the height of peak of CN stops increasing
at a large N so it does not correspond to any transition. This
also suggests that, to analyze phase transition in extension, it
is more reliable and useful to study �N than to study CN .

Secondly, at the same ¬, we find that a larger c results in a
larger f	 and that the height of the peak of �N , �Nðf	Þ,

decreases with increasing c, but that the ratio �Nðf	Þ=�Nð0Þ
increases with increasing c, as shown in Fig. 9(a). Mean-
while, at the same c, we find that a larger ¬ leads to a larger
f	, �Nðf	Þ and �Nðf	Þ=�Nð0Þ, as shown in Fig. 9(b).

Thirdly, as shown in the inset of Fig. 10(a), we find that
VN 
 2=3 for a small f or a large f, but has a minimum with
VN < 2=3 at a moderate f. Moreover, when n > 20, we do
not find any intersection point in UN and UN ! 2=3 only
when f is rather large, as shown in Fig. 10(a). These results
again suggest that phase transition should be of the first order.
This is not surprising since, at T ¼ 0, there is also a first-
order transition.

Fourthly, we do not find a discontinuous transition at a
finite length regardless of c or ¬, quite different from that at
T ¼ 0. Note that, when N ¼ 300, c ¼ 0:5 corresponds to
n0 ¼ 23 and c ¼ 0:1 corresponds to n0 ¼ 4; at T ¼ 0, there
are multiple step discontinuous transitions when n0 � 1. This
means that the fluctuation strongly suppresses a sharp
transition. However, we need to point out that we do not
completely exclude the possibility of a discontinuous
transition at a finite length if ¬ is very large, since at a very
large ¬ the GSC will dominate the average and at T ¼ 0 the
last step of transition can result in more than 30% changes in
zL. We also have to point out that a large ¬ results in a large
fluctuation and may make numerical calculations unstable so
we do not use a very large ¬ in this work.

Fifthly, we also observe that the peaks of �N and CN
clearly do not appear at the same f up to N ¼ 300, but they
approach each other slowly with increasing N. This indicates
that it is caused by the finite size effect and suggests that the
finite size effect is very strong in the model.

(a)

(b)

Fig. 8. (Color online) (a) �N vs f plots for off-lattice when � ¼ 6, c ¼ 0:5

and � ¼ 2, c ¼ 0:2 (inset). (b) CN vs f plots for off-lattice system when
� ¼ 6, c ¼ 0:5 and � ¼ 2, c ¼ 0:2 (inset). The symbols are the same as those
in Fig. 5. Reduced units are used.

(a)

(b)

Fig. 7. (Color online) (a) zN vs f for off-lattice system when � ¼ 6,
c ¼ 0:5 and � ¼ 2, c ¼ 0:2 (inset). (b) zN vs f for off-lattice system when
� ¼ 20, c ¼ 0:1. The dash-dot-dotted straight lines are given by zN ¼
2f�=ð1þ 4c2�2Þ, all the other symbols are the same as those in Fig. 5.
Reduced units are used.
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Figure 10(b) shows some mean and instantaneous config-
urations before and after transition when � ¼ 6, c ¼ 0:2, and
N ¼ 100 so n0 ¼ 3. From Fig. 10(b), we can see that before
transition (f ¼ 0:04) there are several loops, but after
transition (f ¼ 0:29 and 2.1) there is no longer a loop, so
that the transition is indeed associated with unwinding loops.
In fact, n can be greater than n0 at T > 0 since entropy favors
the formation of loops. For instance, the instantaneous
configuration in the top panel of Fig. 10(b) (f ¼ 0:04) has
n ¼ 4 > n0 ¼ 3. We also see that the mean configurations
are highly symmetric, as it should be since we use hinged BC
in simulation. We further find that the most instantaneous
configurations are far from its mean configuration even when
f is large, and that there may have no loop for the mean
configurations even before transition. These results again
indicate that the fluctuations in the system are very strong.

The above conclusions are valid in both lattice and off-
lattice systems. However, there are still some differences
between the two systems aside from the difference in
behaviors in the low-force regime mentioned in the second
paragraph of this subsection.

Firstly, we find that with the same N, ¬, and c, f	 in the
off-lattice system is always larger than that in the lattice
system, as we can see by comparing Figs. 5 and 6 with
Figs. 7 and 8. Moreover, the peaks for ® and CN in the lattice
system are always sharper than that in the off-lattice system.
Therefore, the lattice structure favors a sharp transition even
if c is small. This seems to be inconsistent with the intuitional
conjecture that energy gaps in the lattice system would
disfavor a sharp transition when c is small, since in this case

the GSC is always a straight line regardless of force.26) We
can reconcile this apparent disagreement by noting that phase
transition is dominated by unwinding loops instead of by the
existence of an energy gap, so that an energy gap is not
necessary for phase transition but that it accelerates the
collapse of configurations into GSC and makes the transition
sharper.

5. Conclusions and Discussion

In summary, we find that a nonvanishing intrinsic
curvature can induce a discontinuous change in extension
for a semiflexible biopolymer. The critical force increases
with increasing intrinsic curvature or bending rigidity. At
zero temperature, the transition is a multiple-step transition
and accompanied by unwinding loops, regardless of the
bending rigidity and length. However, a finite temperature
represses the transition so that the discontinuous transition
becomes an one-step transition, requires sufficient large
intrinsic curvature and bending rigidity, and probably occurs
only in the thermodynamical limit. These conclusions are
valid in both lattice and off-lattice systems.

In the present work, we focus on the 2D system but we
expect that it should be possible to observe similar
phenomena in some constrained systems, such as in a flat
box. Our results also suggest that a nonvanishing intrinsic
curvature can play crucial role in determining the property of
a filament in a crowded biological system, such as inside a
cell. We should remind everyone that it is difficult to realize
an ideal 2D system, so that for comparison with results of an
experiment it may be better to study a 3D system. At zero

(a)

(b)

Fig. 10. (Color online) (a) UN and VN (inset) vs f for off-lattice system
when � ¼ 6 and c ¼ 0:5. The symbols are the same as those in Fig. 5.
(b) Mean (filled circle) and instantaneous (solid line) configurations before
and after transition for off-lattice system when � ¼ 6, c ¼ 0:2, N ¼ 100, and
f ¼ 0:04 (top), 0.29 (middle), and 2.1 (bottom). Reduced units are used.

(a)

(b)

Fig. 9. (Color online) (a) �N vs f for off-lattice system when N ¼ 300 and
� ¼ 6, c ¼ 0:1 (black empty-square), 0.2 (blue empty-circle), 0.3 (magenta
filled-triangle), 0.4 (green empty-triangle), and 0.5 (black filled-circle).
(b) �N vs f for off-lattice system when N ¼ 300 and c ¼ 0:5, � ¼ 2 (black
empty-square), 4 (blue empty-circle), 6 (magenta filled-triangle), and 8
(green empty-triangle). Reduced units are used.
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temperature, we expect that the conclusions must be the same
in both 2D and 3D systems, because under uniaxial force and
with hinged BC, the GSC in 3D space must also lie in a plane
owing to symmetry, so that the results are the same as those
in 2D space. However, we should also point out that this
conclusion is correct only for a twist-free filament at zero
temperature. In the 3D system, besides a strong fluctuation,
torsional elasticity is important and mechanical properties
will sensitively depend on the topological constraint and the
twist conditions imposed at two ends.5–9) Therefore, the
applicability of the results in this work to a 3D system
deserves a further study.
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Appendix: Derivation of Eqs. (5)–(7)

In this Appendix, we present the derivation of Eqs. (5)–
(7). From Eq. (3), we find16)

_�ðsÞ ¼ �j ~cjGð�Þ or ds ¼ �d�ðsÞ=j ~cjGð�Þ; ðA:1Þ
where Gð�Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Fðcos�L � cos�Þp
and F � 2Fx=ðk ~c2Þ.

The equation requires cos�L > 1� 1=F. When ~c > 0, we
cannot choose a negative sign for _�ðsÞ because it cannot
satisfy BC. From BC, we find that _�ð0Þ ¼ _�ðLÞ so Eq. (A01)
leads to cos�0 ¼ cos�L. Therefore, �L ¼ 2n�� �0, with n
being an integer. Furthermore, the symmetry requires that
xðsÞ þ sðL� sÞ ¼ 2xðL=2Þ and yðsÞ ¼ yðL� sÞ; it leads to
_xðsÞ ¼ _xðL� sÞ and _yðsÞ ¼ � _yðL� sÞ, i.e., cos½�ðsÞ� ¼
cos½�ðL� sÞ� and sin½�ðsÞ� ¼ � sin½�ðL� sÞ�. It follows that
sin½�ðL=2Þ� ¼ 0 or �ðL=2Þ ¼ n� as well as �L ¼ 2n�� �0.
From the symmetry, we can also let 0 > �0 � ��. This is
because the configuration with � > �0 � 0 can be obtained
by rotating the filament (with 0 > �0 � ��) 180° around the
x-axis. Therefore, ð2nþ 1Þ� � �L > 2n�. Using dx ¼
cos� ds and Eq. (A01), we find

xL ¼ 1

~c

Z �L

�0

cos� d�

Gð�Þ ¼ 2

~c

Z �L

n�

cos� d�

Gð�Þ ; ðA:2Þ

where n is the number of loops. �L is determined by

L ¼ 2

~c

Z �L

n�

d�

Gð�Þ : ðA:3Þ

In principle, we can evaluate Eqs. (A02) and (A03) directly
to determine the relationship between xL and F. However, in
practice, it often causes numerical instability for a large L.
Therefore, we separate the periodic parts in these two
equations as below so that we can avoid problems of
numerical instability. Letting �L ¼ 2n�þ �0

L, we have
�0
L ¼ ��0 and � � �0

L > 0. For an arbitrary integer m, it is
straightforward to show thatZ 2ðmþ1Þ�

2m�

d�

Gð�Þ ¼
Z 2�

0

d�

Gð�Þ ¼
Z �

0

2d�

Gð�Þ ; ðA:4Þ
Z 2ðmþ1Þ�

2m�

cos� d�

Gð�Þ ¼
Z 2�

0

cos� d�

Gð�Þ ¼
Z �

0

2 cos� d�

Gð�Þ : ðA:5Þ

It follows then that

L ¼ 2n

~c

Z �

0

d�

Gð�Þ þ
2

~c

Z �0L

0

d�

Gð�Þ ; ðA:6Þ

xL ¼ 2n

~c

Z �

0

cos� d�

Gð�Þ þ 2

~c

Z �0
L

0

cos� d�

Gð�Þ ; ðA:7Þ

EL � EL=k ~c ¼ 1

2 ~c

Z L

0

ð _�2 � 2 ~c _�Þds� ~cFxL=2

¼ n

Z �

0

Gð�Þd�þ
Z �0L

0

Gð�Þd�� 2ðn�þ �0
LÞ � ~cFxL=2;

ðA:8Þ
where we have omitted the constant term in EL.
Equations (A06)–(A08) recover Eqs. (5)–(7), respectively.
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