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In business transactions, it is quite common for the supplier to offer the retailer a permis-
sible delay in payments in order to stimulate the demand of the retailer. The retailer can
either pay off all accounts at the end of the credit period or delay incurring interest charges
on the unpaid and overdue balance due to the difference between interest earned and inter-
est charged. In this study, we consider different financial environments when the supplier
provides a permissible delay in payments. The proper mathematical models are developed
to find the optimal order quantity and payoff time for maximizing the retailer’s total profit
for each financial environment. Furthermore, two theorems are established to determine
the optimal solutions. Finally, numerical examples are presented to illustrate the proposed
model. A sensitivity analysis is performed and economic interpretations are proposed.

Crown Copyright � 2012 Published by Elsevier Inc. All rights reserved.
1. Introduction

In today’s competitive business environment, offering retailers a permissible delay in payments is, for suppliers, an effec-
tive method of attracting new customers and increasing sales as it represents a form of price reduction. Additionally, the
retailer is usually not obliged to pay interest during this period of permissible payment delay. Therefore, a retailer can earn
interest on the accumulated revenue received, while delaying payments up until the end of the permissible period. However,
if payment is delayed beyond that period, interest will be charged on the outstanding amount. In Taiwan, for example, most
publishers allow delayed payments from bookstores. Interest does not begin accruing for the outstanding amount if it is paid
within the permissible delay period. Therefore, the bookseller can earn interest on the accumulated revenue received by
deferring payment until the end of this permissible period.

The existing literature has thoroughly discussed the inventory problem with delayed payments. Goyal [10] first devel-
oped an economic order quantity (EOQ) model under the condition of permissible delay in payments, in which he calculated
interest income based on the purchasing cost of goods sold within the permissible delay period. Teng [24] amended Goyal’s
[10] model by calculating interest earned based on the selling price of goods. Chang [2] established an EOQ model with dete-
riorating items under inflation, where a supplier provides a permissible delay in payments for a large order that is greater
than or equal to the predetermined quantity. Ouyang et al. [21] developed a general EOQ model with trade credit and partial
backlogging for a retailer to determine its optimal shortage interval and replenishment cycle. Goyal et al. [11] established an
appropriate EOQ model for a retailer where the supplier offers a progressive interest charge and found that the retailer would
order a greater quantity and pay less total costs per year if the supplier provided a short-term teaser interest rate. Jaggi et al.
2012 Published by Elsevier Inc. All rights reserved.
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[13] studied the retailer’s optimal replenishment decisions with credit-linked demand under a permissible delay in pay-
ments. Liao [16] proposed an EOQ model with exponentially deteriorating items under two-level trade credit. Chang et al.
[7] incorporated the concepts of vendor–buyer integration and order-size-dependent trade credit. They presented a stylized
model to determine the optimal strategy for an integrated vendor–buyer inventory system under the condition of trade cred-
it being linked to order quantity. Teng [25] established an EOQ model for a retailer who receives full trade credit from its
supplier, and offers either partial or full trade credit to his or her customers. Chang et al. [5] addressed the shortcomings
in Liao [16], and proposed a generalized model with both up-stream and down-stream trade credits. Other related articles
on this topic can be found in works by Dave [9], Mandal and Phaujdar [18], Sarker et al. [23], Jamal et al. [14], Chang and Wu
[6], Chang and Teng [4], Chung et al. [8], Ouyang et al. [20–22], Chang et al. [3], Ho [12], Liu [17], Min [19], Krichen et al. [15],
Teng and Chang [26], Teng et al. [27,28] and Taso [29,30].

During the permissible period, a retailer is permitted to pay back the amount owing without accruing any interest to the
supplier. In order to take the advantage of this opportunity, the retailer can sell the items and earn interest on the accumulated
revenue received instead of paying off the amount, even after the permissible credit period expires, as interest will be charged
if the payment is delayed beyond the credit period. Therefore, there is a trade-off between the total interest earned and the
total interest charged to the supplier during the overdue period. In today’s financial markets, the retailer may invest the
money into stock markets or into developing new products, thus gaining a return on investment that may be higher than
the interest charged. If the interest earned is higher than the interest charged, a reasonable retailer may not return money
to the supplier until the end of the replenishment cycle. On the other hand, if the interest earned is less than the interest
charged, a reasonable retailer will pay off the total purchase cost to the supplier as soon as possible, following the end of
the credit period. Therefore, a more practical option for the retailer is either to pay off the entire amount owed to the supplier
at the end of the credit period or to delay incurring interest charges on the unpaid and overdue balance. Hence, the determi-
nation of a retailer’s payoff time is affected by the amount of interest income and interest payments. In previous papers,
although much research has been devoted to studying inventory problems relating to trade credit, few of the research papers
have considered the financial environment and their effects on a retailer’s optimal ordering policy and payoff time. Therefore,
in this paper, our goal is to discuss the EOQ inventory model under the conditions that the interest earned per dollar per unit
time is higher than the interest charged per dollar per unit time, and the interest earned per dollar per unit time is lower than
the interest charged per dollar per unit time. Furthermore, two theorems are proposed to determine the optimal replenish-
ment cycle time and payoff time such that the total profit per unit time is maximized. Finally, we provide some numerical
examples to illustrate the solution procedure and present the effects of the parameters on the optimal replenishment cycle
time, order quantity, payoff time and total profit per unit time.

2. Notation and assumptions

The mathematical model in this paper is developed on the basis of the following notation and assumptions.
Notation:
D
 the demand per unit time

p
 unit selling price

c
 unit purchase cost, with c < p

h
 unit holding cost per unit time excluding interest charges

s
 ordering cost per order

Q
 the order quantity

Q⁄
 the optimal order quantity

Ic
 interest charges per $ in stock per unit time by the supplier

Ie
 interest earned per $ per unit time

M
 permissible delay in settling account

T
 the replenishment cycle time

T�i
 the optimal replenishment cycle time for case i, i = 1,2

TAPi(T)
 the total profit per unit time for case i, i = 1,2 � �

TAP�i
 the optimal total profit per unit time for case i, i.e., TAP�i ¼ TAPi T�i ; i ¼ 1;2
Assumptions:

1. The inventory system involves only one item and the planning horizon is infinite.
2. Shortages are not allowed and the demand for the item is constant with time.
3. We adopt a methodology similar to Aggarwal and Jaggi [1] to calculate the interest earned. That is, when T P M, the retai-

ler utilizes the sales revenue to earn interest throughout the inventory cycle T and when T 6M, the retailer earns interest
on sales revenue up to the permissible period M.
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4. The retailer has two choices to pay off the total amount owed to the supplier: the retailer can decide to pay off all
accounts either at the end of the credit period M or at any time point during (M,T]. If the retailer chooses the second
option, the retailer must pay the supplier interest accrued.

3. Mathematical formulation

In this section, some appropriate inventory models are developed for each possible case. Our purpose is to maximize the
total profit per unit time. First, we consider the total profit per replenishment cycle which consists of the following elements:

(a) Sales revenue = p DT,
(b) Cost of purchasing = c DT,
(c) Cost of placing order = s,
(d) Cost of carrying inventory (excluding interest payable) = h DT2/2,
(e) Interest payable per cycle to the supplier, and
(f) Interest earned per cycle.

In regard to the interest charges and interest earned (i.e., (e) and (f)), two possible cases exist, based on the values of Ic and
Ie, namely: (i) Ie P Ic and (ii) Ie < Ic.

Case 1. Ie P Ic
This case situation indicates that the interest earned per dollar per unit time, Ie, is greater than or equal to the interest
charges per dollar per unit time, Ic. Based on the values of T and M, the following two possible sub-cases exist: (i) T P M
and (ii) T 6M.

Case 1.1. T P M
This situation indicates that the replenishment cycle time T is greater than or equal to the permissible delay in payments M.

Since Ie P Ic, the retailer may never return money to the supplier until the end of the replenishment cycle time T. So the re-
tailer’s interest payable per cycle is cIc times the area of rectangle BATM (i.e., c IcD T(T �M)) and the interest earned per cycle is
pIe times the area of triangle AOT (i.e., p IeD T2/2) as shown in Fig. 1(a). Thus, the total profit per replenishment cycle is:
Z11ðTÞ ¼ sales revenue� purchasing cost� ordering cost� carrying cost� interest payableþ interest earned

¼ ðp� cÞDT � s� hDT2
=2� cIcDTðT �MÞ þ pIeDT2=2: ð1Þ
Case 1.2. T 6M
In this situation, the replenishment cycle time T is less than or equal to the permissible delay in settling account M. The

retailer will pay off the total amount owed to the supplier at the end of the trade credit period M. Thus, no interest charges
are paid for the items. At the same time, the retailer uses the sales revenue to earn interest at the rate of Ie during the period
[0,M]. In the time interval [0,T], the retailer’s interest earned is pIe times the area of triangle GOT (i.e., p IeD T2/2) as shown in
Fig. 1(b). In addition, the retailer has p D T + p IeD T2/2 at the end of the replenishment cycle time T. By using this amount,
they are able to obtain the interest earned Ie(p D T + p IeD T2/2)(M � T) = pIe(D T + IeD T2/2)(M � T) in the time interval [T,M],
that is, pIe times the area of rectangle HIMT as shown in Fig. 1(b). Hence, the interest earned during the period [0,M] is p IeD
T2/2 + pIe(D T + IeD T2/2)(M � T) = p IeD T[T/2 + (1 + IeT/2)(M � T)].

Therefore, the total profit per replenishment cycle is:
Z12ðTÞ ¼ sales revenue� purchasing cost� ordering cost� carrying costþ interest earned

¼ ðp� cÞDT � s� hDT2
=2þ pIeDT½T=2þ ð1þ IeT=2ÞðM � TÞ�: ð2Þ
Fig. 1. Graphical representation of interest earned and interest charged for Ie P Ic.
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Therefore, the total profit per unit time for Case 1 (i.e., Ie P Ic) is as follows:
TAP1ðTÞ ¼
TAP11ðTÞ; if T P M;

TAP12ðTÞ; if T 6 M;

�

where
TAP11ðTÞ ¼ Z11ðTÞ=T ¼ ðp� cÞD� s=T � hDT=2� cIcDðT �MÞ þ pIeDT=2; ð3Þ
and
TAP12ðTÞ ¼ Z12ðTÞ=T ¼ ðp� cÞD� s=T � hDT=2þ pIeD T=2þ ð1þ IeT=2ÞðM � TÞ½ �: ð4Þ
It is noted that TAP11(M) = TAP12(M). Hence, TAP1(T) is a continuous function on T > 0.

Case 2. Ie < Ic

In this case, the interest earned per dollar per unit time, Ie, is less than the interest charges per dollar per unit time, Ic.
Similarly, based on the values of T and M, we have the following two possible sub-cases: (i) T P M and (ii) T 6M.

Case 2.1. T P M
When Ie < Ic, the retailer will pay off the total purchase cost to the supplier as soon as possible. During [0,M] period, the

retailer sells products and uses the revenue to earn interest. The interest earned during the period [0,M] is pIe times the area
of triangle AOM (i.e., p IeD M2/2) as shown in Fig. 2(a). Therefore, the retailer has p D M + p IeD M2/2 at time M. Since the
retailer buys D T units at time 0, the retailer owes the supplier c D T at time M. Based on the difference between the money
p D M + p IeD M2/2 the retailer has and the purchase cost c D T, there are two possible situations: (a) p D M + p IeD M2/2 < c D T,
which means the retailer cannot pay off the unpaid balance at time M due to insufficient cash, (b) p D M + p IeD M2/2 P c D T,
which means the retailer can pay off the total purchase cost to the supplier at time M. We discuss these two situations below.

Case 2.1–1. p D M + p IeD M2/2 < c D T (i.e., T > pM(1 + IeM/2)/c)
In this situation, the money in the retailer’s account is less than the purchase cost at time M. The retailer pays p D M + p IeD

M2/2 to the supplier at time M and finances the difference U � c D T � (p D M + p IeD M2/2). Thereafter, the retailer gradually
reduces the financed loan from constant sales and revenue received. Hence, the interest payable per replenishment cycle is
pIc times the area of triangle BM (M + U/pD) as shown in Fig. 2(a) (i.e., pIc(U/p)[U/(pD)]/2 = IcU

2/(2pD)), where U/(pD) is the
time period that the retailer pays off the unpaid balance to the supplier. Furthermore, after the time point M + U/(pD), the
retailer continuously sells products and uses the revenue to earn interest, which is equal to pIe times the area of triangle
GT (M + U/pD) as shown in Fig. 2(a) (i.e., p IeD(T �M � U/pD)2/2). Therefore, the total profit per replenishment cycle is:
Z21ðTÞ ¼ sales revenue� purchasing cost� ordering cost� carrying cost� interest payableþ interest earned

¼ ðp� cÞDT � s� hDT2
=2� IcU2=ð2pDÞ þ pIeDM2=2þ pIeDðT �M � U=pDÞ2=2; ð5Þ
where U = c D T � (p D M + p IeD M2/2).

Case 2.1–2. p DM + p IeDM2/2 P c DT (i.e., T 6 p M(1 + IeM/2)/c)
In this situation, the money in the retailer’s account is greater than or equal to the purchase cost at time M. The retailer

pays off the total amount owed to the supplier c DT at time M. Hence, no interest charges are paid for the items. In addition,
at time pointM, the retailer has amount p D M + p IeD M2/2 � c DT on hand. By using the amount, the retailer is able to obtain
Fig. 2. Graphical representation of interest earned and interest charged for Ic > Ie.
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the interest earned Ie(p D M + p IeD M2/2 � c DT)(T �M) during the time period [M,T]. Furthermore, after the time point M,
the retailer continuously sells products and uses the revenue to earn interest, which is equal to pIe times the area of triangle
MIT as shown in Fig. 2(b) (i.e., p IeD(T �M)2/2). Hence, the interest earned during the period [0,T] is.
pIeDM2=2þ Ie pDM þ pIeDM2=2� cDT
� �

ðT �MÞ þ pIeDðT �MÞ2=2:
Therefore, the total profit per replenishment cycle is:
Z22ðTÞ ¼ sales revenue� purchasing cost� ordering cost� carrying costþ interest earned

¼ ðp� cÞDT � s� hDT2
=2þ pIeDM2=2þ IeðpDM þ pIeDM2=2� cDTÞðT �MÞ þ pIeDðT �MÞ2=2

¼ ðpDM þ pIeDM2=2� cDTÞ½1þ IeðT �MÞ� þ pDðT �MÞ þ pIeDðT �MÞ2=2� s� hDT2
=2: ð6Þ
Case 2.2. T 6M
This case is the same as Case 1.2. Thus, the total profit per replenishment cycle is:
Z23ðTÞ ¼ Z12ðTÞ ¼ ðp� cÞDT � s� hDT2
=2þ pIeDT T=2þ ð1þ IeT=2ÞðM � TÞ½ �: ð7Þ
Therefore, the total profit per unit time for Case 2 (i.e., Ie < Ic) is as follows:
TAP2ðTÞ ¼
TAP21ðTÞ; if T > pMð1þ IeM=2Þ=c;

TAP22ðTÞ; if M 6 T 6 pMð1þ IeM=2Þ=c;

TAP23ðTÞ; if T 6 M;

8><
>:
where
TAP21ðTÞ ¼ Z21ðTÞ=T ¼ ðp� cÞD� s=T � hDT=2� IcU2=ð2pDTÞ þ pIeDM2=ð2TÞ þ pIeDðT �M � U=pDÞ2=ð2TÞ; ð8Þ
where U = c D T � (p D M + p IeD M2/2):
TAP22ðTÞ ¼ Z22ðTÞ=T

¼ ðpDM þ pIeDM2=2� cDTÞ 1þ IeðT �MÞ½ � þ pDðT �MÞ þ pIeDðT �MÞ2=2
n o

=T � s=T � hDT=2; ð9Þ
and
TAP23ðTÞ ¼ Z23ðTÞ=T ¼ ðp� cÞD� s=T � hDT=2þ pIeD T=2þ ð1þ IeT=2ÞðM � TÞ½ �; ð10Þ
It is noted that TAP22(M) = TAP23(M). Hence, TAP2(T) is continuous at T = M.

4. Theoretical results

In this section, we present the procedure to obtain the solution and also establish two theorems to determine the optimal
solution to the aforementioned cases.

Case 1. Ie P Ic
Case 1.1. T P M
To maximize the total profit per unit time, taking the first-order derivative of TAP11(T) in (3) with respect to T, we obtain:
dTAP11ðTÞ=dT ¼ s=T2 � hD=2� cIcDþ pIeD=2 ¼ s=T2 � D hþ 2cIc � pIeð Þ=2: ð11Þ
If h + 2c Ic � p Ie 6 0, then d TAP11(T)/d T > 0, which implies TAP11(T) is a strictly increasing function of T. In this situation, it
will be profitable for the retailer to prolong the replenishment cycle time as long as possible. Hence, the optimal replenish-
ment cycle time is T ?1. Nevertheless, this is impossible in the real market. Thus, for the situation T P M in Case 1 (i.e.,
Ie P Ic), the condition h + 2c Ic � pIe > 0 (i.e., Ie < (h + 2c Ic)/p) must be satisfied. From this point onwards, we assume the con-
dition Ic 6 Ie < (h + 2c Ic)/p holds in Case 1.1. Next, motivated by (11), we define a new function G11(T) as follows:
G11ðTÞ ¼ s=T2 � Dðhþ 2cIc � pIeÞ=2; ð12Þ
for T 2 [M,1). Due to the derivative of G11(T) with respect to T is:
dG11ðTÞ=dT ¼ �2s=T3 < 0; ð13Þ
G11(T) is a strictly decreasing function in T 2 [M,1). Furthermore, we have:
lim
T!1

G11ðTÞ ¼ �D hþ 2cIc � pIeð Þ
�

2 < 0;
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and
G11ðMÞ ¼ 2s�M2D hþ 2cIc � pIeð Þ
h i

=ð2M2Þ:
For convenience, we let D1 �M2D(h + 2c Ic � pIe); then, we have the following results.

Lemma 1. For Ic 6 Ie < (h + 2c Ic)/p,

(a) If 2s P D1, then the value of T 2 [M,1) (say T11) which satisfies d TAP11(T)/d T = 0 exists uniquely.
(b) If 2s < D1, then the value of T 2 [M,1) which satisfies d TAP11(T)/d T = 0 does not exist.
Proof. See Appendix A h
Lemma 2. For Ic 6 Ie < (h + 2c Ic)/p,

(a) If 2s P D1, then TAP11(T) has a maximum value at the point T = T11, where T11 2 [M,1) and satisfies d TAP11(T)/d T = 0.
(b) If 2s < D1, then TAP11(T) has a maximum value at the boundary point T = M.
Proof. See Appendix B h
Case 1.2. T 6M
Taking the first-order derivative of TAP12(T) in (4) with respect to T, we have:
dTAP12ðTÞ=dT ¼ s=T2 � hD=2þ pI2
e DM=2� pIeD=2� pI2

e DT: ð14Þ
Next, we let function G12(T) denotes the right hand side of (14), i.e.,
G12ðTÞ ¼ s=T2 � hD=2þ pI2
e DM=2� pIeD=2� pI2

e DT; ð15Þ
for T 2 (0,M]. Due to the derivative of G12(T) with respect to T is:
dG12ðTÞ=dT ¼ �2s=T3 � pI2
e D < 0; ð16Þ
G12(T) is a strictly decreasing function in T 2 (0,M]. Furthermore, we have
lim
T!0þ

G12ðTÞ ¼ 1 and G12ðMÞ ¼ 2s�M2D½hþ pIeðIeM þ 1Þ�
n o.

ð2M2Þ:
For convenience, letting D2 �M2D[h + p Ie(Ie M + 1)], we have the following results.

Lemma 3. For Ie P Ic,

(a) If 2s 6D2, then the value of T 2 (0,M] (say T12) which satisfies d TAP12(T)/d T = 0 exists uniquely.
(b) If 2s > D2, then the value of T 2 (0,M] which satisfies d TAP12(T)/d T = 0 does not exist.
Proof. The proof is similar to that of Lemma 1, hence we omit it here. h
Lemma 4. For Ie P Ic,

(a) If 2s 6D2, then TAP12(T) has a maximum value at the point T = T12, where T12 2 (0,M] and satisfies d TAP12(T)/d T = 0.
(b) If 2s > D2, then TAP12(T) has a maximum value at the boundary point T = M.
Proof. The proof is similar to that of Lemma 2, hence we omit it here.
Note that D1 < D2 for Ie P Ic. Thus, from Lemmas 2 and 4, we can develop the following theorem to obtain the optimal

replenishment cycle time T�1 for Case 1. h
Theorem 1. For Ie P Ic:
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Situation
 Condition
 TAP1ðT�1Þ
 T�1
Ie < (h + 2c Ic)/p
 2s < D1
 TAP12(T12)
 T12
D1 6 2s 6 D2
 Max{TAP11(T11), TAP12(T12)}
 T11 or T12
2s > D2
 TAP11(T11)
 T11
Ie P (h + 2c Ic)/p
 2s 6D2
 TAP12(T12)
 T12
2s > D2
 TAP12(M)
 M
Proof. It immediately follows from Lemmas 2 and 4 and the fact that TAP11 (M) = TAP12(M).

Once the optimal replenishment cycle time T�1 is obtained, the optimal order quantity per cycle Q � ¼ DT�1 follows.

Case 2. Ie < Ic
Case 2.1–1. T > p M(1 + IeM/2)/c
Taking the first-order derivative of TAP21(T) in (8) with respect to T, we have:
dTAP21ðTÞ=dT ¼ s=T2 þ pDI2
e M4ðIc � IeÞ=ð8T2Þ þ pDM2ðIc � IeÞ=ð2T2Þ þ pDIcIeM3=ð2T2Þ

þ D c2ðIe � IcÞ=p� ðhþ 2cIe � pIeÞ
� 	

=2: ð17Þ
If h + 2c Ie � p Ie 6 c2(Ie � Ic)/p, then d TAP21(T)/d T > 0, which implies TAP21(T) is a strictly increasing function of T. In this sit-
uation, it will be profitable for the retailer to prolong the replenishment cycle time as long as possible. Hence, the optimal
replenishment cycle time is T ?1. As mentioned previously, this is impossible in the real market and thus for the situation
T > p M(1 + IeM/2)/c in Case 2 (i.e., Ie < Ic), the condition h + 2c Ie � p Ie > c2(Ie � Ic)/p (i.e., Ic > Ie � p(h + 2c Ie � pIe)/c2) must be
satisfied. From now on, we assume the condition Ic > max {Ie, Ie � p(h + 2c Ie � pIe)/c2} holds true in Case 2.1–1. Next, moti-
vated by (17), we let function G21(T) denote the right hand side of (17), i.e.,
G21ðTÞ ¼ s=T2 þ pDI2
e M4ðIc � IeÞ=ð8T2Þ þ pDM2ðIc � IeÞ=ð2T2Þ þ pDIcIeM3=ð2T2Þ

þ D c2ðIe � IcÞ=p� ðhþ 2cIe � pIeÞ
� 	

=2; ð18Þ
for T 2 (p M(1 + IeM/2)/c,1). Due to the derivative of G21(T) with respect to T is:
dG21ðTÞ=dT ¼ �2s=T3 � pDM2ðIc � IeÞ=T3 � pI2
e DM4 Ic � Ieð Þ= 4T3

� �
� pDIcIeM3=T3 < 0: ð19Þ
G21(T) is a strictly decreasing function in T 2 (p M(1 + Ie M/2)/c,1). Furthermore, we have
lim
T!1

G21ðTÞ ¼ D c2ðIe � IcÞ � pðhþ 2cIe � pIeÞ
� 	

=ð2pÞ < 0;
and
lim
T! pMð1þIeM=2Þ=cð Þþ

G21ðTÞ ¼ f2s� p2M2Dð1þ IeM=2Þ2ðhþ 2cIe � pIeÞ
h i

c2 þ pI2
e DM3g

. .
2p2M2 1þ IeM=2ð Þ2=c2
h i

:

For convenience, letting D3 � p2M2Dð1þ IeM=2Þ2ðhþ 2cIe � pIeÞ=c2 � pI2
e DM3, we have the following result. h
Lemma 5. For Ic> max {Ie, Ie � p(h + 2c Ie � pIe)/c2}:

(a) If 2s P D3, then the value of T 2 (p M (1 + IeM/2)/c,1) (say T21) which satisfies d TAP21 (T)/d T = 0 exists uniquely and
TAP21(T) has a maximum value at the point T = T21.

(b) If 2s < D3, then the value of T 2 (p M(1 + Ie M/2)/c,1) which maximizes TAP21(T) does not exist.
Proof The proof is similar to that of Lemmas 1 and 2, hence we omit it here.

Case 2.1–2. M 6 T 6 p M(1 + IeM/2)/c
Taking the first-order derivative of TAP22(T) in (9) with respect to T, we obtain:
dTAP22ðTÞ=dT ¼ pI2
e DM3=ð2T2Þ þ s=T2 � Dðhþ 2cIe � pIeÞ=2: ð20Þ
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If h + 2c Ie � p Ie 6 0, then d TAP22(T)/d T > 0, which implies TAP22(T) is a strictly increasing function of T 2 [M,p M(1 + IeM/2)/
c]. In this situation, the optimal replenishment cycle time is the boundary point T = p M(1 + IeM/2)/c. On the other hand, if
h + 2c Ie � p Ie > 0, we let function G22(T) denote the right hand side of (20), i.e.,
G22ðTÞ ¼ pI2
e DM3=ð2T2Þ þ s=T2 � D hþ 2cIe � pIeð Þ=2; ð21Þ
for T 2 [M,p M(1 + IeM/2)/c]. Due to the derivative of G22 (T) with respect to T is:
dG22ðTÞ=dT ¼ � 2sþ pI2
e DM3

� �
=T3 < 0: ð22Þ
G22(T) is a strictly decreasing function in T 2 [M,p M (1 + IeM/2)/c]. Furthermore, we have
G22 pMð1þ IeM=2Þ=cð Þ ¼ 2s� D3ð Þ= 2p2M2ð1þ IeM=2Þ2=c2
h i

;

and
G22ðMÞ ¼ 2s� D4ð Þ=ð2M2Þ;
where D3 is defined as above and D4 � M2Dðhþ 2cIe � pIeÞ � pI2
e DM3. It is obvious that where D4 < D3, then we have the fol-

lowing results. h
Lemma 6. For Ic > Ie and h + 2c Ie � p Ie > 0:

(a) If D4 6 2s 6D3, then the value of T 2 [M,p M(1 + IeM/2)/c] (say T22) which satisfies d TAP22(T)/d T = 0 exists uniquely.
(b) If 2s < D4 or 2s > D3, then the value of T 2 [M,p M(1 + IeM/2)/c] which satisfies d TAP22(T)/d T = 0 does not exist.
Proof. The proof is similar to that of Lemma 1, hence we omit it here. h
Lemma 7. For Ic > Ie:

(a) If h + 2c Ie � p Ie 6 0, then TAP22(T) has a maximum value at the boundary point T = p M(1 + IeM/2)/c.
(b) If h + 2c Ie � p Ie > 0 and
(i) If 2s < D4, then TAP22(T) has a maximum value at the boundary point T = M.

(ii) If D4 6 2s 6 D3, then TAP22 (T) has a maximum value at the point T = T22, where T22 2 [M,p M(1 + IeM/2)/c] and satisfies d
TAP22(T)/d T = 0.

(iii) If 2s > D3, then TAP22(T) has a maximum value at the boundary point T = p M(1 + IeM/2)/c.
Proof.

(a) It is obvious from (20).
(b) The proof is similar to that of Lemma 2, hence we omit it here. h
Case 2.2. T 6M
For this case, we know that the total profit per unit time TAP23 (T) is the same as that of Case 1.2 (i.e., TAP23(T) = TAP12 (T)),

and hence the solution procedure is the same as that of Case 1.2. That is, we have the following result:

Lemma 8. For Ic > Ie:
(a) If 2s 6D2, then TAP23(T) has a maximum value at the point T = T23, where T23 2 (0,M] and satisfies d TAP23(T)/d T = 0.
(b) If 2s > D2, then TAP23(T) has a maximum value at the boundary point T = M.

Note that D2 > D4 and D3 > D4 for Ic > Ie. For simplicity, we let W � p M(1 + IeM/2)/c. Thus, from the above arguments, we can
develop the following theorem to obtain the optimal replenishment cycle time T�2 for Case 2.
Theorem 2. For Ie < Ic,
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Situation
ble 1
e optimal solution for different Ie and p(Ic =

Interest rate Ie (%) Selling price p

5 25
10
15
20

5 30
10
15
20

5 35
10
15
20

5 40
10
15
20
Conditions
0.15).

Replenishment cycle T⁄ Order

T21 = 0.201615 403
T21 = 0.198531 397
T11 = 0.195180 390
T11 = 0.223607 447

T21 = 0.213814 428
T21 = 0.212474 425
T11 = 0.210819 422
T11 = 0.258199 516

T21 = 0.226044 452
T21 = 0.228435 457
T11 = 0.230940 462
T11 = 0.316228 632

T21 = 0.238721 477
T21 = 0.247407 495
T11 = 0.258199 516
T11 = 0.447214 894
TAP2ðT�2Þ
quantity Q⁄ Total profit per year TAP⁄ P

8343.8500 M
8398.0000 M
8450.6078 T
8711.1436 T

18434.3000 M
18519.7000 M
18602.6314 T
18950.8047 T

28515.3000 M
28643.0000 M
28767.9472 T
29235.0869 T

38591.6000 M
38771.6000 M
38950.8047 T
39605.5708 T
T�2
h + 2c Ie � p Ie > 0
 D2 P D3
 2 s < D4
 TAP23(T23)
 T23
D4 6 2s 6 D3
 Max{TAP22(T22), TAP23(T23)}
 T22 or T23
D3 < 2s 6 D2
 Max{TAP21(T21) TAP22(W), TAP23(T23)}
 T21 or W or T23
2s > D2
 Max{TAP21(T21), TAP22(W), TAP23(M)}
 T21 or W or M

D2 < D3
 2s < D4
 TAP23(T23)
 T23
D4 6 2s 6 D2
 Max{TAP22(T22), TAP23(T23)}
 T22 or T23
D2 < 2s 6 D3
 TAP22(T22)
 T22
2s > D3
 Max{TAP21(T21), TAP22(W), TAP23(M)}
 T21 or W or M
c2(I � I )/p < h + 2c I � p I 6 0 D P D 2s 6D Max{TAP (W), TAP (T )} W or T
e c e e
 2 3
 3
 22 23 23
 23
D3 < 2s 6 D2
 Max{TAP21(T21), TAP22(W), TAP23(T23)}
 T21 or W or T23
2s > D2
 Max{TAP21(T21), TAP22(W), TAP23(M)}
 T21 or W or M

D2 < D3
 2s 6D2
 Max{TAP22(W), TAP23(T23)}
 W or T23
D2 < 2s 6 D3
 Max{TAP22(W), TAP23(M)}
 W or M

2s > D3
 Max{TAP21(T21), TAP22(W), TAP23(M)}
 T21 or W or M
2
h + 2c Ie � p Ie 6 c (Ie � Ic)/p < 0
 2s 6D2
 Max{TAP22(W), TAP23(T23)}
 W or T23
2s > D2
 Max{TAP22(W), TAP23(M)}
 W or M
Proof. It immediately follows from Lemmas 5, 7 and 8 and the fact that TAP22(M) = TAP23(M).

Once the optimal replenishment cycle time T�2 is obtained, the optimal order quantity per cycle Q � ¼ DT�2 follows. h
5. Numerical examples

In order to illustrate the solution procedure and investigate the effect of changes in some main parameter values on the
optimal solution, some numerical examples are given below.

The supplier offers a permissible delay if the payment is made within 30 days (i.e., M = 1/12 = 0.083333 years). However,
if the payment is not made in full by the end of 30 days, then 15% interest (i.e., Ic = 0.15) is charged per year on the outstand-
ing amount. Suppose D = 2000 units/year, h = $3/unit/year, p = $40, c = $20 and s = $200 per order.

Example 1. If the retailer invests its revenue in the stock market and achieves an Ie = 20% return on investment per year,
given that Ie = 0.2 > Ic = 0.15, from Theorem 1, 2s = 400 > D2 = 154.628, the optimal total profit per unit time for Case 1 is
TAP1(T⁄) = TAP11(T11) = $39605.5708 and the optimal replenishment cycle time T⁄ = T11 = 0.447214 years. Thus, the optimal
payoff time is T⁄ = T11 = 0.447214 years and the optimal order quantity isQ⁄ = D T⁄ = D T11 � 894 units. In this situation, since
the optimal payoff time is equal to the optimal replenishment cycle time, and is larger than the credit period M, the retailer
should not return the total purchase cost to the supplier until the end of the replenishment cycle.
ayoff time

+ U/pD = 0.161118
+ U/pD = 0.158478

11 = 0.195180
11 = 0.223607

+ U/pD = 0.142369
+ U/pD = 0.141302

11 = 0.210819
11 = 0.258199

+ U/pD = 0.128995
+ U/pD = 0.130187

11 = 0.230940
11 = 0.316228

+ U/pD = 0.119187
+ U/pD = 0.123356

11 = 0.258199
11 = 0.447214
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Example 2. In this example, we assume Ie = 5% per year. Since Ie = 0.05 < Ic = 0.15, from Theorem 2, h + 2c Ie � p Ie = 3 > 0,
D2 = 69.5596 < D3 = 167.245 and 2 s = 400 > D3 = 167.245, we get the optimal total profit per unit time for Case 2
TAP2(T⁄) = Max{TAP21(T21), TAP22 (W),TAP23(M)} = Max{38591.6,38468.5,37516.7} = $38591.6, and the optimal replenish-
ment cycle time is T⁄ = T21 = 0.238721 years. Thus, the optimal payoff time is M + U/pD = 0.119187 years and the optimal
order quantity is Q⁄ = D T⁄ = D T21 � 477 units. In this situation, since the optimal payoff time is less than the optimal replen-
ishment cycle time, but is larger than the credit period, the retailer should pay off the entire amount owed to the supplier
after the credit period, but before the end of replenishment cycle.
Example 3. Due to the uncertainties in any decision-making situation, sensitivity analysis will provide significant assistance
in the decision-making process. In this case, sensitivity analysis is performed by changing Ie or p. Using the proposed theo-
rems, the computational results are shown in Table 1.

Table 1 shows that for a fixed p, a higher interest rate value Ie results in a higher value for the optimal total profit per year
TAP⁄. That is, the change in Ie will lead to a positive change in TAP⁄. For a fixed Ie, a higher selling price p results in higher
values for the optimal replenishment cycle time T⁄, the optimal economic order quantity Q⁄ and the optimal total profit per
year TAP⁄. That is, the change in p will cause positive changes in T⁄, Q⁄ and TAP⁄. A simple economic interpretation is that a
higher value of Ie or p implies a higher value of benefit from the permissible delay. In addition, the change in p results in a
positive change in the optimal payoff time if Ic 6 Ie, but a negative change in the optimal payoff time if Ic > Ie. This means that
if the selling price increases, then the retailer should prolong the payoff time when the interest charged per dollar per year is
less than or equal to the interest earned per dollar per year. Conversely, the retailer should shorten the payoff time when the
interest charged per dollar per year is larger than the interest earned per dollar per year.
Example 4. Supposing Ie = 5% per year, the sensitivity analysis is conducted by changing s or p in this example. From The-
orem 2, we obtain the computational results as shown in Table 2.

The computational results show that the change in s causes positive changes in the optimal replenishment cycle time T⁄

and the optimal economic order quantity Q⁄, but a negative change in the optimal total profit per year TAP⁄; i.e., for fixed p, as
s increases, T⁄ and Q⁄ increase, but TAP⁄ decreases. Furthermore, as s is increasing, the optimal payoff time is non-decreasing.
The economic interpretation is that the retailer should order a lower quantity to increase the number of orders and receive
the benefit from the permissible delay if the ordering cost, s, is low. Conversely, the retailer needs to order a greater quantity
to reduce the number of orders if the ordering cost, s, is more expensive. Additionally, for fixed ordering cost s, the change in
selling price p, results in a positive change in the optimal total profit per year (TAP⁄). Furthermore, the optimal payoff time is
non-decreasing when the ordering cost is increasing. Therefore, the retailer may prolong or leave unchanged the payoff time
if the order cost is increasing.
6. Conclusions

In this paper, we assumed that the retailer is allowed a specified credit period to pay back amounts owed without penalty.
Under different financial situations, the retailer can decide to pay off the total amount owed to the supplier at the end of the
permissible delay period, or at the end of the replenishment cycle; alternatively, the retailer requires additional time to pay
Table 2
The optimal solution for different s and p (Ie = 0.05 and Ic = 0.15).

Ordering cost s Selling price p Replenishment cycle T⁄ Order quantity Q⁄ Total profit per year TAP⁄ Payoff time

25 25 T23 = 0.076657 153 9556.4442 M = 0.083333
65 T21 = 0.124157 248 9172.6500 M + U/pD = 0.099152

100 T21 = 0.148179 296 8915.6100 M + U/pD = 0.118369
200 T21 = 0.201615 403 8343.8500 M + U/pD = 0.161118

25 30 T23 = 0.074495 149 19579.2279 M = 0.083333
65 T22 = 0.136323 273 19212.9292 M = 0.083333

100 T22 = 0.169068 338 18983.7141 M = 0.083333
200 T21 = 0.213814 428 18434.3000 M + U/pD = 0.142369

25 35 T23 = 0.072506 145 29602.5316 M = 0.083333
65 T22 = 0.141476 283 29247.6768 M = 0.083333

100 T22 = 0.175456 351 29026.8096 M = 0.083333
200 T21 = 0.226044 452 28515.3000 M + U/pD = 0.128995

25 40 T23 = 0.070670 141 39626.3146 M = 0.083333
65 T22 = 0.147262 295 39283.7913 M = 0.083333

100 T22 = 0.182627 365 39071.5984 M = 0.083333
200 T21 = 0.238721 477 38591.6000 M + U/pD = 0.119187
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off the account after the end of the credit period. In this study, we have developed a retailer’s inventory model and proposed
two theorems that assist the retailer in quickly and precisely determining the optimal replenishment cycle time, order quan-
tity and payoff time for maximizing total profit per unit time. Finally, we provided some numerical examples to illustrate the
solution procedure and investigated the impact of sensitivity analysis on the optimal solution, using various parameters. In
addition, we proposed some economic interpretations.

The proposed model can be extended in several ways. For instance, potential future research includes investigating the
effect of extending the constant demand rate to stochastic fluctuating demand patterns, and taking account of time values.
It should also be possible to generalize the model to allow for shortages, quantity discounts, deteriorating items and other
items. In addition, it may address other policies for trade credit offered by suppliers, such as the cash discount policy. In this
situation, it is suitable to explore the effect of a cash discount on the inventory model.
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Appendix A. Proof of lemma 1

A.1. Proof of part (a)

If 2s P D1, then G11(M) = (2s � D1)/ (2M2) P 0. Due to G11(T) is a strictly decreasing function in T 2 [M,1) and
lim
T!1

G11ðTÞ < 0, from the intermediate value theorem, we can find a unique value T11 2 [M,1) such that G11(T11) = 0. That

is, T11 2 [M,1) is the unique value which satisfies d TAP11(T)/d T = 0.
A.2. Proof of part (b)

If 2s < D1, then G11(M) = (2s � D1)/(2M2) < 0, which implies G11(T) < 0 for all T 2 [M,1). Thus, we cannot find a value
T 2 [M,1) such that G11(T) = 0. That is, the value of T 2 [M,1) which satisfies d TAP11(T)/d T = 0 does not exist.

The proof is completed. h

Appendix B. Proof of lemma 2

B.1. Proof of part (a)

If 2s P D1, then from the proof of Lemma 1(a), we can find a unique value T11 2 [M,1) which satisfies d TAP11(T)/d T = 0.
Furthermore, we have:
d2TAP11ðTÞ=dT2jT¼T11
¼ �2s=T3

11 < 0:
Hence, T11 is the unique value which maximizes the value TAP11(T).
B.2. Proof of part (b)

If 2s < D1, then from the proof of Lemma 1(b), we know that G11(T) < 0 for all T 2 [M,1). Thus, d TAP11(T)/d T = G11(M) < 0,
which implies TAP11(T) is a strictly decreasing function in T 2 [M,1), Therefore, TAP11(T) has a maximum value at the bound-
ary point T = M.

The proof is completed. h
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