-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

Computer Communications 35 (2012) 1809-1818

Contents lists available at SciVerse ScienceDirect computer

[ communications

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Cloud-based image processing system with priority-based data
distribution mechanism

Tin-Yu Wu?, Chi-Yuan Chen®, Ling-Shang Kuo ¢, Wei-Tsong Lee ¢, Han-Chieh Chao >4

2 Institute of Computer Science & Information Engineering, National Ilan University, Taiwan, ROC
b Department of Electrical Engineering, National Dong Hwa University, Taiwan, ROC

¢ Department of Electrical Engineering, Tamkang University, Taiwan, ROC

d Department of Electronic Engineering, National Ilan University, Taiwan, ROC

ARTICLE INFO ABSTRACT

Article history:
Available online 20 July 2012

Most users process short tasks using MapReduce. In other words, most tasks handled by the Map and
Reduce functions require low response time. Currently, quite few users use MapReduce for 2D to 3D
image processing, which is highly complicated and requires long execution time. However, in our opin-
ion, MapReduce is exactly suitable for processing applications of high complexity and high computation.
This paper implements MapReduce on an integrated 2D to 3D multi-user system, in which Map is respon-
sible for image processing procedures of high complexity and high computation, and Reduce is respon-
sible for integrating the intermediate data processed by Map for the final output. Different from short
tasks, when several users compete simultaneously to acquire data from MapReduce for 2D to 3D appli-
cations, data that waits to be processed by Map will be delayed by the current user and Reduce has to
wait until the completion of all Map tasks to generate the final result. Therefore, a novel scheduling
scheme, Dynamic Switch of Reduce Function (DSRF) Algorithm, is proposed in this paper for MapReduce
to switch dynamically to the next task according to the achieved percentage of tasks and reduce the idle
time of Reduce. By using Hadoop to implement our MapReduce platform, we compare the performance of
traditional Hadoop with our proposed scheme. The experimental results reveal that our proposed sched-
uling scheme efficiently enhances MapReduce performance in running 2D to 3D applications.
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1. Introduction of computing procedures. MapReduce mainly include three func-

tions: Master, Map function and Reduce function. The Master peri-

Cloud computing is composed of servers that provide high stor-
age capacity, high flexibility and high-computing performance [1-
5]. Because a cloud computing system has several computing serv-
ers, users are able to execute procedures that require large
amounts of computing resources, process a great deal of data on
the cloud, and complete the tasks by low-cost and low-power de-
vices. To process the procedures requested by users with cloud
computing, users can simultaneously enhance the performance of
the procedures. By using cloud computing for knowledge discovery
and data integration [6,7], Google thus proposed the MapReduce
programming model.

As a distributed parallel computing architecture presented by
Google, MapReduce automatically executes parallel computing
and partitions the data input by the developer. To simply write
Map and Reduce functions, the developer can execute a full set
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odically obtains the status of the servers that run Map and Reduce
functions. The Master next divides the input data equally based on
the number of the Map function and distributes the sub-tasks to
the designated servers. The Map function converts the data desig-
nated by the Master to the intermediate data while the Reduce
function merges the intermediate data processed by the Map func-
tion together and creates the final result.

Derived from an implementation of Google’s MapReduce [8],
Hadoop consists of two chief components: Hadoop MapReduce
and Hadoop Distributed File System (HDFS). Hadoop MapReduce
is a distributed computing platform that includes JobNode, which
is responsible for allocating the developer’s tasks to the TaskNode
and is thus called the Master, and TaskNode, which is responsible
for executing the tasks designated by the JobNode, including the
Map and Reduce functions written by the developer. HDFS mainly
comprises NameNode and DataNode. The DataNodes are responsi-
ble for storing the results completed by the Map and Reduce func-
tions while the NameNode is responsible for establishing the index
stored in the DataNodes and recording the positions of the data
needed for the Map and Reduce functions to execute tasks.
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At present, most applications built on Hadoop are low-complex-
ity and high-density computing, like WordCount, Sort and so on
[9-11]. While running such applications, the Map function can
get the processed result within a very small amount of time and
the Reduce function mainly spends time waiting for the data pro-
cessed by the Map function and integrating the data. However,
using MapReduce to implement high-complexity and high-density
2D to 3D image processing process [12,13] may cost lots of time for
the Map function to analyze images and to convert the images to
intermediate data for the Reduce function to generate 3D images.
This paper implements MapReduce on an integrated 2D to 3D mul-
ti-user system, in which the Map function is responsible for
processing 2D effects, like gray scale [14], sobel [15], Gaussian
blur and corner detection [16], and converting the images to
intermediate data, while the Reduce function is responsible for
integrating the intermediate data generated by the Map function,
using 3D model construction algorithm [17] to construct the
model of the object, and presenting 3D images according to user
requirements.

Traditionally, the Map function converts the images to interme-
diate data so that the Reduce function can combine the images to-
gether for the final output. However, if the computing speed of the
Map function is too slow, the data will not be completed and the
Reduce function has to wait until the data is completed for further
combination. In such a manner, when the computing speed of the
Map function cannot cope with the Reduce function, the tasks of
the Reduce function will be greatly delayed, which moreover in-
creases the operation time.

In this paper, because large amounts of users simultaneously
uses MapReduce for 2D to 3D image processing, we present a solu-
tion to the above-mentioned problem to enhance the performance
of MapReduce in executing 2D to 3D image processing: Dynamic
Switch of Reduce Function (DSRF) algorithm, a scheduling scheme
on the Reduce function for users who compete simultaneously to
acquire Reduce resources to finish the tasks efficiently. With a pri-
ority mechanism, DSRF algorithm allows the Reduce function to
switch to different tasks according to the achieved percentage of
the tasks. In other words, when a combination task is not finished
and the Reduce function is waiting for the Map function to gener-
ate intermediate data, the Reduce function can switch to another
task to combine the image data first. For example, when the data
needed for the first task is not completed yet but the image data
of the second combination task is ready, the Reduce function pro-
cesses the second task first. After finishing the second combination
task, supposing the image data of the first and the third tasks is
both ready, the Reduce function processes the first task according
to the priority values. With our proposed scheme, the time spent
waiting for data can efficiently utilized by the Reduce function
and the delayed tasks also can be decreased to enhance the perfor-
mance of MapReduce in 2D to 3D image processing.

The rest of the paper is organized as follows. Section 2 intro-
duces the background and Section 3 presents our proposed system
architecture and DSRF algorithm. Section 4 includes the implemen-
tation and performance analysis awhile Section concludes this
paper.

2. Background
2.1. MapReduce

Proposed by Google, MapReduce is a distributed parallel com-
puting architecture designed for processing large amounts of
intensive data and its storage system is Google File System (GFS).
For users to process large amounts of data while searching for data
by the Google search engine, Google MapReduce provides a simple

programming interface for the developer to develop search engine
and processing searching procedures. MapReduce is composed of
three major components: Master, Map function and Reduce func-
tion. The Master is responsible for managing the back-end Map
and Reduce functions and offering data and procedures to them.
The Map function converts the data to intermediate data so that
the Reduce function can combine the intermediate data together
to obtain the final output.

Whenever the data is received and processed by the Map and
Reduce functions, there will be a record that includes a key and a
value. The key generated by the input processed by the Map func-
tion refers to the correlation between the data while the value on
the other hand means the processed message. When a task is di-
vided into several small tasks and handled by the Map function,
their correlations are not marked especially. But, one or several re-
cords are generated, including the key and the value, after the Map
function finishes processing the designated data. According to the
key produced by the Map function, the Reduce function collects the
data with the same key together and generates a value to form a
new set of key/value.

As shown in Fig. 1, the input file is cut into M chunks before the
MapReduce operation and the file size of each chunk ranges be-
tween 16 MB to 64 MB. The file chunks are copied to the file sys-
tem and one of the chunks is especially designated to the Master
to find the suitable idle server as the computing server. Next, after
the Master determines the servers responsible for the Map and Re-
duce functions, M Map functions and R Reduce functions are des-
ignated to the servers. According to the key/value of the input
data, servers responsible for the Map function deliver the pro-
cessed data to the developer’s Map function and store the Map re-
sult in the file system. The intermediate data output by the Map
function is cut into R pieces and their locations are returned to
the Master. Once receiving the locations of the data processed by
the Map function from the Master, servers responsible for the Re-
duce function read the data remotely, sort the keys and group the
values with the same key. The Reduce function calculates the
number of the single key and forwards the data to the developer’s
Reduce function to generate the final output. After the data is
completely processed, the Master notifies users to access the
result.

Because of the high-speed network and a storage system that
can store a large volume of data, MapReduce allows most search
engines to operate. The hardware of MapReduce belongs to an
open-source operating system and is controlled and maintained
by managers to reduce not only the cost of purchasing and main-
taining equipments but also the cost of developing MapReduce.
Different from centralized RAID-based SAN and NAS storage
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Fig. 1. MapReduce framework.
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systems, the GFS of MapReduce belongs to RAIN (Redundant Arrays
of Independent Nodes) architecture [18]. Every MapReduce node
has its local storage space, each of which is combined with one an-
other by the network to form a virtual storage system. Thus, the
storage space of the file system can be easily expanded by adding
the nodes. During the process of adding nodes, MapReduce contin-
ues to work and the task will not be terminated. Owing to its high
scalability, the Map and Reduce functions can be executed on thou-
sands of and even more nodes. However, the nodes’ hardware is
not exactly the same and thus some nodes cannot present stable
performance and might be out of order at any time. By using sim-
ple mechanisms to replicate data and perform the backup, GFS and
MapReduce can maintain the operation. To repair the damaged
nodes, the manager removes the damaged ones and repair the
hardware. New nodes can join in the computing cluster any time
and the Master takes charge of controlling the operation and per-
forming the backup.

2.2. Hadoop

Because Google proposed the concept of MapReduce without
presenting the MapRedcue platform, Apache Software Foundation
therefore developed Hadoop, a software framework to implement
the MapReduce programming model. Written in the Java language,
Hadoop allows users to process and compute large amounts of
data. In addition, similar to Google’s GFS, Hadoop provides a file-
system called HDFS (Hadoop Distributed File System).

2.2.1. Hadoop MapReduce

In Hadoop MapReduce, the Map and Reduce functions are inter-
linked and coexist. In Fig. 2, when a program processes the data,
like Google’s MapReduce, the Master divides the data and distrib-
utes the small tasks to the servers responsible for the Map function
written by the developer. After the data is processed completely,
the Map function stores the data into one or more key/value pairs
for the Reduce function to identify and process, namely the inter-
mediate data. Next, the Master transmits the storage locations of
the intermediate data to the Reduce function to find out the data
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Fig. 2. Hadoop MapReduce framework.

to be integrated, create one or more new key/value pairs, and re-
port back to the Master the completion of the task. Finally, the
Master notifies users to access the result from the file system.
The Master spontaneously designates different nodes to take
charge of the Map and Reduce functions: JobNode and TaskNode,
respectively.

As the manager in Hadoop MapReduce, the JobNode is respon-
sible for allocating the tasks to the computing servers. As men-
tioned previously, the Master designates the tasks according to
server status and the task designation is exactly the responsibility
of the JobNode. When the JobNode is informed of the MapReduce
function to be execute, the JobNode allocates the tasks based on
the operation status reported regularly by the servers.

As the executor in Hadoop MapReduce, the TaskNode is respon-
sible for executing the tasks designated by the JobNode. During the
task execution process, the TaskNode continues to report its oper-
ation status. Supposing the TaskNode is damaged, the JobNode re-
ceives the message and find another idle server to run the task
originally executed by the TaskNode.

2.2.2. HDFS

HDFS, Hadoop Distributed File System, is designed to integrate
distributed storage resources into a file storage system with high
fault-tolerance, high performance and mass storage volume. In Ha-
doop, massive amounts of data and files generated during the com-
putation are stored in this file system. Although HDFS can only
process files using HDFS shell, Hadoop series systems, like MapRe-
duce, can integrate with HDFS and use HDFS for data storage and
backup. Like MapReduce, HDFS chiefly comprises NameNode and
DataNode, each of which is defined below.

The NameNode, the file manager in HFDS, is responsible for
managing and storing the attributes and permission of the files
in the system. Because the NameNode does not store files, it noti-
fies MapReduce of the storage locations and permission of the files
when MapReduce demands the files.

In HDFS, the DataNodes are responsible for storing files. After a
file is split into many blocks, each block is copied to a DataNode
and the duplicate of the blocks are also stored by other DataNodes
to ensure the completeness of the data in the system when any of
the DataNodes is broken. Moreover, the DataNodes inform the
NameNode of the files’ storage locations so that the NameNode
can offer correct information to MapReduce.

2.3. Image processing procedures

Fig. 3 displays the flowchart of model reconstruction. To process
two images, we first use Harris corner detector [16] to calculate the
interest points, complete the matching by sum of absolute differ-
ence (SAD), and label the matched interest points. Next, we find
out the thresholds of data, which is processed by Sobel marginali-
zation and Gaussian Blur. Because of the intense edge information
of the data after edge binarization, the relationship among the
interest points can be figured out.

2.3.1. Harris corner detector

Common corner detection methods include Harris, Susan,
Zheng and Harr. Among these methods, Harris corner detector is
utilized most often because of its higher accuracy compared with
other existing corner detection methods. Based on the points of
interest proposed by Moravec in 1977 [2], Harris corner detector
was proposed with the attempt to modify the problem of Moravec
algorithm that the corner might be located at the edge. Before
introducing Harris algorithm, we first introduce Moravec corner
detection algorithm briefly.

A square mask with point P as the center is established. Suppos-
ing V, the gray variation of the mask, is higher than the defined
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Fig. 3. Flowchart of model reconstruction.

Fig. 4. Moravec corner detection.

threshold, point P is defined as the corner (Fig. 4(a)). Moravec algo-
rithm can be expressed by mathematical function as

2
Exy = ZW(u.v)“(xw‘eru) =Ty, (1)
uv

where w refers to the image window, which means to retrieve only
the data inside of the mask during the search. Data outside of the
mask does not influence the computing result. I, symbolizes
the gray level of location (u, v). However, this method often leads
to misjudgments because of higher gray variation occurred at the
edge of the object (Fig. 4(b)), or caused by noises (Fig. 4(c)). More-
over, it is very difficult to establish the threshold in a complicated
environment.

To solve the problems of Moravec: the difficulty in establishing
the thresholds, the misjudgment in determining the object’s edges,
and the inability to recognize the corners after rotating the object,
Chris Harris and Mike Stephens proposed Harris corner detection
algorithm in 1988.

2.3.2. Sum of absolute difference (SAD)

To subtract pixels of two image blocks, SAD can measure the
similarity between image blocks. The lower SAD value means the
higher similarity of the two blocks. SAD can be expressed by the
mathematical function as

SAD = ) |A(Xa) — B(xa)l, (2)

Xa€Qp

where A and B stand for the two images to be judged, and Qs
means that there are N pixels of A and B in the overlap area. Thus,
we use SAD to judge the relationship of interest points detected
by Harris corner detection method, and label the corresponding
points for computers to judge the corresponding locations of inter-
est points after rotating an object. With the relationship of the cor-
ners, we can use interpolation to judge the location of the corner
while being photographed to simulate the object rotation.

2.3.3. Model reconstruction

With the simulated corner location only, it is impossible to
judge the shape of an object in human vision. Therefore, the next
step is to reconstruct the edge relations between corners.

By binarizing the image processed by Sobel marginalization and
Gaussian Blur, we can get the intense edge information with low
noises to determine whether the two points have edge relations.
To define the average brightness of two points as B, the distance
as L, a random point between two points as P, we can get the math-
ematical function as

L

B= Zp(n*dx.n*dyh (3)
n=1
where
S St
and
dy = 5% (5)

When B is higher than the defined threshold, it can be determined
that the two points have edge relations.

3. DSRF (Dynamic Switch of Reduce Function) algorithm
3.1. MapReduce runtime system with 2D to 3D application

First, a Master is established in the server cluster to acquire the
operation status of all servers and the Map and Reduce functions
written by the developer for 2D to 3D application are offered to
the Master. To connect all servers via the network, the Master
accesses the resources of all servers’ HDFS and the current opera-
tion status of Map and Reduce, and allocates the Map and Reduce
functions to designated servers. In other words, the Master masters
the resources and status (idle or working) of all servers. Because
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the Master’'s NameNode owns the storage locations of the data
stored in HDFS, the Master is responsible for notifying the comput-
ing servers of the locations of the data needed to execute Map and
Reduce functions. By communicating with the Master, the devel-
oper can know the operation status of all servers and the data in
the servers, choose the maximum limit of designated servers,
and easily allocate the Map and Reduce function to the servers.

2D to 3D application is divided and handled separately by the
Map function and Reduce function. In Fig. 5, the Map function gives
service to object cameras and provides the intermediate data for
the Reduce function. The Map process includes grayscale, sobel,
Gaussian blur and corner detection. Through the four image pro-
cessing procedures, we can get the positions of the corners and
the brightness of the original images from two cameras. In this pa-
per, four image processing algorithms are moreover written into
the Map function for the Master to allocate. Next, the Reduce func-
tion accesses the Map function to get the image data to be pro-
cessed and creates the final output by SAD matching and 3D
graphing. The Reduce function includes SAD matching, labeling
and model reconstruction. The Reduce function combines the data
of two images, like the positions of the corner and motion vector,
etc., and simulates the graphs of all angular vector by model recon-
struction. Finally, through wireless network, the output is sent
back to the terminal devices of MapReduce for parameter adjust-
ments, and users are able to access the needed angles of vision
by HDFS and display the images by terminal devices.

3.2. DSRF algorithm

As shown in Fig. 6 and Algorithm 1, we use Hadoop to establish
the computing environment, which includes MapReduce and
HDFS. The mechanism of MapReduce is that the developer adapts
the 2D to 3D application to a framework of Map and Reduce func-
tions and puts the framework in the Master server. Thus, before
executing MapReduce, the developer can allocate the functions to
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the TaskNodes through the JobNode in the Master without spend-
ing additional time allocating Map and Reduce functions. The im-
age data obtained by the monitors are stored in key/value pairs
and replicated to the DataNodes of Hadoop HDFS. After the Data-
Nodes store the images, the locations of the images will be sent
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to the NameNode in the Master. Since the back-end servers period-
ically send their busy status to the Master, the Master receives the
commands, searches for idle servers, and designates the Map and
Reduce functions to servers by the JobNode. The Master moreover
finds out the locations of the data needed to execute functions by
the NameNode and informs the servers responsible for Map and
Reduce functions to access. After the Map function receives the im-
age data and finishes processing, the output framework will be the
intermediate data in key/value pairs for the Reduce function to rec-
ognize. The intermediate data output by the Map function is stored
in HDFS and its location is recorded by the Master. Thus, when the
Reduce function gets ready to execute a combination task, the
Master informs the servers responsible for the Reduce function of
the location of the intermediate data. Once the data is completed,
the Reduce starts the combination task and stores the result in key/
value pairs in HDFS when the task is accomplished.

Algorithm 1: DSRF

. Initialize image process;

. Write Map-Reduce structure;

. Set server to handle Map or Reduce;

. Write image into HDFS of Hadoop;

. Repeat image process until image data processed;

. Set Map-Reduce and data into Map layer cutting by
managers;

. When Map complete it’s task;

Sent Map output data to Reduce;

If Reduce task cannot get all data from Maps

0. Set priority value to the task and put it into Reduce
wait queue;

11. Detect the priority of task which have all data are in

the Reduce process queue;

12. Operate the higher priority task which have all data;

13. Otherwise

14. Reduce sent the Reduce output data to clients.

AU WN =

= © 0w~

Because the Map and Reduce functions spend longer time pro-
cessing images, the Reduce function may need extra time waiting
for the data to be written into HDFS. Supposing the Reduce func-
tion is ready to begin a combination task but cannot attain the full
intermediate data of the Map function from HDFS, the Reduce
function has to wait until all intermediate data needed has been
written into HDFS to begin the task, which wastes much more time
in processing a combination task. For this reason, our DSRF (Dy-
namic Switch of Reduce Function) algorithm proposes to process
the rest intermediate data first while the Reduce function is wait-
ing for the intermediate data. Our DSRF algorithm adds a schedul-
ing mechanism to the Reduce function and prioritizes the
combination tasks to be executed. When the intermediate data
needed for the first combination task is not fully written into HDFS,
the Reduce function switches to the second combination task with
complete intermediate data. After finishing the second combina-
tion task, if the intermediate data of the first task is ready, the Re-
duce function returns to the first task, writes the task result to
HDFS and completes the task.

3.3. DSRF algorithm working principle

The Master notifies the servers responsible for the Map function
of the locations of the images needed for the Map function. The
Map function next accesses the locations, obtains the images to
be processed, and processes four procedures: grayscale, sobel,
Gaussian blur and corner detection. After the corner detection is
completed, the Map function converts the image data to the inter-

mediate data for the Reduce function to execute and informs the
Master that the task has been completed. According to the Master’s
notification, the Reduce function reads the intermediate data for
the combination tasks. DSRF algorithm in the Reduce function des-
ignates different priority values to different combination tasks
based on their arrival time. The earlier combinations tasks have
higher priority values and vice versa. Supposing the data needed
for the earlier tasks is not ready yet, DSRF algorithm first switches
to other combination tasks with full image data. After the Reduce
function finishes the current combination task, DSRF algorithm
asks the Reduce function to process the combination task with
higher priority value and full image data. Finally, the image data
completed is written to HDFS and offered to users.

For example, as displayed in Fig. 7, the Reduce function is ready
to process the first combination task but split1-5 of the first task is
not stored in HDFS yet, which means that the Reduce function does
not have the full data for the first combination task. At the same
time, the data for the second combination task is ready. In such a
manner, the Reduce function chooses to execute the second com-
bination task while waiting for split1-5. After the second combina-
tion task is finished and the data for the third and the first
combination tasks is both ready, the Reduce function chooses to
process the first task according to priority values. By such a sched-
uling mechanism, our proposed method allows the Reduce func-
tion to utilize the time waiting for data, to first process the
combination tasks with full data chunks, and to return to the ear-
lier tasks based on priority values. The following implementation
will prove that our proposed DSRF algorithm and scheduling mech-
anism can enhance the system performance.

4. Implementation
4.1. Implementation environment

This section implements our DSRF algorithm in Hadoop MapRe-
duce and Fig. 8 presents the implementation environment. This pa-
per uses the Ubuntu 10.04 as the OS to run Hadoop and adopts
Hadoop 0.20.2. Because Hadoop MapReduce is written in the Java
language, we use Eclipse IDE to write the Map and Reduce func-
tions. There are totally four servers in the implementation: two
for the Map function and the other two for the Reduce function.
The four servers are connected by the cable lines with a rate of
one gigabit per second. Next, we aim to analyze the influence of
user number and the number of Map and Reduce functions to
the total time and compare the results with traditional Hadoop.

Left view and right view in Fig. 9 are the images that the Map
function will process and convert to a 3D model by image process-
ing procedures. In other words, with the image data of left view
and right view, like corners and angles, we can simulate all angles
from left view to right view and display the 3D images on terminal
devices. The lower models in Fig. 9 are simulated by MapReduce.
Thus, through the touch pads of terminal devices, users can view
the simulated 3D images at different angles.

4.2. Performance analysis and evaluation

This section makes a comparison of MapReduce with DSRF algo-
rithm and traditional Hadoop in processing 2D to 3D application.
Fig. 10 shows the influence of user number to the total computing
time in our proposed DSRF algorithm and traditional Hadoop. The
horizontal axis means the increasing user number while the verti-
cal axis means the total time for the MapReduce operation. The fig-
ure reveals that before the user number reaches 70, DSRF
algorithm obviously accelerates the MapReduce operation effi-
ciently and outperforms traditional Hadoop because our proposed
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DSRF algorithm can switch to the combination task that needs to
be processed first. The ideal state is that the total time of our DSRF
algorithm is times faster than traditional MapReduce. However,
when the user number exceeds 70, since it takes time to switch
tasks and the delay keeps increasing, our DSRF algorithm spends
large amounts of time switching and processing tasks while tradi-
tional Hadoop waits for the tasks to be completed, which omits the
overhead in switching. Thus, in this implementation environment,
when the user number exceeds 70, the user number for our DRSF
algorithm to switch soon reaches the saturation point and tradi-
tional MapReduce will perform better than our method.

Fig. 11 displays the influence of user number to switch times of
DSRF algorithm under the ideal state and in DSRF algorithm. The

horizontal axis means the increasing user number while the verti-
cal axis means the switch times of DSRF algorithm. The figure
shows that the switch times of DSRF algorithm increases with
the user number, also. The ideal state presents the ideal average
switch times. When the user number is 10, the average switch
times is 2 to 3. When the user number reaches 20, the ideal average
switch times is 5. Fig. 11 moreover reveals that to process 2D to 3D
application by our proposed MapReduce, the switch times fall near
the ideal state when the user number is under 70. Nevertheless,
when the user number exceeds 70, the bandwidth is not enough
to serve so many users and the switch times gradually deviates
from the ideal state.

Fig. 12 shows how the delay time of the combination task
develops if the user number increases. When the Reduce function
is going to process a combination task but the data is not complete,
the Reduce function has to switch to other tasks, which increases
not only switch times but also extra time in switching tasks. The
figure reveals that the delay time of the system increases with
the switch times. Thus, unavoidable switch times will be the prob-
lem to be solved in our scheduling mechanism in the future.

Fig. 13 shows how the throughput of the Reduce function in-
creases or reduces with the user number when the system runs
for 500s. When the number of tasks handled by the Reduce func-
tion increases, the upcoming tasks will be delayed because the data
of the former tasks is not fully collected yet. On the other hand,
when the tasks must be processed by the Reduce function, too long
switching time of DSRF may postpone the execution time. In such a
manner, traditional Hadoop will first finish the previous task and
then the next combination task. Therefore, the delay of traditional
Hadoop exceeds the delay of our proposed DSRF algorithm under
certain situations. Fig. 13 reveals that when the user number is
10, 20 or 30, the performance of Hadoop Native and DSRF algo-
rithm is approximately the same. When the user number keeps
increasing, the throughput within 500 s gradually reduces with
the increase of switch times. However, when the user number
exceeds 70, the delay due to the scheduler worsens the perfor-



1816 T.-Y. Wu et al./ Computer Communications 35 (2012) 1809-1818
Left View Right View
Simulation
Perspective
Fig. 9. Input images and simulated images.
1800 60
1600 |
50 |
1400 3
£
= =
[$) L
3 1200 5 40}
£ 1000 a
[ o3 0
© | = 30}
5 800 g
g
600
= 20t
T
400 ®
=]
—— DSRF Algorithm 10}
200 —&— Traditional - —<— Delay Time of DSRF
—+8&— Switch Times of DSRF
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 2 4 7 O 1 1 1 1 1 1 1
0 0 %0 0 U SON b 60 0 80 0 10 20 30 40 50 60 70 80 90
ser Number User Number
Fig. 10. The influence of user number to the total time. Fig. 12. The influcence of user number to delay time and switch times of a
combination task.
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mance of DRSF algorithm and the throughput of DSRF algorithm
gradually gets lower than Hadoop native.

251 Fig. 14 displays the average waiting time of each user when the
user number increases. The waiting time means the time from the

0l user requests the image to the user receives the image. In the fig-

Switch Times
>

—<— DSRF Algorithm
—=&— |deal State

Fig. 11
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User Number

. The influence of user number to switch times of DSRF algorithm.

ure, when the user number exceeds 60, our proposed DSRF algo-
rithm uses most of the waiting time in switching tasks.
Nevertheless, the figure further shows that when the user number
is under 70, the waiting time of our DSRF algorithm is obviously
less than traditional Hadoop MapReduce.

Fig. 15 compares the maximal queue number of traditional Ha-
doop MapReduce and our proposed DSRF algorithm when the user
number is 40. The figure shows that with less user number, the
queue number of Hadoop Native and DSRF algorithm is very close.
Thus, we can know that Hadoop Native and DSRF algorithm result
to similar system stability but DSRF in fact performs better.

Fig. 16 compares the maximal queue number when the user
number is 80. Our proposed DSRF algorithm is able to maintain
the queue number within a stable range. However, with the
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increase of user number, Hadoop Native results to severe vibration
of the maximal queue number. Therefore, it reveals that traditional
Hadoop Native is not as stable as DSRF algorithm.

5. Conclusion

MapReduce is presented to process vast amounts of data and to
return the result to users within the minimum time. Most users
use MapReduce to handle applications of higher speed and lower
computing complexity. In this paper, we implement MapReduce
on an integrated 2D to 3D multi-user system, in which the Map
function is responsible for image processing procedures with high
complexity and high computation and the Reduce function is
responsible for combining the intermediate data processed by
the Map function and creating the final output. Applications of
high complexity and high computation will prolong the execution
of the Map function and delay the following tasks. Thus, this paper
presents a DSRF (Dynamic Switch of Reduce Function) algorithm to
switch to different tasks dynamically according to the achieved
percentage of tasks. When the waiting time increases with the user
number, our DSRF algorithm allows the Reduce function to utilize
the waiting time in computing other tasks. In this way, not only the
waiting time and the computing time can be reduced, but also
users can get the image results quickly and the MapReduce system
can reach higher performance. Our future target is to include more
quality schemes, like QoE and QoS, so that better quality can be
guaranteed in the cloud infrastructure to enhance cloud-based
transmissions.
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