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Abstract. A nonparametric smoothing method for assessing the adequacy of gener-
alized linear mixed models (GLMMs) is developed. The proposed method is based on
smoothing the residuals over continuous covariates to avoid the partition of continuous
covariates on model checking. The global test statistic has a quadratic form and its for-
mulae of expectation as well as variance are derived. The sampling distribution of the
quadratic form test statistic is approximated by a scaled chi-squared distribution. For
bandwidth selection, the leave-one-out cross-validation approach is recommendable for
use. A longitudinal binary data set is utilized to demonstrate the proposed approach.

1. Introduction. The analysis of longitudinal data has been remarkably flourished in
the public health and social sciences for years. Longitudinal studies are employed to
characterize the change in response over time and the influence of the factors on the
change. The common methods for the analysis of longitudinal binary data are generalized
estimating equations (GEE) models proposed by Liang and Zeger [1], and generalized
linear mixed models (GLMMs). The detailed introduction of GLMMs can be referred
to as McCulloch and Searle [2], Agresti [3], and Breslow and Clayton [4]. GLMMs are
regarded as conditional models, whereas GEE models are treated as marginal models.
Generalized linear models represent a class of fixed effects regression models for different
types of response variables including continuous, dichotomous, and counts, while GLMMs
are obtained from generalized linear models by incorporating random effects into the linear
predictors. Some papers related tothe topic of random-effects models can be referred to
as Stiratelli et al. [5], Schall [6] and Zeger and Karim [7].

It is critical for all types of regression models to assess model adequacy before making
any further inferences on model parameters. Ritz [8] developed goodness-of-fit tests for
mixed models based on classical goodness-of-fit statistics; see Stephens [9], and D’Agostino
and Stephens [10]. In this article, we emphasize the analysis of longitudinal binary data
by utilizing GLMMs, and propose a goodness-of-fit test for assessing GLMMs based on
residual analysis. Many goodness-of-fit tests for GLMMs with longitudinal binary data
have been vigorously developed. Vonesh et al. [11] provided a goodness-of-fit test statistic
for checking the adequacy of generalized nonlinear mixed-effects models. Pan and Lin
[12] considered goodness-of-fit tests of GLMMs by graphical and numerical approaches
using the cumulative sums of residuals over covariates or predicted values of the response
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variable. Sturdivant et al. [13] presented a goodness-of-fit measure which is an unweighted
sum of squares of the kernel-smoothed residuals for assessing the adequacy of GLMMs.
Alonso et al. [14] proposed a family of tests to detect the misspecification in the random-
effects structure of GLMMs. Huang [15] developed diagnostic tools for detecting random-
effects model misspecification via coarsened data.
An alternative goodness-of-fit test based on nonparametric smoothing residuals is con-

sidered to avoid the partition of continuous covariates on model checking. The com-
mon nonparametric approaches are Nadaraya-Watson kernel smoothing, local polynomial
smoothing, wavelets and splines. The pertinent papers can be referred to as Stone [16],
Loader [17], Wahba [18], Daubechies [19], Green and Silverman [20], Wand and Jones
[21], Fan and Gijbels [22, 23], and Simonoff [24]. Lin et al. [25] proposed a goodness-of-fit
test based on nonparametric smoothing approach for GEE fitted models with continuous
and categorical covariates in a longitudinal binary study.
The organization of this article proceeds as follows. The brief introduction of the current

test of Pan and Lin [12] based on the cumulative sums of residuals over covariates, and
a proposed goodness-of-fit test for assessing GLMMs with longitudinal binary data using
nonparametric local polynomial kernel smoothing method are described in Section 2. The
simulation studies are conducted to detect the sampling distribution of the proposed test
statistic in Section 3. A guideline to implementation of the proposed test for longitudinal
binary data is illustrated by an example, and the leave-one-out cross-validation technique
for selecting a suitable bandwidth is discussed in Section 4. Lastly, conclusions and
discussions are presented in Section 5.

2. Goodness-of-Fit Test Statistics.

2.1. Pan-Lin’s supremum test. Define {Yij} as a series of binary responses for the
ith subject at the jth occasion, and let Y = (Y′

1, . . . ,Y
′
n)

′ with Yi = (Yi1, . . . , Yini
)′ for

i = 1, . . . , n; j = 1, . . . , ni. For simplicity, we assume that ni = J for all i, and set the
total sample size N = nJ . The generalized linear mixed model is given by

logit[E(Yij|bi)] = X′
ijβ + Z′

ijbi, (1)

where logit(u) = log[u/(1 − u)]. The design matrices X and Z link a p × 1 vector of
unknown fixed parameters β = (β1, . . . , βp)

′ and an (nq) × 1 vector of random effects
b = (b′

1, . . . ,b
′
n)

′ with bi = (bi1, . . . , biq)
′ to Y, respectively. The random effect bi for

subject i is assumed to follow a multivariate normal distribution, bi ∼ Nq(0,D). The
covariance matrix D depends on a unknown parameter vector γ. Let θ represent the
vector including all of the unknown parameters and denote as θ = (β′,γ ′)′. Conditional
on bi, generalized linear mixed models treat Yij as independent responses over i and
j. The random effect bi induces a nonnegative association among the responses for the
marginal distribution average over the subjects.
Let fY |b(Yij|bi) be the conditional distribution of Yij given bi, and fb(bi) be the density

function of bi, respectively. The likelihood function of θ = (β′,γ ′)′ is expressed as

L(θ) =
n∏

i=1

ni∏
j=1

∫
fY |b(Yij|bi) fb(bi)dbi.

The purpose of this article is to consider a goodness-of-fit statistic for testing H0 :
logit[E(Yij|bi)] = X′

ijβ + Z′
ijbi. Under H0, the marginal means of Yij are given by

mij(θ) = E(Yij) = E[E(Yij|bi)]. Based on residual analysis, Pan and Lin [12] provided a
model-checking technique using cumulative sums of residuals with respect to covariates.
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Define a class of stochastic process as follows:

W (x) = n−1/2

n∑
i=1

ni∑
j=1

I(Xij ≤ x)rij, (2)

where x is a p-dimensional covariate value, I(Xij ≤ x) = I(X1ij ≤ x1, · · · , Xpij ≤ xp),
Xlij is the lth component of Xij, and rij is the (i, j)th component of the residual column

vector r. Here, r = Y − m̂ and rij = Yij −mij(θ̂). Pan-Lin test is a supremum statistic,
TPL = supx |W (x)|. Under H0, it is obvious that the pattern of W (x) is expected to
fluctuate around zero. Large values of TPL indicate departure from H0. For more details,
see Pan and Lin [12] and Hart [26].

2.2. Proposed test. Let the design matrices X and Z be partitioned into XN×p =

[X1
... · · · ...Xn]

′ and ZN×(nq) = [Z1

⊗
11, . . . ,Zn

⊗
1n], respectively, where the notation⊗

is Kronecker product, Xi = (Xi1, . . . ,XiJ) with a p-dimensional covariate vector
Xij = (Xij1, . . . , Xijp)

′ , Zi = (Zi1, . . . ,ZiJ)
′ with a q-dimensional covariate vector Zij =

(Zij1, . . . , Zijq)
′, and 1i are n×1 column vectors having 1 in the ith entry and 0 elsewhere

for i = 1, . . . , n; j = 1, . . . , J . Denote the covariance matrix of Y as V = ZΣZ′ + U.
The matrix Σ with diagonal blocks D is expressed as Σ = diag{D}n1 , and the diagonal
matrix U = diag{exp(u)/[1 + exp(u)]2, u = X′

ijβ+Z′
ijbi for i = 1, . . . , n; j = 1, . . . , J}.

The details can be referred to Breslow and Clayton [4].

Under the regularity condition, (θ̂−θ) follows an asymptotic multivariate normal distri-

bution with zero means and a covariance matrix Ω−1, where θ̂ is the maximum likelihood
estimator of θ, Ω = limn→∞ I(θ) and I(θ) = −E[∂2 logL(θ)/∂θ∂θ′]. The information
matrix can be rewritten as I(θ) = diag(I11(θ), I22(θ)), where I11(θ) = X′V−1X, and the
kth row and lth column of I22(θ) is computed by −1

2
tr(V−1ZkZ

′
kV

−1ZlZ
′
l). Zeger et

al. [27] showed that the approximate marginal means for the logistic-normal case

mij ≈
exp(cijX

′
ij β)

1 + exp(cij X′
ij β)

, (3)

where cij = |c2DZijZ
′
ij + InJ |−q/2, c = 16

√
3/(15π), and InJ denotes an nJ ×nJ identity

matrix. Analogous to (3), mij(θ̂) can be approximated by

mij(θ̂) ≈ exp(ĉijX
′
ijβ̂)/

{
1 + exp(ĉijX

′
ijβ̂)

}
, (4)

where ĉij = |c2D̂ZijZ
′
ij + InJ |−q/2.

The nonparametric estimators based on smoothing residuals with respect to the values
of covariates (x11, . . . ,xnJ)

′ are denoted by r̂h = (r̂h(x11), . . . , r̂h(xnJ))
′, where r̂h(xij) =

S′
xij

r for covariate values xij, i = 1, · · · , n; j = 1, · · · , J . The local polynomial nonpara-

metric smoothing matrix S′
x = 1′

dp+1 (Z
′
xQx Zx)

−1 Z′
xQx, where 1dp+1 is a (d p+1) × 1

vector having 1 in the first entry and zero elsewhere, and Zx is an N × (d p+ 1) matrix,

Zx =


1 (X11 − x)′ · · · ((X11 − x)d)′

1 (X12 − x)′ · · · ((X12 − x)d)′

...
...

...
1 (XnJ − x)′ · · · ((XnJ − x)d)′

 ,

with the degree of d. Here, Qx = diag{KG(X11 − x), . . . , KG(XnJ − x)} and G =
diag(h2

1, . . . , h
2
p). A common use of multivariate kernel function KG is the standard p-

variate normal distribution with a covariance matrixG. The element of matrixG which is
the nonparametric smoothing parameter can be selected by ad hoc or data-driven method.
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We develop a new bandwidth-choice technique for the proposed test statistic based on the
joint conditional log-likelihood function of Yij given bi with leave-one-out cross-validation

data-driven method in Section 4. The first-order Taylor expansion of mij(θ̂) at θ leads to

(Yij −mij(θ̂)) ≈ (Yij −mij(θ))− (∂mij(θ)/∂θ)
′(θ̂ − θ), (5)

where ≈ denotes asymptotic equivalence. It can be shown that E(Y − m̂) ≈ 0 and
Var(Y − m̂) ≈ V + η′Ω−1η, where η = (∂m11(θ)/∂θ, . . . , ∂mnJ(θ)/∂θ).
For any value of covariate x, the smoothing residuals r̂h(x) is expected to fluctuate

around 0 since E(r̂h) = 0 under H0. The proposed goodness-of-fit test statistic with a
quadratic form of r̂h for GLMMs is defined by

Lh =
1

N
r̂′hCov

−1(r̂h)r̂h, (6)

where Cov(r̂h) = S(V + η′Ω−1η)S′ and S = (Sx11 , . . . ,SxnJ
)′. Model misspecification is

revealed by the large values of Lh. The test statistic Lh can be rewritten as

Lh =
1

N
(Y − m̂)′K(Y − m̂),

where K = S′[S(V+η′Ω−1η)S′]−1S. Based on the properties of the quadratic form x′Kx,
it can be obtained that E(x′Kx) = tr(KVx) + µx

′Kµx and Var(x′Kx) = 2tr(KVx)
2 +

4µx
′Kµx, where E(x) = µx and Cov(x) = Vx. Consequently, it can be shown that

E(Lh) =
tr(K(V + η′Ω−1η))

N
(7)

and

Var(Lh) =
2tr(K(V + η′Ω−1η))2

N2
. (8)

The asymptotic distribution of statistic Lh can be followed by Cox and Hinkley [28] with
a scaled chi-squared distribution, cχ2

ν , where the multiple c = Var(Lh)/[2E(Lh)] and the
degrees of freedom ν = 2E2(Lh)/Var(Lh).
For continuous and categorical covariates in GLMMs, we stratify data by categorical

variables mentioned by le Cessie and van Houwelingen [29] if the number of categories is
small relative to the size of observations. A goodness-of-fit statistic for testing GLMMs
with continuous and categorical covariates is given by L?

h =
∑

g Lh,g, where Lh,g is the
test statistic using smoothing the residuals of the fitted model in the gth category. It
can be straightforwardly obtained the expectation and variance of L?

h, and the sampling
distribution of L?

h can be approximated by a scaled chi-squared distribution.

3. Simulation Study. Two simulation studies are conducted to detect the behavior of
asymptotic sampling distribution of the proposed statistic L?

h, and to compare the per-
formance between Pan-Lin’s supremum test and the proposed test, where two simulated
longitudinal binary data sets are generated from the following null models:

Model 1: logit[E(Yij|bi)] = 1.5− 0.5X1i +X2ij + bi,

Model 2: logit[E(Yij|bi)] = −0.5X1i + 0.5X2ij + bi.

In Model 1, X1i is a time-independent covariate and follows a Bernoulli distribution with
probability of success 0.4. X2i = (X2i1, X2i2, X2i3)

′ is a time-dependent covariate vector.
The conditional distribution of X2i given X1i has a multivariate normal distribution with
a mean vector (X1i, X1i, X1i)

′ and a correlation matrix with the pairwise correlations of
0.5. The random effect bi follows the standard normal distribution for i = 1, · · · , n. In
Model 2, X1i and X2ij are two continuous covariates, and follow a uniform distribution on
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(−2, 2) and bi ∼ N(0, 1) for i = 1, · · · , n; j = 1, 2, respectively. The correlations between
two occasions are assumed to be 0.5. Each setting is performed for 1000 replications.

The proportions of rejection for Pan-Lin’s supremum test and the proposed test com-
pared with the significance levels of a scaled chi-squared distribution are summarized in
Tables 1 and 2. They indicate that most of empirical rejection levels have good approxi-
mations of significance levels for all bandwidths, and the supremum test has the empirical
sizes near the nominal levels. The slight differences may be due to simulation error. Note
that it needs to consider the paired bandwidths for nonparametric smoothing with respect
to the continuous covariates in Model 2.

Table 1. The proportions of rejection for the supremum test TPL and
the proposed test L?

h in Model 1 for various sample sizes, bandwidths and
significance levels

TPL L?
h

n α Bandwidth h
1.0 1.5 2.0 2.5

50 0.010 0.009 0.010 0.017 0.014 0.017
0.025 0.023 0.025 0.029 0.032 0.029
0.050 0.046 0.053 0.054 0.053 0.054
0.100 0.102 0.093 0.089 0.091 0.089

100 0.010 0.013 0.014 0.014 0.011 0.014
0.025 0.026 0.024 0.027 0.027 0.027
0.050 0.048 0.042 0.045 0.046 0.045
0.100 0.101 0.081 0.099 0.096 0.099

200 0.010 0.011 0.012 0.014 0.011 0.014
0.025 0.026 0.022 0.025 0.028 0.025
0.050 0.054 0.053 0.049 0.052 0.049
0.100 0.097 0.102 0.098 0.106 0.098

Table 2. The proportions of rejection for the supremum test TPL and
the proposed test L?

h in Model 2 for various sample sizes, bandwidths and
significance levels

TPL L?
h

n α Bandwidth (h, h)
1.0 1.5 2.0 2.5

50 0.010 0.011 0.011 0.008 0.009 0.009
0.025 0.026 0.027 0.027 0.027 0.021
0.050 0.050 0.048 0.049 0.046 0.043
0.100 0.103 0.100 0.101 0.093 0.095

100 0.010 0.011 0.015 0.013 0.008 0.007
0.025 0.024 0.027 0.025 0.022 0.020
0.050 0.049 0.058 0.045 0.049 0.055
0.100 0.103 0.094 0.102 0.106 0.107

200 0.010 0.009 0.012 0.011 0.010 0.009
0.025 0.025 0.027 0.031 0.023 0.025
0.050 0.052 0.040 0.041 0.040 0.042
0.100 0.096 0.082 0.078 0.081 0.086
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4. An Example. A longitudinal binary data set, analyzed by Koch et al. [30], Davis [31]
and also cited by Lin et al. [25], is used to demonstrate the application of the proposed
goodness-of-fit test for GLMMs using nonparametric smoothing residuals. A total of 111
patients from two different centers were randomly assigned to receive either placebo (57
patients) or an active treatment (54 patients), and the patient’s respiratory status was
examined (1 = good, 0 = poor) at baseline and four visits during treatment. The GLMM
for respiratory illness data,

logit[E(Yij|bi)] = β0 + β1Cj + β2Tj + β3Gj + β4Bj + β5Aj + bi,

includes four binary time-independent covariates: center (C = 0 for center 1, C = 1
for center 2), treatment (T = 0 for placebo group, T = 1 for active treatment), gender
(G = 0 for female, G = 1 for male) and baseline (B = 0 for response ‘poor’, B = 1 for
response ‘good’), and a continuous time-independent covariate A, the age of the patient (in
years at baseline) for i = 1, · · · , 111; j = 1, · · · , 4. Denote the binary repeated patient’s
respiratory status outcomes at four visits during treatment as Yi = (Yi1, · · · , Yi4)

′. The
estimates and confidence intervals of odds ratio for model parameters, the corresponding
standard errors, and the estimated standard deviation of the random intercept as well as
the p-value of the proposed test are shown in Table 3.

Table 3. Estimates, standard errors and conference intervals for GLMM
model parameters as well as the results of the proposed test with an optimal
bandwidth hopt = 0.49

Covariate θ̂ S.E. 95% CI for eβ

Intercept –0.754 0.448 (0.196, 1.132)
Center 0.694 0.244 (1.241, 3.230)
Treatment 1.308 0.241 (2.306, 5.932)
Gender –0.127 0.299 (0.490, 1.583)
Baseline 1.909 0.246 (4.166, 10.926)
Age –0.020 0.009 (0.963, 0.998)
σ 0.470 0.118 –
Test statistic Mean Variance p-value
0.328 3.457 1.609 0.999

The selection of an optimal smoothing parameter is a crucial issue for smoothing meth-
ods due to its influence on the performance of the test. The commonly used technique for
selecting an optimal bandwidth, based on maximizing the cross-validation function with
respect to h, is the leave-one-out cross-validation data-driven method, referred to Fan and

Gijbels [22], and Jones et al. [32]. Let m̂
(−i)
ij represent the estimate of the marginal means

of Yij, mij(θ) = E(Yij) = E[E(Yij|bi)], without considering the ith patient. The optimal
bandwidth hopt is obtained by maximizing the log-likelihood function of Yij, CV (h), where

CV (h) =
n∑

i=1

ni∑
j=1

[
Yij log

(
m̂

(−i)
ij

)
+ (1− Yij) log

((
1− m̂

(−i)
ij

))]
. (9)

Here m̂
(−i)
ij is computed by the nonparametric smoother of E[exp(uij)/(1 + exp(uij))|Xij]

with uij = X′
ijβ̂+bi and bi ∼ N(0, σ̂2). Figure 1 displays the log-likelihood function curve

CV (h) versus bandwidth h based on kernel and local linear smoothing, respectively. The
optimal bandwidth hopt relies on model specification, and its kernel smoothing, hopt = 0.49.
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Figure 1. Plot of the log-likelihood function based on leave-one-out cross-
validation versus bandwidth h. The optimal bandwidths are 0.49 and 0.46
with kernel and local linear smoothing, respectively.

The proposed test statistic L?
h = 0.328 with p-value = 0.999. It concludes that the model

is decent.
The results in Table 3 reveal that the respiratory status is significantly affected by all of

the covariates. The center effect is inferred by the estimated odds ratio exp(0.694) = 2.002
and its 95% confidence interval (1.241, 3.230). The treatment effect is inferred by the
estimated odds ratio exp(1.308) = 3.699 and its 95% confidence interval (2.306, 5.932).
Likewise, the inferences of the other covariates can be obtained in the same manner. The
results also imply that the younger female patient with response ‘good’ at baseline has
improved respiratory status after receiving active treatment in center 2. The estimated
standard deviation of random effect is 0.470 (p-value ≈ 0), and it shows that the degree
of heterogeneity among patients with good or poor respiratory status is manifest.

5. Conclusion and Discussion. In contrast with the method of Lin et al. [25] using
GEE approach, this article provides an alternative model-checking technique for general-
ized linear mixed models based on nonparametric local polynomial smoothing residuals.
The proposed test can be regarded as a complement to Pan-Lin’s [12] supremum test
rather than a competitor. The proposed statistic is easy to compute, and is applicable for
checking the fitted models with continuous and categorical covariates. This global mea-
sure goodness-of-fit test statistic avoids partitioning the covariate space. The proportions
of rejection for the proposed test statistic can be well approximated by its asymptotic
scaled chi-squared distribution.

In addition, a real longitudinal binary data set is employed to demonstrate the proposed
goodness-of-fit testing procedure. The extent of bandwidth h depends on smoothing mean
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function, and the selection of smoothing parameter for nonparametric smoothing methods
is crucial. A bandwidth-choice technique with leave-one-out cross-validation method is
used for the proposed test based on the joint conditional log-likelihood function of Yij

given bi.
The evaluation of the random effect may be of interest, which is not the focus of this arti-

cle. Verbeke and Lesaffre [33, 34] obtained the maximum likelihood estimators for random
effects, and investigated the effect on misspecification of the random-effects distribution
in linear mixed models with longitudinal data. Litière et al. [35, 36] and Huang [15] de-
veloped tests for detecting the random-effects misspecification in GLMMs, and Alonso et
al. [14] provided a family of tests to detect misspecification in the random-effects structure
of generalized linear mixed models. The proposed method may be extended to longitudi-
nal ordinal data. Regarding the analysis of longitudinal ordinal data, it can be referred
to Chen et al. [37], Lin et al. [38] and Tuan et al. [39]
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