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Abstract—In this paper a simple and effective crowd behavior 
normality method is proposed. We use the histogram of oriented 
social force (HOSF) as the feature vector to encode the observed 
events of a surveillance video. A dictionary of codewords is 
trained to include typical HOSFs. To detect whether an event is 
normal is accomplished by comparing how similar to the closest 
codeword via z-value. The proposed method includes the 
following characteristic: (1) the training is automatic without 
human labeling; (2) instead of object tracking, the method 
integrates particles and social force as feature descriptors; (3) z-
score is used in measuring the normality of events. The method is 
testified by the UMN dataset with promising results. 
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I. INTRODUCTION 
Today, with technology advances and life-quality 

enhancements, there have been more and more surveillance 
cameras installed in our living environment for security reasons. 
The detection of abnormal behaviors is an important research 
issue in surveillance system and computer vision [1-3], as well 
as in other research region such as applications of elderly care 
[4]. One of the most challenging tasks is how to automatic 
detect and analyze individual activities in video, especially in 
crowded scenes. 

Some public spaces such as train stations, hospitals, 
theaters, schools or others, where the surrounding camera 
monitors are mainly monitoring the scene for suspicious 
behavior and are logging events. By combining those video 
data and computer vision techniques, it could bring effective 
performance for surveillance system to reduce manpower cost 
and to avoid human negligence due to fatigue; these smart 
surveillance systems could also capture the alert which was 
filtered through amount data, so that it helps monitoring staffs 
make an appropriate response and disposal in short time to 
achieve the aim of safety precaution and crime monitoring. 

Conventional methods for behavior analysis or 
identification are mostly based on the tracking of the interested 
objects. However, these methods are too dependent on 
individual characteristics such as shape, color and movement 
trajectory. Considering the environmental instabilities,  
unavoidable occlusions, or cluttered backgrounds, the reliable 
tracking would be a major challenge. Therefore, many studies 
have focused on the approaches which inherited from 
macroscopic and microscopic models such as optical flow and 
social force [5] to process the event detection via statistical 
models. 

In this work, we propose an efficient abnormal event 
detection system in crowded scene based on social force model 
which considers human interactive relationships and concepts 
of social influence. The proposed method includes the 
following contributions: (1) the training is automatic instead of 
human labeling; (2) instead of object tracking, the method 
integrates particles and social force as feature descriptors 
which well adapted in both crowded or few people scenes; (3) 
a simple z-score is used in measuring the normality of events. 
Due to computation simplicity, the normality detection can be 
real-time implemented once the training is finished. 

II. RELATED WORK 
In recent years, several researches have been proposed in 

the literature on behavior analysis of video sequence and 
unusual event detection in computer vision. As technology 
advances, many approaches of detection in surveillance system 
have been proposed [1-3]; in particular, analyzing trajectory of 
individual is the most extensive and intuitive, such well-
developed methods as meanshift [6], HOG [7] or motion 
patterns and appearance [8]. However, in crowd videos, the 
reliability of detection and tracking still is a major challenge 
[9]. 

Since the difficulties of human tracking in crowded scenes, 
some researchers use motion or motion-related feature 
descriptors [10-12] to model crowd behaviors. Adam et al. [10] 
used local histogram of optical flow as low-level feature. Kratz 
et al. [11] proposed to use spatio-temporal gradients in a 
Gaussian mode. Mahadevan et al. [12] proposed a dynamic 
texture model which combines the appearance and dynamics in 
crowded scenes. Dynamic texture is very effective in 
expressing the dynamic background such as ocean wave or 
crowded scene, however, it pays the price in training cost. 

The crowd behaviors are prone to be blind and infectious. 
Consequently, it is essential to model crowd interaction 
patterns for understanding or predicting their behaviors. In 
general, the crowd behaviors studies could be classified as 
follow: (1) macroscopic models, which analyze the density and 
velocity of whole crowd; (2) microscopic models, which focus 
on individual behavior motivation; (3) hybrid models, which 
consider the overall behavior as well as individual by mixing 
both methods above. These models can be applied to crowd 
simulation, crowd management, disaster management, exit 
design of buildings or others [9]. Wang et al. [13] gave a 
complete evaluation of methods on behavior recognition.  

Mehran et al. [5] adopted an optical-flow-based social force 
model and particle advection scheme to analyze the interaction 
forces between individuals and surrounding environments. 
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After that, some studies based on social force model have been 
proposed in succession to detect crowd behaviors as well [14-
16]. Inspired by [5] and the difficulties of tracking in crowds, 
we adopt social force model and use histogram of oriented 
social force (HOSF) as the feature descriptor to accomplish 
abnormal detection in crowded scene. 

III. PROPOSED METHOD 
The proposed method includes training and testing phases. 

For a given sequence, the beginning T frames are used to 
establish the dictionary D. The rest of frames, so called events, 
are for testing. An event (frame) is normal if it has occurred 
several times in the previously seen data (learned dictionary D). 
The overall proposed system is depicted in Fig. 1 and the 
details are explained in the following. 

A. Active Particles (AP) 
To begin, pyramid Lucas-Kanade [17] method is used to 

calculate optical flow of pixels over the image sequence and a 
corresponding optical flow sequence is acquired. Similar to [5], 
we analyze the crowd videos via particles movement. A 3D 
grid of particles (with a spacing of 3 pixels) is placed over the 
optical flow sequence along temporal and spatial axes; 
therefore, each particle is made of 3×3×3 pixels and its optical 
flow is defined as the median of these 27 optical flows to 
reduce noises. We define a particle as “active” if its motion 
magnitude is more than a threshold Thmotion. The active particles 
(AP) will be the feature points, and the inactive ones will be 
treated as background and ignored. Herein, we will use 
“particle frame” to indicate a frame consists of particles instead 
of pixels, which is 1/3 of original width/height/length of a 
given video. 

B. Feature Descriptor 
Once feature points are located, we define the HOSF 

feature descriptor.  

1) Estimation of Social Force: The social force of an AP Pi 
is the sum of interaction forces among Pi and its neighboring 
APs. Thus, we modify the equation from [16] as in (1). 

 𝐹𝑖𝑠𝑜𝑐 = � 𝑓𝑖,𝑗𝑠𝑜𝑐

𝑃𝑗∈𝑁(𝑃𝑖)

 (1) 

with  

 𝑓𝑖,𝑗𝑠𝑜𝑐 = 𝑚𝑗𝑚𝑥𝑝 �− �
𝑟𝑖,𝑗−𝑑𝑖,𝑗

𝑏
�� 𝑣𝑖,𝑗 ,  (2) 

where 𝑚𝑗  is the mass of particle j (let 𝑚𝑗 = 1 ), 𝑟𝑖,𝑗 is the 
distance between particles; 𝑚𝑖,𝑗 is sum of radius of two particles; 
𝑣𝑖,𝑗(=𝑣𝑗 − 𝑣𝑖) is the direction vector of influence force which is 
obtained by the difference of optical flows of APs 𝑃𝑖  and 𝑃𝑗. N 
is the set of neighboring APs of 𝑃𝑖 . The neighboring area,  
N(Pi), is set as (2𝑘 + 1) × (2𝑙 + 1) centered at 𝑃𝑖  and 𝑏 =
√𝑘2 + 𝑙2 is the largest distance. Equation (2) represents the 
influence force is proportional to distance between two 
particles, mass and velocity of two particles. 

2) Histogram of Oriented Social Force (HOSF): After the 
calculation of social forces for all APs in a particle frame, we 
use cuboids to encode histogram of oriented social force 
(HOSF). For each AP Pi in the particle images, a cuboid of 
size 2𝑚 × 2𝑚 × 2𝑚  centered on Pi is divided into 8 sub-
cuboids each size is 𝑚 × 𝑚 × 𝑚 as shown in Fig. 2. For each 
sub-cuboid, an 8-bin (0, ±π/4, ±π/2, ±3π/4,π) histogram of the 
social force magnitude is built. Finally, for each AP Pi, a 64-
dimensional HOSF feature vector of Pi is obtained by 
concatenating eight social force histograms with norm  
normalized to be 1. Similar to the histogram of oriented 
gradient (HOG) [7], HOSF not only remains the relation of 
spatial and temporal, but tolerates some drifting via sub-
cuboids. 

C. Dictionary Creation 
After all HOSFs of APs are collected from the beginning 

T/3 particle frames, we use K-means++ [18] to cluster feature 
vectors into K classes (K=100 in the experiment). For each 
class k, the codeword ck is defined as the mean HOSF vectors. 
The dictionary D is made of the codeword ck of K classes and it 
would be the basis to identify whether a given frame is normal. 
Besides the codewords, the following information of D are also 
kept as depicted in TABLE I. 

D. Event Detection 
In testing phase, we only perform the normality test for a 

particle frame if it has enough number of APs (at least 3) and 
claim normal for those do not. An event 𝐸𝑡 is defined as the set 
of HOSF vectors with 𝐸𝑡 = �𝑓𝑡(𝑃1), … , 𝑓𝑡�𝑃𝑀(𝑡)�� , where 
𝑓𝑡(𝑃𝑖) is the HOSF vector of AP Pi in the particle frame t. In 
determining normality, we compare each feature vector 𝑓𝑡(𝑃𝑖) 
with the most similar codeword in D and measure the distance 
via z-score as in (3). 

 
Fig. 1. Flow chart of the proposed method. 



1) Z-Score Value: For a HOSF  𝑓𝑡(𝑃𝑖)  of the AP Pi in the 
particle frame t, assume ck is the closed codeword for 𝑓𝑡(𝑃𝑖) , 
the z-score value is estimated as 

 𝑧(𝑃𝑖) = � ‖𝑓𝑡(𝑃𝑖)−𝑐𝑘‖−𝜇𝑘
𝜎𝑘

 �. (3) 

Equation (3) is to measure whether it is common that the 
distance between 𝑓𝑡(𝑃𝑖)  and ck comparing to the distances 
between the rest of elements in the same cluster and ck. A small 
z-value implies  𝑓𝑡(𝑃𝑖) is a typical normal pattern; otherwise, it 
may be an unusual pattern or a noise. 𝐸𝑡  is claimed as an 
abnormal event if (4) is satisfied: 

1
𝑀(𝑡)

� � �̂�(𝑃𝑖)
1≤𝑖≤𝑀(𝑡)

�   ≥   𝑇ℎ𝑁 (4) 

with  

�̂�(𝑃𝑖) = �
  𝑧(𝑃𝑖),                               𝑧(𝑃𝑖) <  𝑇ℎ𝑁    
𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑗∈𝑁(𝑃𝑖)∪{𝑃𝑖}
�𝑧�𝑃𝑗�� ,   𝑧(𝑃𝑖) ≥  𝑇ℎ𝑁 , (5) 

where 𝑀(𝑡) is the number of APs in frame t, N is the set APs 
within the 8-neighbor of 𝑃𝑖  and 𝑇ℎ𝑁  (1.3 is used in the 
experiment) is an user-defined normality threshold. Since an 
unusual event is exhibited as a blob of unusual APs, we use (5) 
to reduce the noise. Finally, we consider the average z-values 
of an event to determine the normality of a particle frame t 
according to (4). 

2) Temporal Smoothing: To further reduce noises, we  
apply temporal smoothing on the detection results. Due to fact 
that the duration of abnormal events would be several seconds 
in the sequence, a mode operation of (2r+1) detected particle 
frames is applied on the center particle frame. The “mode” 
smoothing is triggered on the particle frame t whenever there 
is a normality transition from  frames (t-1) to t. The operation 
takes the majority detection results in frames (t-r), ..., t, ..., (t+r) 
and assign to the frame t. (a) shows the detection results up to 
(t+2) where green/red indicating detected as normal/abnormal 
and gray indicating not yet processed. As observed, a 
normality transition occurs on frame t. Thus, a smoothing 
operation is triggered and the final detected result on frame t is 
modified to be “normal” since this is the majority normality 
results. 

IV. EXPERIMENTAL RESULTS  
To testify the proposed method, two video cliques, as in Fig. 

3 & 4, of public available UMN dataset [19] are tested. In the 
training phase, for each scenario, frames of the beginning 5~10 
seconds are used for training and the rest are for testing where 
the frame rate is 30 per second. 

Fig. 3 (a)-(f) exhibit some of the detection result of test_1 
where green/red indicating normal/abnormal result. In 3(b), the 
detection result was mistakenly to be abnormal due to a door 
open suddenly (on the lower left corner). As observed, people 
are about to run on t = 98 and start running on next frame, and 
people are evacuated (the hallway is empty) on t = 127. Our 
method correctly detected on these frames. 3(g) shows the 
complete test result without temporal smoothing. There are 
some false alarms around frame 40s to 90s. However, after 
temporal smoothing with r = 2, as shown in (h), the final 
detected result are quite accurate. Comparing to the ground 
truth of UMN shown in 3(i), frames 107 and 133 were the first 
and the last frame labeled as abnormal which is 9 and 6 frames 
apart from ours result. But, as observed from the video, people 
start running on frames 98 and the hallway remains empty from 
frame 127. Besides, 9 frames and 6 frames apart mean less one 
third of a second. We think that less than a second difference 
should be accepted as correct detection. 

 
Fig. 2. A sample for a split of the cuboid. 

 

TABLE I.  THE INFORMATION IN THE DICTIONARY D 

notation description 
ck The codewordof cluster k 
μk, 
σk 

mean and standard deviation of the 
distances fromck to each data in cluster k 

nk size of cluster k 

N total number of data in D, 
i.e., N = n1 + ... + nk +...+ nK 

 

   
(a) t = 16 (b) t = 48 (c) t = 98 

   
(d) t = 99 (e) t = 108 (f) t = 127 

(g) 
 

(h) 
 

(i) 
 

Fig. 3. Test result of test_1; (a)-(f) are the frames of the detection results 
at time t, (g) is the complete detection result (without temporal 
smoothing), (h) is after temporal smoothing is applied, and (i) is the 
ground truth provided by UMN dataset and their  normality transitions are 
about 1/3 second delay than ours.. 



Fig. 4 presents the test result of test_2. Our method 
mistakes (a) as abnormal due to the sudden appearing and 
disappearing on the areas red circled. As shown in (c), people 
start running with panic at t = 63. (g) & (h) are the results after 
temporal smoothing with r = 2 & 3, respectively. 

V. CONCLUSION 
A normality detection method was proposed for crowd 

scenes. We first define active particle (AP) using optical flow. 
From an AP, the HOSF feature descriptor affected by its 3D 
neighbors is obtained. A dictionary D is constructed by mean 
vectors, so called codewords, from clustered HOSF in training 
phase. If the HOSF of an AP has occurred quite often, then 
distance between its HOSF and the most similar codeword 
should be small. Based on this, the z-value on distance between 
the HOSF and the nearest codeword is used to determine the 
normality. 

In our experiments, most of results are satisfactory and it is 
time efficiency. However, parameters 𝑇ℎ𝑁  in normality 
threshold in (4) and r in temporal smoothing are data 
dependent. In the future, we would study more on adaptive 
parameters. 
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(a) t = 39 (b) t = 54 

   
(c) t = 63 (d) t = 71 (e) t = 84 

(f) 
 

(g) 
 

(h) 
 

(i) 
 

Fig. 4. Test result of test_2; (a)-(e) are the frames of the detection results 
at time t, (f) is the complete detection result (without temporal smoothing), 
(g) & (h) are after temporal smoothing with r=2 and r=3, respectively; (i) 
is the ground truth provided by UMN dataset. 
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