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In this paper we analyze the estimation accuracy of high–low
spread estimator. It is found that the performance of high–low
spread estimator depends on the size of the true spread, the level
of transaction frequency, and the degree of volatility. Analyzing
the probability of measurement error, it is shown that the high–
low spread estimators have better performance when the size of
the spread is even wider, when the level of transaction frequency
is even higher, or when the degree of volatility is relatively lower.
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1. Introduction

Given that the first-order serial covariance of price changes is due only to the covariance induced
by the spread, Roll (1984) developed a spread estimator that has widely been applied in financial mar-
kets. One of the main advantages of Roll’s measure is the data merely requiring transaction prices,
which is the most basic information in financial market. Another advantage is the ease of computa-
tion; Roll’s estimator can be easily measured by 2
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p

; where ‘‘Cov’’ is the first-order serial covari-
ance of price changes.

Although Roll’s estimator has the advantages referred above, its performance is unstable when
spreads are estimated with low frequency data. With a dataset of stocks returns over 1963–1982, Roll
found a high proportion of daily and weekly spread estimates are negative. In addition, the weekly
spread estimates were significantly greater than the daily spread estimates.
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Thereafter, a series of papers explored Roll’s problematic empirical results. According to Garbade
and Lieber (1977), transaction types tend to cluster over short intervals of time, Choi et al. (1988)
extended Roll’s formula for the effective bid-ask spread by incorporating the possibility of serial
correlation in the transaction type, and showed that if there is positive serial correlation in trans-
action type, then Roll’s estimator would be downward-biased. On the other hand, incorporating the
effect of asymmetric information, Glosten (1987) argued that the bid-ask spread can be decom-
posed into two parts: one due to asymmetric information, and the other due to other factors which
affect the properties of the transaction-price process differently; the spread proposed by Roll esti-
mates the total spread only when there is no adverse-selection spread. Considering the effect of
price reversal, Stoll (1989) developed a more general model to estimate three components of
spread: adverse information cost, order processing cost, and inventory cost; showing that Roll’s
measure only reflects order processing cost (other important studies include George et al., 1991;
Holden, 2009; Hasbrouck, 2009).

In contrast to the covariance model which implies a bid-ask spread from the serial dependence of
observed prices, Corwin and Schultz (2012) proposed a new approach to develop a spread estimator
from daily high and low prices. Their high–low spread estimator is based on a simple insight: Daily
high (low) prices are almost always buy (sell) trades, and hence, the high–low ratio reflects bid-ask
spreads. Their simulations reveal that the high–low spread estimator has a number of advantages over
the daily estimators used in prior research. This paper expands upon this study to explore the influ-
ence of the size of the true spread, the level of transaction frequency, and the degree of volatility
on the performance of the high–low spread estimator. Analyzing the probability of measurement er-
ror, it is shown that the high–low spread estimators have better performance when the size of the
spread is even wider, when the level of transaction frequency is even higher, or when the degree of
volatility is relatively lower.

The remainder of this paper is organized as follows. Section 2 derives the high–low spread estima-
tors. Sections 3 and 4 demonstrate the simulation procedures and results, respectively. Some explana-
tions and discussions of the simulation results are provided in Section 5. Section 6 presents the study
conclusions and implications for future research.

2. The high–low spread estimator

In this study, the model proposed by Corwin and Schultz’s (2012) is modified to analyze the
estimation accuracy of high–low spread estimator. Suppose the bid-ask spread is S% of the true
value of the asset price; hence the bid price is lower than the true value by S/2%, while the ask
price is higher than the true value by S/2%. A trading day is equally divided into n sub-periods:
[t0, t1], [t1, t2], . . . , [tn�1, tn], where t0 and tn are the opening time and closing time of the market respec-
tively. Hence each sub-period is equal to 1/n trading day. In addition, it is assumed that each relatively
high price1 is a buy trade, while each relatively low price is a sell trade. Therefore, in each sub-period
[tk�1, tk] the highest possible ask price Ho

t;k is higher than the true value by S/2%, while the lowest
possible bid price Lo

t;k is lower than the true value by S/2%. With HA
t;k (LA

t;k) denoting the highest (lowest)
true value over the sub-period [tk�1, tk], yields
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Taking expectation of (1) yields
E ln Ho
t;k=Lo

t;k

� �h i2
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where
latively high (low) price is a price higher (lower) than the prices immediately before and after it.
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In order to compute the expectation in the right hand side of (2), the true asset price is assumed fol-
lowing a geometric Brownian motion. Appling the results of Parkinson (1980) and Garman and Klass
(1980) yields
E ln
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t;k
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n
r2 ð4Þ
and
E ln
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¼ k2ffiffiffi

n
p r; ð5Þ
where k1 = 4ln2, k2 ¼
ffiffiffiffiffiffiffiffiffi
8=p

p
, and r denotes the volatility of the true price. Substituting (4) and (5) into

(2) yields
1
n

k1r2 þ 2ffiffiffi
n
p k2raþ a2 � bn ¼ 0 ð6Þ
where bn ¼ E½lnðHo
t;k=Lo

t;kÞ�
2. Note that bn can be estimated from sample by taking the highest observed

price as the estimate of the highest possible ask price and lowest observed price as the estimate of the
lowest possible bid price. Appendix A provides a law of large numbers for E½lnðHo

t;k=Lo
t;kÞ�

2 to yield
consistency.

To solve the other two unobserved parameters r and a, another equation is required. Squaring the
log high–low ratio over a 2-intraday sub-period yields
ln Ho
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where Ho
t;k;kþ1ðL

o
t;k;kþ1Þ is the highest (lowest) possible ask (bid) price in two sub-periods (i.e. the sub-

periods [tk�1, tk] and [tk, tk+1]), while HA
t;k;kþ1ðL

A
t;k;kþ1Þ denotes the highest (lowest) true price over two

sub-periods. Considering expectations in (7) yields
2
n

k1r2 þ 2

ffiffiffi
2
n

r
k2raþ a2 � cn ¼ 0 ð8Þ
where cn ¼ Ef½lnðHo
t;k;kþ1=Lo

t;k;kþ1Þ�
2g.

Together with (6) and (8) a can be solved. Neglecting Jensen’s inequality (see Corwin and Schultz’s,
2012), a simple transformation of a in (3) then provides a spread estimator, as follows
S ¼ 2ðea � 1Þ
1þ ea ; ð9Þ
where
a ¼
ffiffiffiffiffiffiffiffi
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3. Simulation procedures

To see how well the high–low spread estimator works under different scenarios, T days of prices
data were simulated. Each day contains 300 min and each minute uniformly generates m prices; hence
the transaction price can be monitored every 60/m s. At the beginning of the first trading day, the asset
price is arbitrarily set to $100. Then at each transaction time s of trading day t, the true price of the
asset PA

t;s is simulated as
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Þ; ð11Þ
where l is the daily expected return of the asset, r denotes its daily volatility, Ds = 1/(300m) day, and
{Zt,s} are i.i.d. standard normal random variables. The bid (ask) price is then obtained by multiplying
PA

t;s by one minus (plus) half the bid-ask spread. It is assumed that there is a 50% chance that the ob-
served price is a bid, and a 50% chance that it is an ask. Hence the observed price Po

t;s is simulated as
Po
t;s ¼ ð1þ dt;sÞPA

t;s ð12Þ
where {dt,s} are independent random variables, such that
Pr dt;s ¼
þS
2

� �
¼ Pr dt;s ¼

�S
2

� �
¼ 1

2
: ð13Þ
Each trading day t was split into n sub-periods: [0,1/n], [1/n,2/n], . . . , [(n � 1)/n,1]. In each sub-period,
the observed highest prices and lowest prices are computed as follows:
Ho
t;k ¼maxfPo

t;sjs 2 ½ðk� 1Þ=n; k=n�g; ð14Þ

Lo
t;k ¼minfPo

t;sjs 2 ½ðk� 1Þ=n; k=n�g; ð15Þ
where k = 1, 2, . . . , n. Using the data generated from (14) and (15), bn and cn can be estimated by dbt;n

and dct;n as follows:
bbt;n ¼
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Substituting dbt;n and dct;n into Eq. (10) for bn and cn, respectively, provides an estimate of a:
cat ¼
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Substituting cat into (9), yields an spread estimate of trading day t
bSt ¼
2ðebat � 1Þ

1þ ebat

: ð19Þ
Calculating the average value of spread estimates yields a spread estimator
bS ¼ 1
T

XT

t¼1

bSt : ð20Þ
4. Simulation results

The above described simulation procedures are repeated to create N spread estimates:dSð1Þ; dSð2Þ; . . . ; dSðNÞ. In order to study the estimation accuracy of the high–low spread estimator, the
percentage error is calculated as
Error ¼ 1
N

XN

j¼1

jbSðjÞ � Sj=S: ð21Þ
Fig. 1 is constructed to analyze the impact of the size of true spread on the estimation accuracy of
high–low spread estimators. The dotted line depicts a situation with a narrow true spread
(S = 0.5%); the dashed line is a case of wider spread (S = 1.0%); and the solid line is a situation of even
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Fig. 1. The estimation error of high–low spread estimators for different sizes of spreads. (The values of parameters: N = 30,
m = 6, l = 0, r = 0.03, T = 48.)
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wider spread (S = 3.0%). It is clear that the dashed line is right below the dotted line, while the solid
line is right below the dashed line, indicating that a wider true spread leads to a lower estimation er-
ror, and hence higher estimation accuracy.

To gain some insight into the estimation accuracy of the effect of transaction frequency, Fig. 2 de-
picts the estimation error for different levels of transaction frequency. The dotted line depicts a situ-
ation when the transaction frequency is slightly high (m = 6), the dashed line a situation with higher
frequency (m = 12), and the solid line an even more extreme situation (m = 30). As one can see, the
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Fig. 2. The estimation error of high–low spread estimators for different levels of transaction frequency. (The values of
parameters: N = 30, m = 6, l = 0, r = 0.03, T = 48, S = 3%.)
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dashed line generally lies below the dotted line, while the solid line lies below the dashed line, indi-
cating that, as the level of transaction frequency increases, the estimation error of the high–low spread
estimators is reduced. As a consequence, the estimation accuracy is improved.

In order to examine the influence on the estimation accuracy of the high–low spread estimator
for different degrees of price volatility, Fig. 3 depicts the estimation error for different degrees of
volatility. The solid line presents a situation when the degree of volatility is slightly high (r = 0.02),
the dashed line a case with higher level of volatility (r = 0.03), and the dotted line an even more
extreme situation (r = 0.04). It is obvious to see that the dashed line lies above the solid line, while
the dotted line lies above the dashed line, indicating that a higher level of volatility leads to a
worse estimation error. Consequently, the lower level of price volatility leads to the higher estima-
tion accuracy.

5. Explanations of the effect of parameters

This section sheds light on why the high–low spread estimators are more accurate when the true
spread is even wider, when the level of transaction frequency is even higher, or when the degree of
volatility is relatively lower.

The spread estimator derived here provides a method for inferring the true spread from the high
and low prices of each sub-period. This method requires one major assumption: Relatively high prices
are buy trades, while relatively low prices are sell trades. However, in practice it is possible that an ob-
served relatively high price is a seller-initiated trade, and is therefore discounted by half of the spread,
while an observed relatively low price is a buyer-initiated trade and is therefore grossed up by half of
the spread.

In order to analyze the influences of the size of the true spread, the level of transaction frequency,
and the degree of volatility on the accuracy of the high–low spread estimator, the probability of one
type of measurement error occurring from a relatively high price lower than the actual values by half
of the spread is computed, which is referred to as the following proposition.

Proposition. Suppose that Po
t;s is a relatively high price, then the probability of Po

t;s ¼ PA
t;sð1� S=2Þ is given

by
Please cite this article in press as: Lin, C.-C. Estimation accuracy of high–low spread estimator. Finance Research
Letters (2013), http://dx.doi.org/10.1016/j.frl.2013.05.004

http://dx.doi.org/10.1016/j.frl.2013.05.004


C.-C. Lin / Finance Research Letters xxx (2013) xxx–xxx 7

Please
Letter
PðPo
t;s ¼ PA

t;sð1� S=2ÞjPo
t;s > Po

t;s�Ds ^ Po
t;s > Po

t;sþDsÞ ¼
ð1=2þ Nð�dÞÞ2

ð1=2þ NðdÞÞ2 þ ð1=2þ Nð�dÞÞ2
ð22Þ
where N(�) is the cumulative standard normal distribution function and d ¼ 1
r
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.

Proof. See Appendix B h.
Remark 1. Similar to the proof in Appendix B, the probability of the other type of measurement error
occurred from a relatively low price, which is higher than the actual values by half of the spread, can
be shown to be exactly equal to the probability of a relatively high price lower than the actual values
by half of the spread.
Remark 2. Rewriting (22), one has
PðPo
t;s ¼ PA

t;sð1� S=2ÞjPo
t;s > Po

t;s�Ds ^ Po
t;s > Po

t;sþDsÞ ¼
1

ð 1=2þNðdÞ
1=2þNð�dÞ Þ

2 þ 1
: ð23Þ
As the size of S increases, or the degree of r decreases, both lead to a higher value of NðdÞ (lower value
of Nð�dÞ), and hence a lower probability of a relatively high price grossed down by half of the spread.
Consequently, the probability of the occurrence of measurement error becomes lower. As a result, the
high–low spread estimator is more accurate when the true spread is even wider, or when price vola-
tility is relatively lower. Similarly, as the level of transaction frequency is increased, the value of Ds is
decreased. As a result, the estimation accuracy is improved.
6. Conclusions

In this study the estimation accuracy of high–low spread estimator is analyzed. We found the
performance of high–low spread estimator depending on the size of the true spread, the level of trans-
action frequency, and the degree of volatility. Analyzing the probability of measurement error of high–
low spread estimator, it is shown that the estimation error is reduced when the size of the spread is
even wider, when the level of transaction frequency is even higher, or when the degree of volatility is
relatively lowers.

Although the accuracy of the high–low spread estimator has been discussed in detail, empirical re-
search is still needed to provide further evidence to support the analysis results described herein. The
difficulty of the empirical work would be to construct a proxy for the unobservable effective spread. A
possible proxy is the difference between the transaction price and the average of the bid and ask prices
which are observed immediately before the transaction price. A more detailed empirical analysis can
be resolved by future work.
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Appendix A

To obtain a law of large numbers for E½lnðHo
t;k=Lo

t;kÞ�
2 to yield consistency, it is sufficient to show (see

Eq. (2))
1
M

X
t;k

ln
HA

t;k

LA
t;k

 !" #
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where M is the number of observations. Together with (4), (5), and flnðHA
t;k=LA

t;kÞg being independent
identically distributed, it is straightforward to obtain Eq. (A1).

Applying the results of Parkinson (1980), there exists a constant C such that
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Using Chebyshev’s inequality on 1=M
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Eq. (A4) can be used to obtain the following:
P
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As M approaches infinity, the expression approaches 1. And by definition of convergence in probabil-
ity, I have obtained Eq. (A2).

Appendix B

This appendix computes the probability of a relatively high price discounted by half of the spread.
By Bayes’ theorem, one has
PðPo
t;s ¼ PA
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¼ P Po
t;s > Po

t;s�Ds ^ Po
t;s > Po

t;sþDs Po
t;s ¼ PA

t;sð1� S=2Þ
��� ÞPðPo

t;s ¼ PA
t;sð1� S=2Þ

� �
� PðPo

t;s > Po
t;s�Ds ^ Po

t;s > Po
t;sþDs Po

t;s ¼ PA
t;sð1� S=2Þ

��� ÞPðPo
t;s ¼ PA

t;sð1� S=2ÞÞ
n

þ PðPo
t;s > Po

t;s�Ds ^ Po
t;s > Po

t;sþDs Po
t;s ¼ PA

t;sð1þ S=2Þ
��� ÞPðPo

t;s ¼ PA
t;sð1þ S=2ÞÞ

� o
: ðB1Þ
Since PðPo
t;s ¼ PA

t;sð1� S=2ÞÞ ¼ PðPo
t;s ¼ PA

t;sð1þ S=2ÞÞ ¼ 1=2; (B1) can be simplified as
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To deal with PI , first note that
PI ¼ P
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>
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Neglecting the effect of drift term (l = 0), from Eq. (11), one has
Please
Letter
PI ¼ P r
ffiffiffiffiffiffi
Ds
p

Zt;s < ln
1� S=2

1þ dt;s�Ds

� �
^ r

ffiffiffiffiffiffi
Ds
p

Zt;sþDs < ln
1� S=2

1þ dt;þDs

� �� �
: ðB5Þ
By the independence between ðZt;s; dt;s�DsÞ and ðZt;sþDs; dt;sþDsÞ, yields
PI ¼ P r
ffiffiffiffiffiffi
Ds
p

Zt;s < ln
1� S=2

1þ dt;s�Ds

� �� �
P r

ffiffiffiffiffiffi
Ds
p

Zt;sþDs < ln
1� S=2

1þ dt;sþDs

� �� �
¼ Pðdt;s�Ds ¼ �S=2ÞPðZt;s < 0Þ þ Pðdt;s�Ds ¼ þS=2ÞP Zt;s <

ln ð2� SÞ=ð2þ SÞ½ �
r
ffiffiffiffiffiffi
Ds
p

� �� 
� Pðdt;sþDs ¼ �S=2ÞPðZt;sþDs < 0Þ þ Pðdt;sþDs ¼ þS=2ÞP Zt;sþDs <

ln½ð2� SÞ=ð2þ SÞ�
r
ffiffiffiffiffiffi
Ds
p

� �� 
¼ 1

4
þ 1

2
N

ln½ð2� SÞ=ð2þ SÞ�
r
ffiffiffiffiffiffi
Ds
p

� �� 2
Similarly, PII can be computed as
PII ¼
1
4
þ 1

2
N

ln½ð2þ SÞ=ð2� SÞ�
r
ffiffiffiffiffiffi
Ds
p

� �� 2

: ðB6Þ
Substituting (B5) and (B6) into (B2); consequently, Eq. (22) follows.
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