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Abstract. We prove uniqueness theorems for so-called half inverse spectral
problem (and also for some its modification) for second order differential
pencils on a finite interval with Robin boundary conditions. Using the
obtained result we show that for unique determination of the pencil it is
sufficient to specify the nodal points only on a part of the interval slightly
exceeding its half.
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1. Introduction

Consider the differential pencil L = L(q0(x), q1(x), h,H) of the form

y′′ + (ρ2 − 2ρq1(x) − q0(x))y = 0, 0 < x < 1, (1)
U(y) := y′(0) − hy(0) = 0, V (y) := y′(1) +Hy(1) = 0, (2)

where ρ is a spectral parameter, qj(x) ∈ W j
1 [0, 1] are complex-valued func-

tions, h, H ∈ C. Differential equations with a nonlinear dependence on the
spectral parameter frequently appear in mathematics as well as in applica-
tions (see [1–5]). We study inverse spectral and inverse nodal problems for
differential pencil (1), (2) and establish a connection between them. Inverse
spectral problems consist in recovering operators from given their spectral
characteristics. Such problems play an important role in mathematics and
have many applications in natural sciences and engineering (see [6–11, and
the references therein]). Some aspects of inverse spectral problems for second
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order differential pencils were studied in [12–15] and other papers. In partic-
ular, in [15] it is proved that L is uniquely determined by specifying its Weyl
function, which is equivalent to specification of the spectra of two boundary
value problems for equation (1) with one common boundary condition. Inverse
nodal problems, in turn, consist in constructing operators from given nodes
(zeros) of their eigenfunctions (refer to [16–27]). From the physical point of
view this corresponds to finding, e.g., the density of a string or a beam from
the zero-amplitude positions of their eigenvibrations. In [25,26] inverse nodal
problems were studied for equation (1) in the case of real coefficients, where
it was proved in particular that the pencil L is determined uniquely by spec-
ifying a dense set of nodal points, provided that the mean value of q1(x) is
known a priori and q1(x) �= const. Otherwise we have a two-parametric set of
pencils L(q0(x) + C0, C1, h,H) possessing the same nodal points for all con-
stants C0 and C1. In [27] an inverse nodal problem was studied for second
order differential pencils on a star-shaped graph.

In the first part of the paper we study so-called half inverse spectral prob-
lem for the pencil L, which consists in recovering the coefficients of (1), (2)
from its spectrum {ρn}, provided that they are known a priori on one half of
the segment [0, 1], and prove the uniqueness of its solution. We note that in
[28] a half inverse spectral problem for L was considered under an excessive
assumption that q1(x) is known on the whole segment. An analogous problem
for the Sturm–Liouville operator (q1(x) ≡ 0) was investigated in [29–33] and
other works. We also show that the lack of an arbitrary finite number of given
eigenvalues can be compensated by specifying the functions q0(x), q1(x) on an
interval (0, a) for any a > 1/2. Further, using this fact and developing the idea
of the works [22,24] we prove that for unique determination of L it is sufficient
to specify the nodal points only on (0, a), a > 1/2, together with the mean
values of the functions q0(x), q1(x).

The paper is organized as follows. In the next section we prove uniqueness
theorems for the incomplete inverse spectral problem. For the convenience of
the reader in Sect. 3 some known results related to the inverse nodal problem
for L are provided. In Sect. 4 we obtain additional properties of nodal points
and prove a uniqueness theorem of the incomplete inverse nodal problem. The
main results of the paper are contained in Theorems 1, 2, 6.

2. Incomplete Inverse Spectral Problems

Let the functions ϕ(x, ρ), ψ(x, ρ), S(x, ρ) and Φ(x, ρ) be solutions of equation
(1) under the conditions

ϕ(0, ρ) = ψ(1, ρ) = S′(0, ρ) = U(Φ) = 1,
U(ϕ) = V (ψ) = S(0, ρ) = V (Φ) = 0.
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The functions Φ(x, ρ) and M(ρ) := Φ(0, ρ) are called respectively the Weyl
solution and the Weyl function of the pencil L. For each fixed x ∈ [0, 1] the
functions ϕ(x, ρ), ψ(x, ρ), S(x, ρ) together with their derivatives with respect to
x are entire in ρ. The eigenvalues ρn of L with account of multiplicity coincide
with the zeros of its characteristic function Δ(ρ) := 〈ψ(x, ρ), ϕ(x, ρ)〉, where
〈y, z〉 := yz′ − y′z. Clearly Δ(ρ) = V (ϕ) = −U(ψ). The function Δ0(ρ) :=
ψ(0, ρ) is a characteristic function of the boundary value problem for equation
(1) with the boundary conditions

y(0) = V (y) = 0. (3)

Let {ρ0
n} be the spectrum of (1), (3). We have

Φ(x, ρ) = −ψ(x, ρ)
Δ(ρ)

= S(x, ρ) +M(ρ)ϕ(x, ρ), M(ρ) = −Δ0(ρ)
Δ(ρ)

.

Clearly, {ρn}∩{ρ0
n} = ∅. Thus, M(ρ) is a meromorphic function with the poles

ρn and the zeros ρ0
n. It is convenient to index eigenvalues ρn with account of

multiplicity by n = ±0,±1,±2, . . . . Then (see, e.g., [12]) {ρn} have the form

ρn = πn+ ω0 +
ω1

πn
+ o

(
1
n

)
, |n| → ∞, (4)

where

ω0 = Q(1), Q(x) =

x∫
0

q1(t) dt, ω1 = h+H +
1
2

π∫
0

(q0(t) + q21(t)) dt.

Denote by mn the multiplicity of ρn. By virtue of (4) for sufficiently large |n|
we have mn = 1.

Using the known method (see, e.g., [10]) one can prove the following
auxiliary assertion.

Lemma 1. (i) For |ρ| → ∞ the following asymptotics holds:

ψ(x, ρ) = cos(ρ (1 − x) − ω0 +Q(x)) +O

(
1
ρ

exp(|Imρ|(1 − x))
)
,

(5)

ψ′(x, ρ) = ρ sin(ρ(1 − x) − ω0 +Q(x)) +O(exp(|Imρ|(1 − x))) (6)

uniformly with respect to x ∈ [0, 1].
(ii) Fix δ > 0. Then for sufficiently large |ρ|

|Δ(ρ)| ≥ Cδ|ρ| exp(|Imρ|), ρ ∈ Gδ, (7)

where Gδ = {ρ : |ρ− πn− ω0| ≥ δ, n ∈ Z}.
Consider the following inverse problem.

Inverse Problem 1. Given the spectrum {ρn} of L = L(q0(x), q1(x), h,H),
find L, provided that the value h and the functions q0(x), q1(x) on (0, 1/2)
are known a priori.
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Here and below together with L we consider a pencil L̃ of the same form
but with other coefficients q̃j(x), h̃, H̃. We agree that if a certain symbol α
denotes an object related to L then the same symbol with the tilde α̃ denotes
the analogous object related to L̃, and α̂ = α − α̃. The following uniqueness
theorem holds.

Theorem 1. Let h = h̃, qj(x)
a.e.= q̃j(x) on (0, 1/2), j = 0, 1. If {ρn} = {ρ̃n},

then L = L̃, i.e. q0(x)
a.e.= q̃0(x), q1(x) = q̃1(x) on [0, 1] and H = H̃. Thus,

the specification of the spectrum {ρn} uniquely determines L, provided that (1)
and (2) are known a priori on one half of the segment [0, 1].

Proof. Let Φ0(x, ρ) be a solution of equation (1) under the boundary condi-
tions

Φ0(0, ρ) = 1, V (Φ0) = 0.

The functions Φ0(x, ρ), M0(ρ) := U(Φ0(x, ρ)) are called respectively the Weyl
solution and the Weyl function of the boundary value problem (1), (3). Obvi-
ously,

Φ0(x, ρ) =
ψ(x, ρ)
ψ(0, ρ)

= ϕ(x, ρ) +M0(ρ)S(x, ρ),

M0(ρ) =
U(ψ(x, ρ))
ψ(0, ρ)

= − Δ(ρ)
Δ0(ρ)

=
1

M(ρ)
.

(8)

Fix a ∈ (0, 1) and consider the boundary value problem

y′′ + (ρ2 − 2ρq1(x) − q0(x))y = 0, a < x < 1, y(a) = V (y) = 0. (9)

Let Φa(x, ρ),Ma(ρ) be respectively the Weyl solution and the Weyl function
of (9), i.e. Φa(x, ρ) is a solution of the differential equation in (9) under the
conditions Φa(a, ρ) = 1, V (Φa) = 0 and Ma(ρ) = Φ′

a(a, ρ). By virtue of the
uniqueness theorem in [15] the specification of Ma(ρ) uniquely determines
qj(x), j = 0, 1, on (a, 1) and H. Thus, it is sufficient to prove that M̂ 1

2
(ρ) ≡ 0.

We have

Φa(x, ρ) =
ψ(x, ρ)
ψ(a, ρ)

, Ma(ρ) =
ψ′(a, ρ)
ψ(a, ρ)

, M̂a(ρ) =
da(ρ)

ψ(a, ρ)ψ̃(a, ρ)
, (10)

where da(ρ) = 〈ψ̃(x, ρ), ψ(x, ρ)〉|x=a, and according to (8) we arrive at

da(ρ)
ψ(0, ρ)ψ̃(0, ρ)

= 〈Φ̃0(x, ρ),Φ0(x, ρ)〉|x=a.

Moreover, for all n and ν = 0,mn − 1 (8) gives

dν

dρν

da(ρ)
ψ(0, ρ)ψ̃(0, ρ)

∣∣∣∣
ρ=ρn

=
dν

dρν
〈ϕ̃(x, ρ), ϕ(x, ρ)〉

∣∣∣∣
x=a, ρ=ρn

= 0, a ∈ [0, 1/2],
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since under the conditions of the theorem we have ϕ(x, ρ) = ϕ̃(x, ρ) for x ∈
[0, 1/2]. Hence

d(ν)
a (ρn) = 0, ν = 0,mn − 1, n = ±0,±1, . . . , a ∈ [0, 1/2]. (11)

Moreover, (5), (6) give

da(ρ) = ρ sin(Q̂(a) − ω̂0) +O(exp(2|Imρ|(1 − a))), |ρ| → ∞,

where Q̂(a) = 0 for a ∈ [0, 1/2] because q̂1(x) = 0 on [0, 1/2]. According to
(4) the specification of the spectrum {ρn} determines ω0 up to a constant πk,
where k ∈ Z. Thus, under the conditions of the theorem we have ω̂0 = πk, and
hence

da(ρ) = O(exp(2|Imρ|(1 − a))), |ρ| → ∞, a ∈ [0, 1/2]. (12)

Consider the function

θ(ρ) =
d 1

2
(ρ)

Δ(ρ)
,

which by virtue of (11) is entire in ρ. On the other hand, according to (7), (12)
we have

θ(ρ) = O

(
1
ρ

)
, |ρ| → ∞, ρ ∈ Gδ.

Using the maximum modulus principle together with Liouville’s theorem we
arrive at θ(ρ) ≡ 0. Consequently, d 1

2
(ρ) ≡ 0 and according to (10) we obtain

M 1
2
(ρ) = M̃ 1

2
(ρ). �

Below in Sect. 4 the following modification of Theorem 1 will be used.

Theorem 2. Fix arbitrary ε > 0 and N ∈ N. Let h = h̃, qj(x)
a.e.= q̃j(x) on

(0, 1/2 + ε), j = 0, 1. If {ρn}|n|≥N = {ρ̃n}|n|≥N , then L = L̃, i.e. q0(x)
a.e.=

q̃0(x), q1(x) = q̃1(x) on [0, 1] and H = H̃. Thus, the specification of the spec-
trum with exception of any finite subset uniquely determines L, provided that
the number h and the functions q0(x), q1(x) on (0, 1/2+ε) are known a priori.

Proof. Using the same arguments as in the proof of Theorem 1 we obtain

d
(ν)
1
2+ε

(ρn) = 0, ν = 0,mn − 1, |n| ≥ N, (13)

d 1
2+ε(ρ) = O(exp(|Imρ|(1 − 2ε))), |ρ| → ∞. (14)

Consider the function

θ1(ρ) =
d 1

2+ε(ρ)

Δ(ρ)

N−1∏
n=0

(ρ− ρ−n)(ρ− ρ+n),

which by virtue of (13) is entire in ρ. According to (7), (14) we have

θ1(ρ) = O(ρ2N−1 exp(−2ε|Imρ|)), |ρ| → ∞, ρ ∈ Gδ.
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Phragmen–Lindelöf’s and Liouville’s theorems infer θ1(ρ) ≡ 0. Therefore
M 1

2+ε(ρ) = M̃ 1
2+ε(ρ) and consequently q0(x)

a.e.= q̃0(x), q1(x) = q̃1(x) on
[1/2 + ε, 1] and H = H̃. �

3. Inverse Nodal Problem

In this section we provide auxiliary results on an inverse nodal problem for
the pencil L (see [25,26]). Here and in the next section we assume that its
coefficients q0(x), q1(x), h,H are real, then for sufficiently large |n| the eigen-
functions ϕ(x, ρn) are real too.

Theorem 3. For sufficiently large |n| the eigenfunction ϕ(x, ρn) has exactly |n|
zeros xj

n in the interval (0, 1):

0 < x1
n < x2

n < · · · < xn
n < 1 for n > 0

and

0 < x0
n < x−1

n < · · · < xn+1
n < 1 for n < 0.

Consider the following inverse problem.

Inverse Problem 2. Given the set of nodal points X, find q0(x), q1(x), h, H.

Here and below the notion ”set of nodal points” is understood with
account of their indices. In other words, {xj

n}(n,j)∈I = {x̃j
n}(n,j)∈Ĩ if and only

if I = Ĩ and xj
n = x̃j

n for all (n, j) ∈ I.
Shifting the spectral parameter ρ → ρ+ C we obtain the pencil

L{C} = L(q0(x) + 2Cq1(x) − C2, q1(x) − C, h,H),

which possesses the same eigenfunctions as L does. Without loss of generality
we assume that

ω0 = 0. (15)

Denote

p(x) = q0(x) −
1∫

0

q0(t) dt,

αn(x) =
1
2

⎛
⎝

x∫
0

(p(t) + q21(t)) cos(2πnt− 2Q(t)) dt

−
x∫

0

q′
1(t) sin(2πnt− 2Q(t)) dt

⎞
⎠ ,
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ω1(x) = h+H +
1
2

x∫
0

(q0(t) + q21(t)) dt,

ω2(x) = hq1(0) +Hq1(1) +
1
2

x∫
0

(q0(t) + q21(t))q1(t) dt.

For solving Inverse Problem 2 the following asymptotics of the nodal points is
used.

Theorem 4. The following representation holds:

xj
n =

1
n

(
j − 1

2

)
+

1
πn

Q(xj
n)

+
1

(πn)2
(ω1(xj

n) − ω1(1)xj
n −H + αn(xj

n) − αn(1)xj
n)

+
1

(πn)3
(ω2(xj

n) − ω2(1)xj
n −Hq1(1)) + o

(
1
n3

)
, |n| → ∞,

uniformly with respect to j.

Corollary 1. The set X of all nodal points is dense in [0, 1].

The following assertion is also an immediate corollary of Theorem 4.

Lemma 2. Fix x ∈ [0, 1]. Choose {jn} such that xjn
n → x as |n| → ∞. Then

there exist the following finite limits and the corresponding equalities hold:

Q(x) = lim
|n|→∞

βn, βn = π(nxjn
n − jn) +

π

2
, (16)

f(x) = lim
|n|→∞

γn, γn = πn(βn −Q(xjn
n )), (17)

g(x) = π lim
|n|→∞

n(γn − f(xjn
n ) − αn(xjn

n ) + αn(1)xjn
n ), (18)

where

f(x) = h(1 − x) −Hx+
1
2

⎛
⎝

x∫
0

(q0(t) + q21(t)) dt− x

1∫
0

(q0(t) + q21(t)) dt

⎞
⎠ ,

g(x) = h(1 − x)q1(0) −Hxq1(1) +
g1(x)

2
, (19)

g1(x) =

x∫
0

(q0(t) + q21(t))q1(t) dt− x

1∫
0

(q0(t) + q21(t))q1(t) dt.

Let us for definiteness exclude the Sturm–Liouville operator (q1(x) ≡ 0)
from the consideration, i.e. with account of (15) we assume that

q1(x) �= const. (20)
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Then according to the following uniqueness theorem the pencil L{C} is a unique
modification of L that leaves the nodal points unchanged.

Theorem 5. The specification of any dense subset X0 ⊂ X uniquely determines
the functions q0(x), q1(x) and the numbers h, H, which can be found by the
following algorithm.

Algorithm 1. Let a dense subset X0 of the nodal points be given. Then
(i) for each x ∈ [0, 1] choose a sequence {xjn

n } ⊂ X0 such that xjn
n → x as

|n| → ∞;

(ii) find the function Q(x) via (16) and calculate

q1(x) = Q′(x);

(iii) calculate f(x) by formula (17) and obtain

h = f(0), H = −f(1),

p(x) = 2(h+H) + 2f ′(x) − q21(x) +

1∫
0

q21(t) dt;

(iv) fix an arbitrary x ∈ [0, 1] such that Q(x) �= 0, find g1(x) via (18), (19)
and put

A=
1

Q(x)

⎛
⎝g(x) −

x∫
0

(p(t) + q21(t))q1(t) dt+x

1∫
0

(p(t) + q21(t))q1(t) dt

⎞
⎠;

(v) finally, calculate the function q0(x) by the formula

q0(x) = p(x) +A.

Corollary 2. Let (15) be not assumed while (20) be kept. Then the specification
of X0 uniquely determines the functions q1(x)−ω0, q0(x)+2ω0q1(x)−ω2

0 , and
the numbers h, H.

Remark 1. As in [26] Algorithm 1 can be modified so that q0(x), q1(x) will be
approximated directly, i.e. not via their primitive functions.

Remark 2. It is easy to see that not assuming (15), (20) one also can recover
L from a dense set of nodes X0, provided that mean values of the functions
q0(x), q1(x) are known a priori. Moreover, the set X1 := X0 ∩(a, b) determines
the coefficients of L on [a, b].

4. Incomplete Inverse Nodal Problem

In this section we prove that for unique determination of L it is sufficient to
specify the nodal points only on the part of the interval together with the
mean values of q0(x), q1(x). More precisely, the following theorem holds.
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Theorem 6. Fix arbitrary a > 1/2. Let

1∫
0

q̂j(x) dx = 0, j = 0, 1.

If X ∩ (0, a) = X̃ ∩ (0, a) then L = L̃. Thus, the specification of the nodes
on any interval (0, a), a > 1/2, together with the mean values of q0(x), q1(x)
uniquely determines the functions q0(x), q1(x) and the coefficients h, H of the
boundary conditions.

Remark 3. Obviously, the interval (0, a) in Theorem 6 can be replaced with
(1 − a, 1).

First we prove some auxiliary assertions. Denoting Q(x, ρ) := ρ2 −
2ρq1(x)−q0(x) we have ∂

∂ρQ(x, ρ) = 2(ρ−q1(x)). Thus, for each fixed x ∈ [0, 1]
the function Q(x, ρ) increases for ρ > q1(x) and decreases for ρ < q1(x). Put
m := min q1(x), M := max q1(x), x ∈ [0, 1]. Let zj(x), j = 1, 2, be solutions of
the equations

z′′
j +Q(x, μj)zj = 0, 0 < x < 1,

where μ2 > μ1 ≥ M or μ2 < μ1 ≤ m. Then according to Sturm’s comparison
theorem (see, e.g., Lemma 1.2.1 in [10]) between any two zeros of the function
z1(x) there is at least one zero of the function z2(x).

We consider the function ϕ(x, ρ) for real ρ. Repeating word by word the
proof of the corresponding assertion for the case q1(x) = 0 (see, e.g., Lemma
1.2.2. in [10]) one can prove that the zeros of ϕ(x, ρ) with respect to x are
continuous functions of ρ, i.e. the following lemma holds.

Lemma 3. Let ϕ(x∗, ρ∗) = 0. For sufficiently small ε > 0 there exists δ > 0
such that if |ρ− ρ∗| < δ, then the function ϕ(x, ρ) has exactly one zero in the
interval |x− x∗| < ε.

Lemma 4. Fix μ1, μ2 such that μ2 > μ1 ≥ M or μ2 < μ1 ≤ m. Let ϕ(x1, μ1) =
0 while ϕ(x, μ1) > 0 for x ∈ [0, x1). Then there exists x2 ∈ (0, x1) such that
ϕ(x2, μ2) = 0.

Proof. Subtracting the relation

ϕ(x, μ1)(ϕ′′(x, μ2) +Q(x, μ2)ϕ(x, μ2)) = 0

termwise from

ϕ(x, μ2)(ϕ′′(x, μ1) +Q(x, μ1)ϕ(x, μ1)) = 0

we arrive at
d

dx
〈ϕ(x, μ2), ϕ(x, μ1)〉 = (Q(x, μ2) −Q(x, μ1))ϕ(x, μ1)ϕ(x, μ2).
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Integrating the latter relation with respect to x on the interval (0, x1), we get
x1∫
0

(Q(x, μ2) −Q(x, μ1))ϕ(x, μ1)ϕ(x, μ2) dx = ϕ(x1, μ2)ϕ′(x1, μ1). (21)

Let us assume to the contrary that ϕ(x, μ2) > 0 for x ∈ (0, x1), then, in par-
ticular, ϕ(x1, μ2)ϕ′(x1, μ1) ≤ 0. On the other hand, since Q(x, μ2) > Q(x, μ1),
the integral in the left-hand side of (21) is strictly positive. This contradiction
proves the lemma. �
Corollary 3. Summarizing Lemmas 3, 4 together with the above reasoning we
get that if real ρ moves away from the interval (m,M), then the zeros of ϕ(x, ρ)
on the interval (0, 1] continuously move to the left. New zeros can appear only
through the point x = 1.

Consider the boundary value problem L1 = L1(q0(x), q1(x), h) for
equation (1) with the boundary conditions U(y) = y(1) = 0. The eigenvalues
ρn,1, n = ±0,±1,±2, . . . , of L1 have the form

ρn,1 = π

(
n+

signn
2

)
+ ω0 +O

(
1
n

)
, |n| → ∞. (22)

Clearly, ρn,1 are real for large |n|. Moreover, by virtue of (4), (22) for suffi-
ciently large |n| eigenvalues of the pencils L, L1 are alternating in the following
way: ρn < ρn,1 < ρn+1 for n > 0 and ρn−1 < ρn,1 < ρn for n < 0. There-
fore, according to Theorem 3 and Corollary 3 for large |n| the eigenfunction
ϕ(x, ρn,1) of the pencil L1 has precisely |n| zeros in the interval (0, 1).

According to Theorem 3 one can choose sufficiently large N1 such that
for all n ≥ N1 there are exactly two eigenfunctions of the pencil L namely
ϕ(x, ρn) and ϕ(x, ρ−n) that possess precisely n zeros in the interval (0, 1) and
ρn > 0, ρ−n < 0. The same assertion with the same N1 is obviously valid for
the pencil Lb of the form

y′′ + (ρ2 − 2ρq1(x) − q0(x))y = 0, 0 < x < b ≤ 1, U(y) = y(b) = 0,

whose eigenvalues ρn,b, n = ±0,±1,±2, . . . , have the asymptotics

ρn,b =
π

b

(
n+

signn
2

)
+

1
b

b∫
0

q1(x) dx+O

(
1
n

)
, |n| → ∞,

i.e. the following lemma holds.

Lemma 5. For all b ∈ (0, 1] and n ≥ N1 there are exactly two eigenfunctions
of the pencil Lb namely ϕ(x, ρn,b) and ϕ(x, ρ−n,b) that have precisely n zeros
in the interval (0, b) and ρn,b > 0, ρ−n,b < 0.

Proof of Theorem 6. Choose N ≥ N1 so that xN1+1
n < a and x−N1−n < a for

n ≥ N. Fix n ≥ N and put b := xN1+1
n . Consider the pencil Lb. Accord-

ing to Lemma 5 we obtain {ρn, ρ̃n} ⊂ {ρN1,b, ρ−N1,b}. Since ρnρ̃n > 0 and
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ρN1,bρ−N1,b < 0, we get ρn = ρ̃n. Analogously putting b := x−N1−n we arrive
at ρ−n = ρ̃−n. Thus, we have ρn = ρ̃n for |n| ≥ N and it remains to apply
Remark 2 and Theorem 2. �
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