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Abstract. This study presents a new statistical process control (SPC) procedure for a
process together with degradation and diffusion effects. One of such examples is the initial
cool-down process of high-pressure hose production. The air temperature readings during
the initial cool-down process often exhibit a non-increasing trend with a diffusion effect
in that profiles generated from cycle to cycle deviate from each other more over time. A
new charting procedure using the Wiener diffusion model is developed in this article. A
real data set, generated from the cool-down process of high-pressure hose production, is
used to demonstrate the application of proposed method.
Keywords: Control chart, Normal distribution, Profile monitoring, Statistical process
control, Wiener diffusion model

1. Introduction. The quality characteristics in some industrial manufacturing processes
are often characterized as a profile rather than a number. For example, in a curing
production where products are heated in a sealed, heated chamber, called an autoclave
or vulcanizer, multiple thermocouples are equipped inside the chambers and/or their
parts. One piece of the major curing information gathered from the thermocouples is the
air temperature in the chamber. When the curing of products is finished, a cool-down
process is needed to make the quality of final products satisfactory. The cool-down process
is crucial to the product in that improper cool-down cycle may cause cosmetic blemishes
such as blistering on the product surface. Because of the physical nature of this cool-
down process, the air temperature profiles follow a downward trend whose degradation
rate is not necessarily a constant. Although this study is developed for an autoclave
cooling process, the core idea can be applied to any process together with the degradation
phenomenon.

The cool-down stage of an autoclave curing process is hard to control because the shapes
of the temperature profiles due to various venting and spraying cycles depend on how many
reels of products are loaded inside the chamber. However, this information is not fed back
into the control loop. In other words, the only control mechanism during the cooling stage
is based on a pre-specified time slots of venting and water spraying. In the initial cool-
down process, the air temperature degrades over time with a significant diffusion effect,
then the diffusion effect declines in the following processes. It is important to develop
proper SPC methods to monitor the initial cool-down process based on air temperature
profiles and ensure that all temperature profiles are under the statistical control. When
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a profile deviates from the “normal” profiles, quality engineers should inspect this batch
of reels of products for possible surface blemishes. In addition, they should also conduct
an investigation for checking possible process malfunctions. For example, when the water
tank runs out of water, the spraying cycle would fail as reflected in the temperature cycle.
The challenges of an SPC implementation are explained here. An illustrative example

is regarding an air temperature profile during the cool-down stage of high-density hose
products. In a typical curing cycle of high-pressure hose products manufacturing, the
cool-down stage often starts with a vent-opening action followed by a series of water
spraying and rest. A short rest breaks two water-spraying actions. The air temperature
is expected to decline. However, the temperature-decline rates vary from one profile to
another especially during the water-spraying stage. Note that such a diffusion effect is
significant in the initial cool-down stage.
In this study, 153 sequences of air temperature readings are collected from a hose

production factory. The present recipe of cool-down process calls for four sequences,
denoted by S1 (vent-open stage), S2 (water spray 1 stage), S3 (resting stage) and S4
(water spray 2 stage), respectively. In S1, a valve is opened to vent off the pressure for
a fixed period. The air temperature in S1 declines quickly and decreases over time. In
S2 and S4, cool water is sprayed for a fixed duration to accelerate the air temperature
degradation speed, and the recipe calls for a short rest of S3 between the stages of S2
and S4. After the second water spray is done, the chamber door is opened to unload
the cured products. Since the timing and duration for each sequence is controlled by a
programmable logic controller, process engineers would glance at the “general pattern”
of a temperature profile for quality assurance. The current practice is very subjective. It
is a great opportunity to introduce SPC methods for objective process monitoring and
continuous quality improvement.
Literature works for profile monitoring when a target data profile is well defined can

be found in [2, 8, 11, 12, 16, 17, 22]. Otherwise, a complicated profile can be modeled by
nonlinear functions of which SPC literature can be found in [1, 3, 7, 9, 10, 15, 19, 21].
However, these charting methods cannot handle the diffusion effect in the SPC process
and could cause a higher false alarm rate.
The Wiener diffusion model has been abundantly used in reliability and financial stud-

ies, such as [4, 5, 6, 13, 14, 18, 20]. Although there are no applications of Wiener diffusion
process for control charting studies found according to our best knowledge, Wiener dif-
fusion process model is capable of dealing with processes, which contain degradation and
diffusion phenomenons.
The rest of this paper is organized as follows. Statistical models are defined in Sec-

tion 2. In addition, parameter estimation method is provided based on the phase I data.
Moreover, an operable charting procedure using chi-square charts is suggested for SPC
monitoring. In Section 3, a real data set of high-pressure hose products is used to demon-
strate the application of the proposed method. Conclusions and future research are given
in Section 4.

2. Statistical Models and Parameter Estimation. Assume that engineers emphasize
on the monitoring of the initial cool-down process, the vent-open stage, mentioned in
Section 1. The initial degradation sequences are well defined as y0. All degradation
readings are modeled, respectively, according to the following Weiner diffusion processes,

yi = βti + σwi, i = 1, 2, · · · , (1)

where the reading value yi is measured at the time ti, β and σ are the drift and diffusion
parameter, respectively for the degradation process, and wi = w(ti) is the random error.
In this paper, all random errors wi’s are characterized by a standard Brownian motion
with the following facts:
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1. w0 = 0 for the starting time t0.
2. wi is almost surely continuous.
3. wi has independent and normally distributed increments of mean 0 and variance

△ti = ti − ti−1. That is, △yi = yi − yi−1, i = 1, 2, · · · are independent normally dis-
tributed with mean β(△ti) and variance σ2(△ti), labeled by △yi ∼ N(β(△ti), σ

2(△
ti)).

Let n degradation measurements of a profile be collected at times t1, t2, · · · , tn with
△ti = △t, i = 1, 2, · · · , n; That is, the spacing between times is equally. Therefore, △yi ∼
N(β(△t), σ2(△t)), i = 1, 2, · · · ,m. Let zi = △yi/△t, i = 1, 2, · · · , n, z̄ =

∑n
i=1 zi/n and

S2
z =

∑n
i=1(zi − z̄)2/(n − 1), then the unbiased estimators of β and σ2 can be obtained,

respectively, by

β̂ = z̄, (2)

and

σ̂2 = (△t)S2
z . (3)

It can be shown that β̂ ∼ N(β, σ2/(n△t)), and (n − 1)(△t)S2
z/σ

2 have a chi-square
distribution with (n− 1) degrees of freedom.

Assume that a phase I sample size m cool-down profiles is prepared for parameter
estimation. Based on the m vent-open stage profiles, m estimates of (β, σ2) can be

obtained and denoted by (β̂i, σ̂
2
i ), i = 1, 2, · · · ,m. Let β̄ =

∑m
i=1 β̂i/m, σ̄2

z =
∑m

i=1 σ̂
2
i /m =

(△t)S̄2
z , where S̄2

z =
∑m

i=1 S
2
z,i/m. If m is large, it can be shown that the sequence of Ci,

defined by

Ci =
(β̂i − β̄)2

σ̄2/n△t
=

n(β̂i − β̄)2

S̄2
z

, i = 1, 2, · · · , n, (4)

have an asymptotic chi-square distribution with 1 degree of freedom, and the sequence of
Di, defined by

Di =
(n− 1)(△t)S2

z,i

σ̄2
=

(n− 1)S2
z,i

S̄2
z

, i = 1, 2, · · · , n, (5)

have an asymptotic chi-square distribution with (n− 1) degrees of freedom. Two control
charts at false alarm rate α are proposed as follows:

The BETA-chart: The control chart for monitoring parameter β, named BETA-
chart. Plot statistics Ci, i = 1, 2, · · · , n, on the BETA-chart with the upper control
limit (UCL) and lower control limit (LCL), which are defined, respectively by

UCL = χ2
α/2,1, (6)

and

LCL = χ2
1−α/2,1, (7)

where χ2
α/2,1 and χ2

1−α/2,1 denote the upper and lower α/2 percentile points of the
chi-square distribution with 1 degree of freedom.

The SIGMA-chart: The control chart for monitoring parameter σ2, named SIGMA-
chart. Plot statistics Di, i = 1, 2, · · · , n, on the SIGMA-chart with only the UCL,
which is defined by

UCL = χ2
α,n−1. (8)
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Figure 1. 153 in-control profiles in the vent-open stage
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Figure 2. The BETA-chart for 153 vent-open profiles

3. An Application. The data set of air temperature readings in vent-open stage had
been collected in 2011 from a cool-down process of high-pressure hose production facto-
ry. All air temperature readings of 153 profiles are used to illustrate the application of
proposed method and given in Figure 1. Engineers believe that all 153 profiles are in
statistical control. The BETA-chart and SIGMA-chart at false alarm rate α = 0.0027
were constructed and given in Figure 2 and Figure 3, respectively.
The BETA-chart in Figure 2 shows that the drift parameter of the initial cool-down

process is in-control because all statistics are plotted within the control limits. However,
profile 50 in Figure 3 is suspected as a potential abnormal profile due to this profile diffuses
more than the others. The D estimate of profile 50 is close to the control limit and could
be ignored if traditional control charting methods are used for process monitoring.

4. Conclusions. In this paper, a new charting method is proposed and developed with
the Wiener diffusion model for monitoring a degradation process together with a diffusion
effect. Since the existing nonlinear profile monitoring methods cannot handle the diffusion
effect together with the profile drift effect, the proposed method is capable of monitoring
a degradation process in manufacturing. A data set of air temperature readings from
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Figure 3. The SIGMA-chart for 153 vent-open profiles

the vent-open stage in a cool-down process of high-pressure hose production is used for
illustration. The proposed method can be used for monitoring other processes together
with degradation and diffusion phenomenons.

The present study does not process the association relationship among profile. How
to involve the existing association relationship among profiles in the proposed method is
concerned and will be studied in the future. It is also a challenge to use the proposed
charting method with a non-Wiener diffusion process.
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