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We study the mechanical property of a two-dimensional filament with constant spontaneous curvature and
under uniaxial applied force. We derive the equation that governs the stable shape of the filament and obtain
analytical solutions for the equation. We find that for a long filament with positive initial azimuth angle �the
azimuth angle is the angle between x axis and the tangent of the filament� and under large stretching force, the
azimuth angle is a two-valued function of the arclength, decreases first, and then increases with increasing
arclength. Otherwise, the azimuth angle is a monotonic function of arclength. At finite temperature, we derive
the differential equation that governs the partition function and find exact solution of the partition function for
a filament free of force. We obtain closed-form expressions on the force-extension relation for a filament under
low force and for a long filament under strong stretching force. Our results show that for a biopolymer with
moderate length and not too small spontaneous curvature, the effect of the spontaneous curvature cannot be
replaced by a simple renormalization of the persistence length in the wormlike chain model.
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I. INTRODUCTION

The mechanical properties of semiflexible biopolymers
have attracted considerable attention due to their importance
in understanding many biological processes. Recent
progresses in experimental techniques, such as laser or mag-
netic tweezers, atomic force microscopy, and other single
molecule techniques, have provided powerful tools to ma-
nipulate and observe directly the mechanical response of a
single biomolecule. In theoretical studies, a biopolymer is
often modelled by a filament. In a first approximation, a
filament can be viewed as an inextensible chain with a uni-
form bending rigidity but with a negligible cross section.
This is called wormlike chain �WLC� model and has been
used successfully to account for the entropic elasticity of
double-stranded DNA �dsDNA� �1–4�. Owing to the central
role that dsDNA plays in biology, recently there are many
theoretical works on the WLC model, as well as its modifi-
cations and extensions �1–25� .

There is just one parameter, the bending rigidity, in the
WLC model. In other words, WLC model is in essential a
homogeneous model. However, biopolymers are in general
sequence-dependent and so are heterogeneous. Several re-
cent works have revealed that the sequence-disorder has re-
markable effects on the conformational and mechanical
properties of dsDNA �18–20,22,21,23�. Based on the WLC
model, two effects of sequence-dependence have to be con-
sidered. First, structural inhomogeneity results in variations
of the bending rigidity along the chain and can be described
by the s-dependent persistence length �21�, where s is the
arclength. For long DNA chains without long-range correla-
tion �LRC� in basepairs, this effect can be well accounted by
a simple replacement of the uniform persistence length in the
WLC model by a proper average of the s-dependent persis-
tence length �21�. However, for loop formation in a short

DNA chain, this effect is complex due to the lack of self-
averaging: The looping probability of a typical filament seg-
ment is not a well-defined function of its length, not even to
the first approximation �21�. The similar effect may also exist
in other properties, such as elasticity. Second, the local struc-
ture of the dsDNA can be characterized by the sequence-
dependent spontaneous curvature c0�s� �18–23�. For short
dsDNA chains, special sequence orders may favor a macro-
scopic spontaneous curvature �32–35�. On the other hand, for
long dsDNA chains, the effects of c0�s� are dependent on the
degree of correlation in base pairs. Without correlation, or
the correlation is short range, the effect is similar to that of
the s-dependent persistence length and can be replaced by a
renormalization of the persistence length in the WLC model
�19–21,23�. However, with long-range correlation, such as
dsDNA fragments extracted from intergenic regions in chro-
mosome 8 �125789398-125791587� and 21 �37044232-
37046437� of the human genome �NCBI build 35�, the
simple correction to the uniform persistence length is no
longer appropriate because the dsDNA develops a macro-
scopic intrinsic curvature �23�. Moreover, it has been found
that the mean spontaneous curvature, rather than the details
of its distribution, determines the looping probability of a
filament �22�. Therefore, to study the mechanical properties
of the biopolymers with special sequence order or with LRC,
a reasonable, and perhaps the simplest idea is to extend the
WLC model so as to include a constant spontaneous curva-
ture. Furthermore, a biopolymer in vivo is often subjected to
confinement, such as a dsDNA in cell. Therefore, the prop-
erty of biopolymers under confinement has attracted growing
interest in the past decade �23,24,26–31�. Consequently, it is
a significant topic to study the effect of a uniform spontane-
ous curvature on the elastic response for a confined, or two-
dimensional, filament.

In this work, we examine the conformations and elasticity
of a two-dimensional filament with constant spontaneous
curvature and under uniaxial applied force. We obtain ana-
lytical solutions for the equation that governs the stable*zzhou@mail.tku.edu.tw
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shape of the filament and find that the form of these solutions
are dependent on the direction of applied force and boundary
conditions. At finite temperature, we derive the differential
equation that governs the partition function, and find the ex-
act solution for the partition function for a filament free of
force. This partition function is further used to find the
closed-form expression for the end-to-end distance, and the
force-extension relation for a filament under low force. We
also find the force-extension relation for a long filament un-
der strong stretching force.

This paper is organized as follows. In Sec. II we set up
our model and derive the shape equation for a stable fila-
ment. Section III presents the solutions for the shape equa-
tion. In Sec. IV we investigate the effects of the spontaneous
curvature on the end-to-end distance and the elastic proper-
ties of the filament at finite temperature. A summary con-
cludes the paper.

II. MODEL AND SHAPE EQUATION

Using s as variable, the configuration of a uniform fila-
ment with negligible cross section can be described by the
tangent, t, to the contour line of the filament. In two dimen-
sion, t= �cos ��s� , sin ��s��, where the azimuth angle � is
the angle between x axis and t. The locus of the filament can
be found by

r�s� = �x�s�,y�s�� = ��
0

s

cos ��u�du,�
0

s

sin ��u�du	 .

�1�

The energy of the filament with uniform spontaneous curva-
ture c0��0 for convenience� and under a uniaxial applied
force fx �along x axis; fx�0 for compression� can be written

E = �
0

L 
�

2
��̇ − c0�2 − fx cos ��ds , �2�

where Ẋ�dX /ds, L is the total arclength of the filament and
is a constant in the model so that the filament is inextensible,
and � is the bending rigidity.

When the thermal fluctuations are negligible, the static
conformations of the filament are determined by the mini-
mum of E. Extremizing E, we obtain the equation that gov-
erns the shape of the filament

��̈ − fx sin � = 0. �3�

In experiments, the initial azimuth angle �0 may be fixed. In
this case, the boundary condition �BC� at s=0 is ��0�=�0.
The extremum in the energy requires that at the other end
�s=L�

�̇L − c0 = 0, �4�

where �L=��L�. However, experiments on stretching
biopolymers usually involves attaching the two ends of the
molecule to beads, and it does not seem to be easy to prohibit
the rotation of the beads. As a consequence, it may be diffi-
cult to fix �0. In extreme cases, the filament can rotate freely

around the origin, and so similar to Eq. �4�, the BC at s=0
becomes

�̇0 − c0 = 0. �5�

The pictorial representations of a filament under different
BCs are shown in Fig. 1. In Figs. 1�a� and 1�b�, �0 is fixed
by grafting a small portion of filament to a substrate. For
biopolymers, optical tweezer can be used to fix �0 �25�. In
Fig. 1�c�, the filament is attached to a bead and the center of
the bead is confined by a pivot, but the bead can rotate freely
around the pivot so �0 can be arbitrary. In experiments for
biopolymers, magnetic tweezer can be used to maintain a
free �0 �25�. It is clear that there is not symmetry with re-
spect to x axis if c0�0. It has been reported that with or
without constraint on the initial azimuth angle has consider-
able effects on the mechanical response of a filament �17,25�.
In this work, we further find that, due to the break of sym-
metry with respect to y direction, the sign of �0 also has
important effects on the mechanical response of a filament.

Defining the reduced force Fx�2fx /�, from Eqs. �3� and
�4� we can find that

�̇±�s� = ± 
c0
2 + Fx�cos �L − cos �� �6�

or

s��±� = ± �
�0

� dx


c0
2 + Fx�cos �L − cos x�

, �7�

in which �L is determined by

L = ± �
�0

�L dx


c0
2 + Fx�cos �L − cos x�

. �8�

Note that both �+�s� and �−�s� are monotonic functions of s,

but �̇−�s��0 so it cannot satisfy BC at s=L since we assume
c0�0 for convenience.

FIG. 1. Schematic picture of a filament under different boundary
conditions. �a� �0 is fixed by grafting a small portion of filament to
a substrate. �0=0.2. �b� The same as �a� except for �0=−0.2. �c�
One end of the filament is attached to a bead, which is confined by
a pivot. �0 is not fixed so the bead can rotate freely around the
pivot. c0=0.1 and L=10 for all three cases.
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The stable �or at least metastable� of a filament requires

�2E = �
0

L

����̇2 + fx cos ���2�ds � 0. �9�

When fx�0, the force tends to straighten the filament so
cos � tends to be positive. Consequently, in this case the
solution given by Eqs. �7� and �8� is, at least, metastable.

III. STABLE CONFORMATIONS OF A FILAMENT UNDER
EXTERNAL FORCE

A. Filament with vanishing spontaneous curvature

In this case, if �0=0 or �0 is free, the shape is simply a
straight line. Moreover, from symmetry we need to consider
only the case with �0�0. It is well known that the end of the
filament at s=L tends to align along the direction of the
applied force. Therefore, if Fx�0, we should have �L��0;
since the direction of applied force is along �=0, it follows
that the solution of the shape equation is given by �− or

s = − �
�0

� dx

Fx�cos �L − cos x�

, �10�

L = − �
�0

�L dx

Fx�cos �L − cos x�

. �11�

Let

k0 � cos��L/2� , �12�

cos��/2� = k0 sin � , �13�

we obtain �see Appendix A�

��s� = 2 arccos
k0 sn�
Fx

2
s + F��0

0�k0��k0�� , �14�

where sn�x �k� is the Jacobi elliptic function, F�� �k� is the
elliptic integral of the first kind, and �0

0

=arcsin�cos��0 /2� /k0�.
In contrast, if Fx�0, we should have �L��0, since the

direction of force is along �=�, and so the solution is given
by �+. Let k0�=sin��L /2�, we find �see Appendix A�

��s� = 2 arcsin
k0� sn�
− Fx

2
s + F�	0�k0���k0��� , �15�

where 	0=arcsin�sin��0 /2� /k0��.
We should address that one must take care in using Eq.

�13� �as well as cos�� /2�=k sin � used in the following sub-
sections� to transform the solution into sn�x �k� because the
signs of � and � may be length-dependent. But note that the
treatment in this section is in fact inappropriate for a very
long filament since, in this case, the thermal fluctuation be-
comes significant; we do not consider a very long filament in
this section. As a consequence, we do not consider a looped
filament, and limit −�����. Similarly, the case with a
large ��0� is also not considered. Under these constraints, the
solutions in the form of sn�x �k� should be still valid.

B. Filament with free initial azimuth angle

If we do not fix �0, then to satisfy BCs at both ends �Eqs.
�4� and �5��, we need to take + in the right-hand side of Eq.
�6�, and so ��s� increases monotonically with increasing s.
Moreover, two BCs also lead to

�̇�s� = 
c0
2 + Fx�cos �L − cos �� = 
c0

2 + Fx�cos �0 − cos �� .

�16�

It follows that cos �L=cos �0 or �L=−�0
0 since �L

��s�
�0. It in turn indicates that a filament prefers to
have a negative �0 if c0�0, and so to fix the filament with a
positive �0 requires extra force. Therefore, the solution for
the shape equation becomes

s��� = �
�0

� dx


c0
2 + Fx�cos �L − cos x�

, �17�

L = 2�
0

�L dx


c0
2 + Fx�cos �L − cos x�

. �18�

To get real values for the above integrations, it requires
c0

2 /Fx+cos �L−1
0. Therefore, let

k2 �
1

2
�1 +

c0
2

Fx
+ cos �L� , �19�

we have k
1. In this case, the solution can be transformed
into �see Appendix A�

��s� = � − 2 am�−
Fx

2
ks + F��0�k1��k1� , �20�

where am�x �k� is the Jacobi amplitude function, �0=� /2
−�0 /2, and k1=1 /k. We can also show that �see Appendix
A� this solution is symmetric with respect to the interchange
of s and L−s. Moreover, in this case we should have
��L /2�=0, y�L�=y�0�=0, and the conformation is symmet-
ric about x=x�L /2�. Furthermore, we do not consider the
case with Fx�0 since, in this case, we can rotate the coor-
dinate system by 180° �but keep the force intact�, thereby
making it become the case with stretching force.

C. Filament with fixed initial azimuth angle and �0�0

On the other hand, fixing �0 leads to quite different re-
sults. From Eq. �6�, �̇−�s�=−
c0

2+Fx�cos �L−cos ���0 so
�−�s� fails to satisfy BC at s=L �Eq. �4�� since c0�0. There-
fore, at first glance, the solution would be given by �+�s�
alone. This argument is correct when Fx�0. If Fx�0, the
argument is also correct when L is very short, or Fx is very
small. In these cases, the shape of the filament is determined
by

s = �
�0

� dx


c0
2 + Fx�cos �L − cos x�

, �21�
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L = �
�0

�L dx


c0
2 + Fx�cos �L − cos x�

. �22�

If Fx�0, we can follow the same routine as for Eqs. �14� and
�20� to find

��s� = �2 arccos
k sn�−
Fx

2
s + F��0�k��k�� , k � 1,

� − 2 am�−
Fx

2
ks + F��0�k1��k1� , k � 1,�

�23�

where �0=arcsin�k1 cos��0 /2��.
In contrast, if Fx�0, let k�2�2 / �1−c0

2 /Fx−cos �L�, in a
way similar to that for Eq. �15�, we obtain

��s�

=�2 am�
− Fx

2
k1�s + F��0/2�k���k�� , k� � 1,

2 arcsin
k1� sn�
− Fx

2
s + F�
0�k1���k1��� , k� � 1,�

�24�

where k1�=1 /k�, and 
0=arcsin�k� sin��0 /2��.
However, for a long filament with �0�0 and under strong

stretching force, Eqs. �21�–�23� are incorrect. We can see this
point by noting that, if ��s�=�+�s�, then �L
��s�
�0 so
cos �L−cos ��0, and �L would be determined by

L = �
�0

�L dx


c0
2 + Fx�cos �L − cos x�

. �25�

To get a real L it requires c0
2+Fx�cos �L−cos x�
c0

2

+Fx�cos �L−cos �0�
0. Therefore, we have cos �L


cos �0−c0
2 /Fx, and so �L is bounded by arccos�cos �0

−c0
2 /Fx�
�L��0. Consequently, as shown in Appendix A,

with �0�0 and bounded �L, the right-hand side in Eq. �25�
is also bounded for given c0, Fx, and �0. Furthermore, note
that c0, Fx, and �0 are independent on L; such a bound in the
right-hand side in Eq. �25� reveals that L cannot be arbitrarily
large, it in turn tells us that Eqs. �21�–�23� are incorrect in
this case.

Therefore, for large L there exists a special force Fx
s.

When Fx�Fx
s, the solution is no longer �+�s� alone, but must

be a combination of �+ and �−. We find that the larger the �0
or L, or the smaller the c0, the smaller the Fx

s. As a conse-
quence, there exists a special length l. When s� l, the solu-
tion is given by �−; however, when s� l, the solution is
given by �+. In other words, for Fx�Fx

s, the solution is given
by Eq. �23�. But for Fx�Fx

s, the solution must be written as
a piecewise function

s = �− �
�0

� dx


c0
2 + Fx�cos �L − cos x�

, s � l ,

l + �
�l

� dx


c0
2 + Fx�cos �L − cos x�

, s � l .

�26�

This is also the unique case that ��s� is a two-valued func-
tion of s, decreases first, down to the minimum value �l, and
then increases with increasing s.

The continuity of �̇ at l leads to �̇l
+

=
c0
2+Fx�cos �L−cos �l�= �̇l

−=−
c0
2+Fx�cos �L−cos �l�,

or

c0
2 + Fx�cos �L − cos �l� = 0 = �̇l. �27�

From Eq. �6�, we can show that �̈�s� is also continuous at l.
As a consequence, �L and �l���0� are determined by

�l = arccos�c0
2/Fx + cos �L� , �28�

L = − �
�0

�l dx


c0
2 + Fx�cos �L − cos x�

+ �
�l

�L dx


c0
2 + Fx�cos �L − cos x�

. �29�

There is not solution for Eq. �28� at low Fx due to c0
2 /Fx

+cos �L�1 and it is a consequence of that l=0 when Fx
�Fx

s. Moreover, our numerical calculations reveal that �l is
always positive and quite close to zero. This can be under-
stood by noting that if �l�0, then from Eq. �28� we obtain
c0

2+Fx�cos �L−cos x��Fx�1−cos x� and so L can be arbi-
trarily large, as shown in Appendix A 2.

Again, Eq. �26� can be expressed in terms of Jacobi ellip-
tic function and elliptic integral. Since �l�0, we also have
��s�
�l�0, and if k�1 the solution can be written as

� = �2 arccos
k sn�
Fx

2
s + F��0�k��k�� , s � l ,

2 arccos
k sn�−
Fx

2
�s − l� + F��l�k��k�� , s � l ,�

�30�

where �l is determined by cos��l /2�=k sin �l. In contrast, if
k�1, it would be better to use

� = �� − 2 am�
Fx

2
ks + F��0�k1��k1� , s � l ,

� − 2 am�−
Fx

2
k�s − l� + F��l�k1��k1� , s � l ,�

�31�

where �l=� /2−�l /2.
It is a little surprise that our numerical calculations sug-

gest that no matter how large the Fx may be, we always have
�L��0 if �0�0, instead of �L�0 as common sense would
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suggest. It should reflect the fact that under strong force, in
fact it is impossible to fix �0. �L�0 under large Fx can be
achieved when �0�0.

Note that there is no such a finite l if c0=0 no matter what
the force. This is because, in this case, under stretching force
�L can be close to 0 arbitrarily, and so from Eq. �8� L can be
arbitrarily large. Therefore, the solution is given by �−

solely.
From Eqs. �17�–�31�, we can see that the expressions are

different for the different BCs or the direction of force. The
representations in terms of F�x �k�, am�x �k�, and sn�x �k� al-
low numerical calculation by mathematical softwares like
Mathematica �38� in most cases. However, when Fx�Fc

c,
special care should be taken in using Eqs. �30� and �31� to
calculate l because it may yield complex values, or have no
solution at all, due to numerical error. This problem may
result from the fact that at l, the integrand in Eq. �29� is
singular �also see Eq. �27�� though the integration is conver-

gent, therefore, evaluation of the inverse function at l nu-
merically is uneasy, especially for our nontrivial algebraic
functions, in which k is also dependent on �L and �l. In this
case, using Eqs. �28� and �29� directly may be more reliable
and simple.

Figures 2 and 3 shows some typical results. In both fig-
ures, c0=0.1 and L=15. When �0=0.2, we find that Fx

s

�0.0373. Figure 2 shows that the shapes with ��0 and �
�0 are considerably different. From Fig. 3, we can find that
xL �yL� increases �decreases� rapidly with increasing force
when force is small, but changes very slowly under high
force, and the increasing rate of xL is faster than the decreas-
ing rate of yL at low force.

D. Filament with fixed initial azimuth angle and �0�0

When �0�0, the solution is simply given by �+. If Fx
�0 and k�1, it can be written as

��s� = �− 2 arccos
k sn�
Fx

2
s + F��0�k��k�� , � � 0,

2 arccos
k sn�−
Fx

2
s − F��0�k� + 2F��1�k��k�� , � � 0,� �32�

where �1=arcsin�1 /k�. In contrast, if Fx�0 and k�1, the
solution is given by Eq. �20� again.

Unlike the case with �0�0, now the solution does not
need to be a piecewise function as in Eq. �26�. This is be-
cause in this case k can be close to 1 and � can be close to
0, so L is unbounded as shown in Appendix A 2. However,
though mathematically it is undoubted, the underlying phys-
ics of such a �0 dependence is not very clear. Intuitionally, it

is a consequence of that the existence of a constant sponta-
neous curvature leads to break of the symmetry with respect
to y direction. Physically, it may be due to that the assump-
tion of the inextensible total arclength in the model is un-
practical for a long filament under strong force, but may be,
more likely due to that, under strong force there is, in fact, no
way to fix �0 since a filament tends to have a negative �0.
Moreover, such a behavior may also arise from the assump-

FIG. 2. Typical shapes of a two-dimensional filament under
stretching. The parameters are c0=0.1, L=15, and �a� �solid� �0

=0.2, Fx=0.0373; �b� �dash� �0=0.2, Fx=0.04; �c� �solid� �0=0.2,
Fx=0.3; �d� �dot� �0=−0.2, Fx=0.3. The unit of length and Fx are
the same as 1 /c0 and c0

2, respectively.

FIG. 3. Relative extension XL�x�L� /L �solid�, YL�y�L� /L
�dash�, and end-to-end distance �dot� rL�
XL

2 +YL
2 /L vs reduced

force for a filament under stretching. The parameters are c0=0.1,
�0=0.2, and L=15. The unit of length and Fx are the same as 1 /c0

and c0
2, respectively.
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tion of the constant curvature, so it may be unpractical for
biopolymers, since few biopolymers have constant finite cur-
vature throughout their length.

When Fx�0, the expression is the same as Eq. �24�.

IV. ELASTICITY OF THE FILAMENT AT FINITE
TEMPERATURE

A. Equation for the partition function

Up to now, the entropic effect has not been considered
since the shape equation is obtained by extremizing energy.
In principle, such a treatment is correct only at zero tempera-
ture. In practice, it is also a reasonable approximation when
the thermal vibrations of the filament around its static con-
formation are negligible, such as at very low temperature or
when the persistence length is comparable to the total length
of the filament and at low to moderate temperature. Espe-
cially, it is usually valid for a macroscopic filament at room
temperature. However, it is not appropriate for a long
biopolymer at finite temperature because the temperature
may induce strong conformation fluctuation and as a conse-
quence the conformation of the filament can be far from the
static one. Therefore, at finite temperature, it is, in general,
necessary to perform conformational average. In this case,
the partition function of the filament is the sum of Boltzmann
weights for all possible conformations, and so is a path inte-
gral �24,36�

Z��L,L;�0,0� =� D���s��e−	E, �33�

where 	�1 / �kBT�, T is the temperature, and kB is the Bolt-
zmann constant. From �2� and �33�, we can calculate the
average end-to-end extension in x direction, �xL�, from

�xL� � ��
0

L

cos ��s�ds� =
� ln Z

� f
, �34�

where f � fx	. �xL� is the conformational average of the end-
to-end vector R=�0

Lt ds projected in the direction of the ap-
plied force.

From the standard connection between the path integral
and the Schrödinger equation, we can find that Z�� ,s ;�0 ,s0�
satisfies the following partial differential equation �14,36�

�Z
�s

= � 1

2lp

�2

��2 − c0
�

��
+ f cos ��Z , �35�

where lp��	 is the bare persistence length. Z�� ,s ;�0 ,s0�
must be a periodic function of � since there is no way to
distinguish � and �+2�.

If we fix �0, the BC for Z�� ,s ;�0 ,s0� becomes

Z��,s0;�0,s0� = ��� − �0� . �36�

But we should note here that, to fix �0 may be difficult,
especially for a microscopic object. Therefore, proper aver-
age over �0 is, in general, necessary.

We can separate variables by assuming Z�� ,s ;�0 ,s0�
=��� ,�0�e−g�s−s0�. ��� ,�0� is also a periodic function of �
since Z is. It follows that

� 1

2lp

d2

d�2 − c0
d

d�
+ f cos ��� = − g� . �37�

Equation �37� is in the form of the Mathieu differential equa-
tion with damping. Let

���,�0� = ec0lp�G��,�0� , �38�

Eq. �37� is transformed into

d2G

d�2 + �2glp − c0
2lp

2 + 2flp cos ��G = 0. �39�

Equation �39� can be transformed further into the well
known Mathieu differential equation �37�. The Mathieu
equation always has a periodic solution and an aperiodic
solution �37�. However, from Eq. �38�, we know that
G�� ,�0� cannot be a periodic function of � if c0�0 due to
� is already a periodic function of � and lp�0. Since G
deserves the aperiodic solution but the general properties of
the aperiodic solution do not seem to be transparent, we will
not discuss the general solution of Eq. �39� in this work.
Instead, the partition function at f =0 and the exact force-
extension relations at low and high force limits are presented
here.

B. Average end-to-end distance for the filament free of
external force

When f =0, Eq. �37� becomes

� 1

2lp

d2

d�2 − c0
d

d�
�� = − g� . �40�

The periodic boundary condition requires that ��� ,�0�
=Aen�i with n being an integer. Therefore,

gn
0 =

n2

2lp
+ c0ni �41�

and

Z = �
n=−�

�

Ane−gn
0�s−s0�+in�. �42�

From BC �Eq. �36��, we can find that An= �1 /2��e−in�0, as
well as

Z =
1

2�
+

1

�
�
n=1

�

e−�n2/2lp��s−s0� cos�n„� − �0 − c0�s − s0�…� .

�43�

The average end-to-end distance, R2���rL−r0�2�, is
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R2 =��
0

L

ds�
0

L

ds�t�s� · t��s���
= �

0

L

ds�
0

L

ds��
0

2�

d��
0

2�

d��Z��,s;��,s��t�s� · t��s��Z���,s�;�0,s0�

= 2�
0

L

ds�
0

s

ds�e−�s−s��/2lp cos�c0�s − s���

=
4lp

�1 + 4lp
2c0

2�2 �L − 2lp + 4lp
2c0

2L + 8lp
3c0

2 + �2lp cos�c0L� − 8lp
3c0

2 cos�c0L� − 8lp
2c0 sin�c0L��e−L/2lp� , �44�

where we have used t�s� · t��s��=cos��−���. Note that c0

does not appear in the exponential term. With fixed bending
rigidity �, when T→0 we obtain R2=2�1−cos�c0L�� /c0

2, as it
should be for the distance between two ends of an arc with
radius of 1 /c0. In contrast, when T→�, we find that R2=0.
�0 does not appear in Eq. �44� so R2 is independent on BC.
In a similar way, we can also find �xL� and �xL

2�, as presented
in Appendix B.

Equation �44� is valid for arbitrary T, L, c0, and lp. When
c0=0, Eq. �44� become

Rwlc
2 = 4lpL
1 −

2lp

L
�1 − e−L/2lp�� , �45�

it is exactly the same as the well known result for WLC
model �23� �note that there is a difference of factor 2 be-
tween definitions of lp in present work and Ref. �23��.

Furthermore, for a very long filament �L� lp�, we find

R2 �
4lpL

1 + 4lp
2c0

2 . �46�

Defining the effective persistence length lp
eff for arbitrary L as

lp
eff �

R2

4L
, �47�

from Eq. �46� we find that for a very long filament we can
recover result on R2 in WLC model with a simple replace-
ment of the bare persistence length lp by an effective persis-
tence length lp

eff 1 in the form of

1

lp
eff 1 =

1

lp
+

1

lp
c , �48�

where lp
c =1 /4lpc0

2. It is in the same form as 1 / lp
eff 2=1 / lp

+1 / lp
s �18,19,21�, but different from lp

eff 3= lp�1− 1 / 2
lp / lp
s �

�20�, where lp
s is the “static” persistence length resulted from

the sequence disorder of base pairs. From Eq. �48� we also
know that the finite c0 tends to reduce the effective persis-
tence length, similar to the effect of the sequence-
dependence nature �18–21�.

However, if L is not very long, such a simple replacement
becomes poor, or even invalid, since other terms in Eq. �44�
will also make significant contributions to R2. The larger the

c0, the larger the discrepancy will be. At c0=0.2 / lp, the dis-
crepancy is less than 5%, so the replacement is still reason-
able. But at c0=0.7 / lp, the discrepancy can be over 30% so
the replacement becomes very poor. From Fig. 4 we can see
that the obvious discrepancy can last up to about L=20lp,
which is rather long in experiments. For instance, lp
�50 nm for dsDNA without LRC, so 20lp corresponds to
approximately 3000 basepairs. Moreover, from Eq. �45� we
can know that Rwlc

2 /4L is a monotonic function of L. Our
calculations show that if c0lp�0.48, lp

eff is still a monotonic
function of L. However, if c0lp�0.48, lp

eff is no longer a
monotonic function of L but may have multiple maxima, as
we can see from curves �d�, �e�, and �f� in Fig. 5. The larger
the c0, the more maxima it will have. These results suggest
that a constant c0 has considerable impact on the property of
a filament. These results are also consistent with the conclu-
sion that for a DNA with LRC, the effects of the sequence
disorder cannot be incorporated into a simple correction to
the persistence length �23�. Furthermore, the existence of
maxima is also consistent with experimental observations
and computer simulations �23� �especially the Fig. 3 in Ref.
�23��, and therefore strongly supports that the present model
is reasonable in describing the elasticity of biopolymers with
LRC.

The relationship between Lm, the length corresponds to
the first maximum in lp

eff, and 1 /c0 is shown as filled circles

FIG. 4. Reduced effective persistence length, lp
eff / lp, vs reduced

total arclength L / lp for �a� present model �Eq. �44��, �b� WLC
model �Eq. �45��, with a replacement of lp by lp

eff 1 �Eq. �48��. c0lp

=0.3 in figure.
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in Fig. 6. For comparison, in Fig. 6 we also plot the straight
line given by Lm� =� /c0 which corresponds to the arclength
of a semicircle of a radius of 1 /c0. From Fig. 6, we find that
Lm decreases very fast and linearly at small c0, but slowly at
large c0. Lm→0 when c0→� since lp

eff→0. We have tried
several fitting functions, including different forms of polyno-
mial functions and exponential functions, to fit the relation-
ship between Lm and 1 /c0, but none fit well for the whole
regime. Moreover, we find that, in general, Lm�� /c0. In-
stead, at small c0, Lm�� /c0; but at large c0, from dlp

eff /dL
=0 we find analytically that Lm�2.33 /c0�� /c0. Lm
�� /c0 at c0lp�0.6. This result suggests that the entropic
effect tends to reduce the looping probability for small c0,
but favors loop formation for large c0. The conclusion, that
the entropic effect favors looping for large c0 is consistent
with the three dimensional results �22�. But why the entropic
effect tends to reduce the looping probability at small c0
needs further investigation. Moreover, whether it is also
valid in three dimensional cases or is only a special conse-
quence of the confinement should be an intriguing issue for
further research.

C. Elasticity of the filament under low force and strong force

From Eqs. �2�, �33�, and �34�, it is straightforward to find
that �with xL=�0

Lcos � ds�

��xL�
� f

= �xL
2� − �xL�2. �49�

Therefore, under low force, the relation between f and ex-
tension �X� can be found as

X � �xL − �xL� f=0� = f��xL
2� f=0 − �xL� f=0

2 �

=
flpB

�1 + 4c0
2lp

2�2�9 + 4c0
2lp

2��1 + c0
2lp

2�
, �50�

where B is presented in Appendix B. Note that B is depen-
dent on �0. Equation �50� is valid for arbitrary L and T with
fixed �0. When c0=0 and L is very long, we obtain X
�2flpL, which is exactly the same as the existing result for
WLC model �24,41�.

If we cannot constrain �0, we need to average over all
possible �0. In this case, B is simplified into

B = 2�9 + 4c0
2lp

2��1 + c0
2lp

2��L − 3lp + 4Lc0
2lp

2 + 4c0
2lp

3

− lp�1 + 4c0
2lp

2�e−L/lp

+ 4lpe−L/2lp�cos�c0L� − 2c0lp sin�c0L��� . �51�

For a very long filament L� lp, we get

X =
2flpL

1 + 4c0
2lp

2 . �52�

As expected, increasing c0 leads to a smaller X. It also sug-
gests that in this case we can replace lp in WLC model by
lp
eff 1 to get correct results. However, similar to the case for R2

at f =0, we should remind that such a replacement is appro-
priate only if L is rather long or c0 is small. For large c0,
considerable discrepancies can last up to moderate L �in gen-
eral �10lp� though the discrepancy decay faster with in-
creasing L than that on R2, due to the existence of the term
with e−L/lp in B.

Let us now consider the limit of large stretching force. In
this case the filament is almost straight, hence �� � �1 and
cos ��1− 1

2�2. This transforms Eq. �39� into a form that is
equivalent to the Schrödinger equation for a one-dimensional
simple harmonic oscillator with mass= lp, �=1 and angular
frequency �=
f / lp

1

2lp

d2Gn

d�2 −
1

2
f�2Gn = − �gn + f −

1

2
c0

2lp�Gn. �53�

The eigenfunction Gn can be written

Gn��� = Ane−�1/2��2�2
Hn���� , �54�

where n is a non-negative integer, An=
� / �2n
�n ! � is the
normalization constant, �=
lp�, and Hn�x� is the Hermite
polynomial. The eigenvalues are

gn = �n +
1

2
�
 f

lp
− f +

1

2
c0

2lp. �55�

Therefore, the partition function can be written as

FIG. 5. lp
eff / lp vs L / lp for a filament. The parameters are �a�

c0lp=0.1, �b� c0lp=0.2, �c� c0lp=0.3, �d� c0lp=0.5, �e� c0lp=0.7, and
�f� c0lp=3.

FIG. 6. Filled circles represent the relationship between Lm and
1 /c0. The solid straight line and the dashed straight line have slopes
� and 2.33, respectively.
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Z��L,�0;L,0� = �
n=0

�

Gn��0�Gn��L�e−gnL+c0lp��0+�L�.

�56�

Under the limit of large L, we only need to take the first term
in the sum �4�. Integrating over all possible values of �0 and
�L, we get Z�L��e−g0L. Substituting this result into Eq. �34�
leads immediately to

�xL�
L

= 1 −
1

4
flp

. �57�

It is exactly the same as that for WLC model �24,41�. Under
this limit, the extension is independent of c0, similar to
Marko and Siggia’s argument that under a strong stretching
force, the disorder is immaterial �4�. But the expression is
different from its three-dimensional counterpart �4�.

V. CONCLUSION AND DISCUSSION

In summary, we find exact expressions for the azimuth
angle of a two-dimensional filament in different conditions
and at zero temperature. These expressions are sensitive to
direction of applied force and boundary conditions. Espe-
cially, we find that for a long filament with �0�0 and under
large stretching force, ��s� must be a two-valued function of
s, decreases down to a minimum value first, and then in-
creases with increasing s. Otherwise, ��s� is always a mono-
tonic function of s. Such a sensitivity of the expressions for
��s� to the direction of applied force and �0 may also be
instructive for the relevant three dimensional problems. In
special, if we cannot fix the initial orientation angle, at zero
temperature a three-dimensional filament under uniaxial ex-
ternal force should have the same shape as given in Eq. �20�,
since the system has a rotational symmetry with respect to x
axis. Similarly, results on the case with fixed �0 should also
be valid, even in three-dimensional systems, if t0 and fx hap-
pen to be coplanar with the spontaneous curvature. At finite
temperature, we obtain exact results for the partition function
and end-to-end distance for the filament free of external
force. We find that if a filament is very long or c0 is small,
the effect of c0 can be replaced by a simple correction to the
persistence length in the WLC model. However, up to a mod-
erate length and not too small c0, such a correction becomes
poor or even invalid. We obtain closed-form expression for
the relationship between force and extension for a filament
under low force, and for a long filament under strong stretch-
ing force. We find that at low force, up to a moderate length
and a not too small c0, the elasticity of the filament cannot be
described by the WLC model, even with a renormalization of
the persistence length. However, for a long filament under
strong force, c0 play no role and, therefore, the WLC model
can be applied directly to account for the elasticity of the
filament. Our results suggest that for short DNA with special
sequence order or moderate length DNA with LRC, their
mechanical properties may be quite different from the exist-
ing results. We do not consider a looped shape at zero tem-
perature in this work. A looped filament may be formed if the
filament is rather long �L�2� /c0�, but in this case the en-

tropic effect should be non-negligible. Another possibility to
form a looped filament involves in different boundary condi-
tions, i.e., one has to fix the distance between two ends in-
stead of applying an external force at one end. Finally, in this
work, we do not consider the excluded volume effect. This
effect is negligible for a short filament at low temperature,
but may become rather important for a long filament at finite
temperature or for a looped filament. Therefore, the investi-
gation on this effect together with the elastic response to the
moderate force at finite temperature should be an intriguing
topic of future research.
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APPENDIX A

1. SOME BASIC PROPERTIES FOR ELLIPTIC
INTEGRALS AND ELLIPTIC FUNCTIONS

For convenience, we present here the definitions and
some basic properties for F�� �k�, am�x �k�, and sn�x �k� used
in this work �38–40�.

The elliptic integral of the first kind is defined by

F���k� � �
0

� dx

1 − k2 sin2x

. �A1�

The Jacobi amplitude function am�x �k� is the inverse func-
tion of F�� �k�, and the Jacobi elliptic function sn�x �k� is
defined by sn�x �k��sin�am�x �k��. The complete elliptic in-
tegral of the first kind is defined by K�k��F�� /2 �k�. sn�x �k�
satisfies sn�x+2K�k� �k�=−sn�x �k�, and so does for am�x �k�.
am�x �k� is also an odd function of x, i.e., am�x �k�
=−am�−x �k�.

Furthermore, though the right-hand side in Eq. �A1� is
well defined even for k�1, most of the well known proper-
ties for elliptic integrals and elliptic functions are based on
k�1. Therefore, in the case of k�1, it would be better to let
k1=1 /k, sin y=k sin x, so dx=k1 cos ydy /cos x, cos y
=
1−k2 sin2x, cos x=
1−k1

2 sin2y, and

�
0

� dx

1 − k2 sin2x

= k1�
0

� dy


1 − k1
2 sin2y

= k1F���k1� ,

�A2�

where �=arcsin�k sin ��.

2. ON THE BOUND OF INTEGRATIONS

In Sec. III, the main topic is to deal with the integration in
the form of
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J � �
�0

� dx

A − cos x

. �A3�

Here we show that J is, in general, bounded except for A
→1 and �0→0.

If � /2����0 and A�0, then

�
�0

� dx

A − cos x

�
� − �0


A − cos �0

. �A4�

Therefore, if A�cos �0 and � is bounded, then J is also
bounded. Even if A=cos �0 but A�1, J is still bounded. This
is because around �0, we have

�
�0

�0+� dx

cos �0 − cos x

� �
�0

�0+� dx

sin �0�x − �0�

=
2
�

sin �0
,

�A5�

where � is a small number. J is unbounded only when A
�1 and �0�0, because in this case

�
�0

�0+� dx

A − cos x

� �
0

� dx

1 − cos x

= �
0

� dx

2 sin2�x/2�

� 
2�
0

� dx

x
→ � . �A6�

3. DERIVATION OF EQS. (14) and (15)

If c0=0 and Fx�0, let k0�cos��L /2� and cos�x /2�
=k0 sin y, we have dx=−2k0 cos ydy /sin�x /2� and sin�x /2�
=
1−k0

2 sin2y. From Eq. �10� we find

s = − �
�0

� dx

Fx�cos �L − cos x�

= −
1


2Fx
�

�0

� dx


k0
2 − cos2�x/2�

=
 2

Fx
�

�0

� dy


1 − k0
2 sin2y

=
 2

Fx
�F���k0� − F��0�k0�� , �A7�

where �=arcsin�cos�� /2� /k0�.
If c0=0 and Fx�0, let k0�=sin��L /2�, from Eqs. �7� and

�A2� we find

s =
1


− 2Fxk0�
�

�0

� dx


1 −
1

k0�
2 sin2�x/2�

=
2


− 2Fxk0�
�

�0/2

�/2 dy


1 −
1

k0�
2 sin2y

=
− 2

Fx
�F�	�k0�� − F�	0�k0��� , �A8�

where 	=arcsin�sin�� /2� /k0��. Equations �A7� and �A8� lead
to Eqs. �14� and �15�.

4. DERIVATION OF EQ. (20)

When c0�0 and Fx�0, let k2� 1
2 �1+c0

2 /Fx+cos �L� and
x /2=� /2−y, from Eq. �17� we obtain

s =
1


2Fx
�

�0

� dx

k2 − cos2�x/2�

= −
 2

Fx
�

�0

� dy

k2 − sin2y

= −
 2

Fx
k1�F���k1� − F��0�k1�� , �A9�

where �=� /2−� /2, �0=� /2−�0 /2, and k1=1 /k�1.
Therefore,

��s� = � − 2 am�−
Fx

2
ks + F��0�k1��k1� . �A10�

It is just Eq. �20�. From Eqs. �18� and �A9�, we obtain

L

2
= −
 2

Fx
k1�K�k1� − F��0�k1�� �A11�

or

− kL
Fx

2
+ F��0�k1� = 2K�k1� − F��0�k1� . �A12�

So

am�−
Fx

2
k�L − s� + F��0�k1��k1�

= am�
Fx

2
ks − F��0�k1� + 2K�k1��k1�

= − am�
Fx

2
ks − F��0�k1��k1�

= am�−
Fx

2
ks + F��0�k1��k1� , �A13�

where we have used the properties that am�x+2K�k� �k�=
−am�x �k�, and am�x �k�=−am�−x �k�. That means Eq. �20� is
symmetric with respect to the interchange of s and L−s.

ZICONG ZHOU PHYSICAL REVIEW E 76, 061913 �2007�

061913-10



APPENDIX B: DERIVATION OF B IN EQ. (50)

For the filament free of force, from Eq. �43�, we can find that

�xL� = �
0

L

ds�
0

2�

d� cos �Z��,s;�0,s0 = 0�

=
2lp

1 + 4c0
2lp

2 �cos �0 − 2c0lp sin��0� − e−L/2lp�cos��0 + c0L� − 2c0lp sin��0 + c0L��� , �B1�

�xL
2� = 2�

0

L

ds�
0

s

ds��
0

2�

d��
0

2�

d��Z��,s;��,s��cos � cos ��Z���,s�;�0,s0 = 0�

= 2�
0

L

ds�
0

s

ds��
0

2�

d�� cos��� + c0�s − s���cos ��Z���,s�;�0,s0 = 0�e−�s−s��/2lp

= 2�
0

L

ds�
0

s

ds��
0

2�

d�� cos��� + c0�s − s���cos ��e−�s−s��/2lp� 1

2�
+

1

�
e−�2/lp�s�cos�2��� − �0� − 2c0s���

= �
0

L

ds�
0

s

ds��e−�s−s��/2lp cos�c0�s − s��� + e−�s+3s��/2lp cos�c0�s + s�� + 2�0�� . �B2�

The final expression of �xL
2� is lengthy, but less useful, so we do not present it here. Instead, we obtain

�xL
2� − �xL�2 =

lpB

�1 + 4c0
2lp

2�2�9 + 4c0
2lp

2��1 + c0
2lp

2�
, �B3�

B � �9 + 4c0
2lp

2���8c0
2lp

2 − 1�lp cos�2�0� + 2
�c0
2lp

2 + 1��L − 3lp + 4Lc0
2lp

2 + 4c0
2lp

3� + c0lp
2�5

2
− 2c0

2lp
2�sin�2�0��	

− lp�1 + 4c0
2lp

2�2e−2L/lp��2c0
2lp

2 − 3�cos�2�c0L + �0�� + 5c0lp sin�2�c0L + �0���
− 4lp�9 + 13c0

2lp
2 + 4c0

4lp
4�e−L/lp�cos�c0L + �0� − 2c0lp sin�c0L + �0��2

+ 8lp�c0
2lp

2 + 1�e−L/2lp��9 + 4c0
2lp

2�cos�c0L� + �3 − 20c0
2lp

2�cos�c0L + 2�0�

− 2c0lp��9 + 4c0
2lp

2�sin�c0L� + �7 − 4c0
2lp

2�sin�c0L + 2�0��� . �B4�

When T→0, we obtain �xL
2�= �xL�2=4 sin2�c0L /2�cos2�c0L /2+�0� /c0

2 as it should be for the x component of the end-to-end
distance of an arc with radius 1 /c0.
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