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We give an extensive study on a class of interfacial superroughening processes with finite lateral system size
in 1+1 dimensions described by linear growth equations with spatiotemporally power-law decaying correlated
noise. Since some of these processes have an extremely long relaxation time, we first develop a very efficient
method capable of simulating the interface morphology of these growth processes even in very late time. We
numerically observe that this class of superrough growth processes indeed gradually develops macroscopic
structures with the lateral size comparable to the lateral system size. Through the rigorous analytical study of
the equal-time height difference correlation function, the different-time height difference correlation function,
and the local width, we explicitly evaluate not only the leading anomalous dynamic scaling term but also all the
subleading anomalous dynamic scaling terms which dominate over the ordinary dynamic scaling term. More-
over, the relation between the macroscopic structure formation and anomalous interfacial roughening of the
superrough growth processes is analytically investigated in detail.
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I. INTRODUCTION

The interfacial roughening phenomenon has drawn con-
siderable interest for its generic behaviors widespread in na-
ture [1]. One of the most important physical quantities re-
lated to the interfacial roughening phenomena is the global
interfacial widthwsL ,td, which describes the statistical aver-
age of the interface height fluctuation relative to the average
interface height over the whole system of lateral sizeL at
time t. People have observed that the global interfacial
widths wsL ,td of the rough interfaces obey the ordinary dy-
namic scaling ansatz[2]

wsL,td , Htx/z for t1/z ! L,

Lx for t1/z @ L.
s1d

Here, the two independent exponentsx andz are known as
the global roughness exponent and the dynamic exponent,
respectively. In contrast to the global interfacial width
wsL ,td, the local interfacial widthwsl ,td describes the statis-
tical average of the interface height fluctuation relative to the
average interface height within the local window of lateral
size ls!Ld at time t. From the point of the experimental
measurements, the local interfacial widthwsl ,td is much
more accessible than the global interfacial widthwsL ,td for
both time and economic concerns. Since it is generally be-
lieved that the kinetically roughened interfaces are self-
affine, most people only measurewsl ,td in the experiments.

Recently, this assumption of self-affinity is challenged by
the observations of the peculiar interfacial features of the
“superrough” growth processes(i.e., the global roughness
exponentx.1). People have both experimentally[3–5] and
numerically[6–8] observed that the local interfacial widths
wsl ,td of the superrough growth processes in finite systems
of lateral sizeL obey the anomalous dynamic scaling ansatz

w2sl,td , 5t2x/z for t1/z ! l ,

l2sx−kdt2k/z for l ! t1/z ! L,

l2sx−kdL2k for L ! t1/z.

s2d

In contrast to the ordinary dynamic scaling ansatz, we see
that the spatial scaling here[wsl ,td vs l] in the intermediate
and late time regime is described by the local roughness
exponentx8s;x−kd instead of the global roughness expo-
nent x. The third nonzero independent exponentk, which
describes the local orientational instability of the superrough
interfaces, is the signature of the anomalous dynamic scaling
behavior.

Interestingly, many fluctuating systems in various fields
(such as atmospheric variability[9], currency exchange rates
[10], pathological heart dynamics[11], and nucleotide con-
centrations in deoxyribose nucleic acid sequences[12], etc.)
all exhibit trends in addition to stochastic noise. Their data
profiles bear much resemblance with the interface morphol-
ogy of the superrough growth processes. However, the val-
ues of the scaling exponents reported in various experiments
[3–5,9–12] spread over a considerable range. One source of
the different exponent values could be the correlated nature
of the noise. The presence of correlations in noise can
change the scaling exponents and produce a family of con-
tinuously changing universality classes(if a universality
class is identified by its scaling exponents). Although the
origin of the correlations in noise is not understood, it has
been successfully applied to explain many recent experi-
ments in related fields such as the growth of diamond films
[13], daily temperature fluctuation in Hungary[14], dis-
charge of neurons in motor and parietal areas of the primate
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cortex [15], bursting dynamics of a fiber laser with an in-
jected signal[16], etc. Thus, we are motivated to take an
extensive study on the superrough growth processes with
spatiotemporally correlated noise. We will undertake a deep
investigation on the superrough growth processes with finite
lateral system size ofL in 1+1 dimensions described by the
following class of linear growth equations with spatiotempo-
rally correlated noise:

]thsx,td = s− 1dm+1n]x
2mhsx,td + hsx,td

with positive integerm, s3d

wherehsx,td denotes the interface height at positionx and
time t and hsx,td represents Gaussian-distributed noise of
zero mean and power-law decaying correlation

hsx,tdhsx8,t8d = Dux − x8u2r−1ut − t8u2u−1

with 0 ø r , 1/2 and 0ø u , 1/2. s4d

Here and throughout this paper, the overbar denotes the sta-
tistical average. Note that, form=1 and 2, Eq.(3) with white
noise denotes respectively the well-known Edwards-
Wilkinson equation[17] and the Mullins-Wolf-Villain equa-
tion [18]. By using the simple scaling analysis, it is straight-
forward to obtain the values of the global roughness
exponentx=2mu+r+s2m−1d /2 and the dynamic exponent
z=2m, which is independent ofr andu. Thus, the interfacial
growth processes described by Eqs.(3) and (4) with 2mu
+r+s2m−1d /2.1 display superroughening phenomena.

The outline of this paper is as follows. We first analyti-
cally obtain the exact form of the interface heightshsx,td and
then numerically simulate the interface morphology in order
to get the overall pictorial features of the growth processes
described by this class of equations. Then, we will undertake
an extensive analytical study of the equal-time height differ-
ence correlation function. Special attention will be paid to
the intermediate and late time asymptotic behavior ofGsr ,td,
because the anomalous dynamic scaling behaviors of super-
rough interfaces appear in these two regimes. For complete-
ness, we also derive the different-time height difference cor-
relation function at the steady state in detail. Finally, we will
focus on the relations among the equal-time height difference
correlation function, the local width, and the global width. In
addition, the relation between the macroscopic structure for-
mation and anomalous interfacial roughening of superrough
growth processes will be discussed in detail.

II. INTERFACE CONFIGURATION

Now let us consider a one-dimensional interfacehsx,td
defined on a linear substrate, fromx=0 tox=L, with periodic
boundary conditions. By Fourier transforming Eq.(3) into
k-space, we obtain

]th̃skn,td = − nkn
2mh̃skn,td + h̃skn,td,

wherekn ; ns2p/Ld with n = 0, ± 1, ± 2, . . . .

s5d

Under the assumption of the flat initial conditions, the solu-
tion is then obtained

h̃skn,td = e−nkn
2mtE

0

t

dtenkn
2mth̃skn,td s6d

with

h̃skn,tdh̃skm,t8d = Druknu−2rut − t8u2u−1dn,−m. s7d

Subsequently, by Fourier transforming this result back tox
space, the exact form of the interface heighthsx,td can be
obtained. We then perform some simulation to pictorially
observe the interface morphology. Note that the dynamic ex-
ponentz=2m and thus this class of the growth processes
have extremely long relaxation time as the value ofm in-
creases. Here we first develop a very efficient method ca-
pable of simulating the interface morphology of these growth
processes even in the very late time. By employing Eqs.(6)
and (7), we have

h̃skn,tdh̃skl,td=dn,−lDruknu−2rE
0

t

dte−nkn
2mst−td

3E
0

t

dt8e−nkn
2mst−t8dut − t8u2u−1

=dn,−lS Dr

n1+2uDuknu−s2m+2r+4mud

3E
0

nkn
2mt

dte−tt2u−1f1 − e−2snkn
2mt−tdg

;dn,−lSskn,td. s8d

Since all thehsx,td’s follow the normal distribution, all their
linear combinations including all the real and imaginary

parts of h̃skn,td’s and h̃skn,td’s follow the normal distribu-
tion.

We then take the following four steps.

(1) h̃sk0,td is set to 0, since it is irrelevant to the relative
heights.

(2) h̃skL/2,td is real and follows the normal distribution
with mean zero and standard deviationÎSskL/2,td.

(3) For 0,n,L /2, h̃skn,tdh̃sk−n,td= h̃skn,tdh̃skn,td*

=Sskn,td and h̃skn,tdh̃skn,td=0. Thus,h̃skn,td is a complex
random variable with the real part and the imaginary part
mutually independent and both following the normal distri-
bution with zero mean and standard deviationÎSskn,td /2.

(4) Perform Fourier transformation ofhh̃skn,td ’ sj to get
hhsx,td ’ sj.

We pictorially observe that the growth process described
by Eqs. (3) and (4) with 2mu+r+s2m−1d /2.1, starting
from the flat initial condition, gradually develops a macro-
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scopic structure with the lateral size comparable toL. Be-
sides, the periodic boundary condition restricts the macro-
scopic structure in the form of global mountains or valleys.
For a larger value ofm, there is less restriction on the local
interfacial slope variation and, consequently, the macro-
scopic structure becomes rougher. Thus, as the value ofm
increases, the values of the exponentsx andk both become
larger. For illustration, Fig. 1 demonstrates a series of differ-
ent time snapshots of interface configurations of the growth
processes described by Eqs.(3) and (4) with r=0.2 andu
=0 for m=3.

III. EQUAL-TIME HEIGHT DIFFERENCE CORRELATION
FUNCTION

We will take an extensive analytical study of the equal-
time height difference correlation functionGsr ,td and rigor-
ously evaluate its asymptotic forms in different time regimes.
Gsr ,td is defined as

Gsr,td ; kfhsx,td − hsx + r,tdg2lL = kh2sx,tdlL + kh2sx + r,tdlL

− 2khsx,tdhsx + r,tdlL s9d

with k. . .lL denoting the lateral spatial average over the whole
system of lateral sizeL throughout this paper. By doing some
calculation, we get

khsx,tdhsx + r,tdlL =
2Dr

L
o
n=1

`
e−iknr

nkn
2m+2r

3E
0

t

dtfe−nkn
2mt − e−nkn

2ms2t−tdgt2u−1. s10d

Subsequently,Gsr ,td is obtained as follows:

Gsr,td =
4Dr

L
o
n=1

`
1 − cossknrd

nkn
2m+2r E

0

t

dtfe−nkn
2mt

− e−nkn
2ms2t−tdgt2u−1. s11d

It is easily seen from Eq.(11) that there exists a characteris-
tic wave vectorkcf;sntd−1/2mg. It separates the time evolu-
tion of Gsr ,td into three regimes:kc@1/r, 1 /r @kc@1/L,
andkc!1/L.

For kc@1/L, we can approximate Eq.(11) by taking the
limit L→` and thus

Gsr,tdukc@1/L .
2Dr

pn
E

0

`

dk
1 − cosskrd

k2m+2r

3E
0

t

dtfe−nk2mt − e−nk2ms2t−tdgt2u−1

=
2Dr

pn1+2ukc
2r+4mu+2m−1E

0

`

dtt2u−1

3E
t1/2m

`

dx
1 − cosskcrxd
x2r+4mu+2m se−t − e−2x2m+td. s12d

We then derive the early and intermediate time asymptotes of
Gsr ,td from Eq. (12). First, for the early time regimeskc

@1/r @1/Ld, the asymptotes ofGsr ,td is readily obtained to
the leading order

Gsr,tdukc@1/r , OS Dr

n1+2ukc
−s2r+4mu+2m−1dD . s13d

After substitutingkc=sntd−1/2m, the global roughness expo-
nent x=2mu+r+s2m−1d /2, and the dynamic exponentz
=2m into Eq. (13), the early time asymptote ofGsr ,td can
also be expressed as

Gsr,tdut!rz/n , OS Dr

ns1−2rd/zt
2x/zD . s14d

Next, for the intermediate time regimes1/L!kc!1/rd,
we first employ the following relations

E
0

`

t2u−1etdtE
t1/2m

`

dxfsxde−2x2m

= o
j=0

`
1

j ! s j + 2udE0

`

fsxdx2mj+4mue−2x2m
dx,

E
0

`

t2u−1e−tdtE
t1/2m

`

dxfsxd =E
0

`

fsxdgs2u;x2mddx

with gs2u ;x2md denoting the incomplete Gamma function

FIG. 1. A series of different-time snapshots of the interface con-
figuration for the growth processes described by Eqs.(3) and (4)
with m=3, r=0.2, u=0, n=1/2, Dr=1, and the lateral system size
L=256. The interface configurations at timet=10, t=105, and t
=109 are represented by the solid, dotted, and dashed curves and
magnified for clarity inh direction by 400 times, 20 times, and
unchanged, respectively.
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[19], then perform the integration by parts systematically, and thus rewrite Eq.(12) as

Gsr,tdukc@1/L.
2Dr

pn1+2ukc
2r+4mu+2m−1So

j=0

`
1

j ! s j + 2udE0

`

x2mj+4mudxH 4ms1 − coskcrxd
2r + 4mu + 2m− 1

x−2r−4mue−2x2m

− o
p=1

m−1

s− 1dpF4mGs2m+ 2r + 4mu − 2pd
Gs2m+ 2r + 4mud

skcrd2p−1x2p−1−2r−4mue−2x2m
sin kcrx

+
4mGs2m+ 2r + 4mu − 2p − 1d

Gs2m+ 2r + 4mud
skcrd2px2p−2r−4mue−2x2m

coskcrxG
+ s− 1dm Gs1 + 2r + 4mud

Gs2m+ 2r + 4mud
skcrd2m−1x−1−2r−4mue−2x2m

sin kcrxJ
− s− 1dm Gs1 + 2r + 4mud

2mGs2m+ 2r + 4mud
skcrd2m−1E

0

`

dyy−1−2u−r/mgs2u;ydsinskcry
1/2mdD . s15d

Subsequently, by employing the following relations[19]:

E
0

`

xae−2x2m
dx=

2−sa+1d/2m

2m
GSa + 1

2m
D ,

E
0

`

xa−1sinsbxrdgsn;cxddx=−
b

ca+r o
j=0

`
Gsa + n + r + 2rj d

s2 + r + 2rj ds2j + 1d! S−
b2

c2rD j

+
GsndGsa/rd

ba/rr
cosS r − a

2r
pD

with fb,r,Rec . 0;Resa + nd . − r ;Re n . 0;Rea , rg,

we eventually obtain, after some tedious calculation, the intermediate time asymptote ofGsr ,td as follows:

Gsr,tdurz/n!t!Lz/n .
2Dr

pn1+2ukc
1−2m−4mu−2rFo

q=1

`

C2qskcrd2q + Cskcrd2m−1+4mu+2rG s16d

with the coefficients

C2q =
s− 1dq+121+2u−s2q−2r+1d/2m

s2m+ 2r + 4mu − 2q − 1ds2qd!
GS2q − 2r + 1

2m
DB1/2S2u,1 −

2q − 2r + 1

2m
D s17d

for q,m,

C2q =

s− 1dqGs1 + 2r + 4mudGS2q − 2r + 1

2m
− 1D

2mGs2m+ 2r + 4mudS2q − 2r + 1

2m
− 1 − 2uDs2q − 2m+ 1d!

+
s− 1dq+121+2u−s2q−2r+1d/2m

s2m+ 2r + 4mu − 2q − 1d
GS2q − 2r + 1

2m
D

3B1/2S2u,1 −
2q − 2r + 1

2m
DF 1

s2qd!
−

Gs1 + 2r + 4mud
Gs2m+ 2r + 4muds2q − 2m+ 1d! G+

s− 1dq22u−s2q−2r+1d/2m

ms2q − 2m+ 1d!

3

Gs1 + 2r + 4mudGS2q − 2r + 1

2m
− 1D

Gs2m+ 2r + 4mud
B1/2S2u,2 −

2q − 2r + 1

2m
D s18d
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for qùm, and

C = s− 1dm Gs1 + 2r + 4mud
Gs2m+ 2r + 4mud

Gs2udGs− 2r − 4mud

3sin s2mu + rdp s19d

with Bxsa,bd denoting the incomplete beta function[19]. Af-
ter substitutingkc=sntd−1/2m, the global roughness exponent
x=2mu+r+s2m−1d /2, and the dynamic exponentz=2m
into Eq. (16), the intermediate time asymptote ofGsr ,td can
also be expressed as

Gsr,tdurz/n!t!Lz/n . o
q=1

`

C2q8 t2sx−qd/zr2q + C8r2x s20d

with the coefficientsC2q8 =C2qf2Drn2sx−qd/z/ spn1+2udg and
C8=Cf2Dr / spn1+2udg. Note that, in the right-hand side(rhs)

of Eq. (20), the termsC2q8 t2sx−qd/zr2q with q,x are all domi-
nant over the termC8r2x in the limit of t@ rz/n. Recall that,
for the ordinary dynamic scaling behaviors, the intermediate
time asymptote ofGsr ,td scales asr2x; i.e., Gsr ,t@ rz/nd
,Osr2xd. Thus, the growth processes described by Eqs.(3)
and (4) with 2mu+r+s2m−1d /2.1 all display the anoma-
lous dynamic scaling behaviors with the leading anomalous
term C28t

2sx−1d/zr2 and the subleading anomalous terms
hC48t

2sx−2d/zr4, . . . ,C2fxg8 t2sx−fxgd/zr2fxgj dominant over the ordi-

nary dynamic scaling termC8r2x, wherefxg denotes the in-
teger part ofx throughout this paper.

Subsequently, for the late time regimet@Lz/n, we
now have kc!1/L. The property of kc!1/L in this
regime implies thatnkn

2mt@1 for all positive integern
in Eq. (11):

Gsr,tdt@Lz/n .
4DrGs2ud

n1+2uL
o
n=1

` F1 − cossknrd
kn

2m+2r+4mu G=
DrGs2udL2m+2r+4mu−1

n1+2uGs2m+ 2r + 4mud cosfpsm+ r + 2mudgFzs1 − 2m− 2r − 4mu;1d

+ zs1 − 2m− 2r − 4mu;0d − zS1 − 2m− 2r − 4mu;1 −
r

L
D − zS1 − 2m− 2r − 4mu;

r

L
DG s21d

with zsn ;ud denoting the generalized zeta function[19]. By
employing the following relations:zsn ;u+1d=zsn ;ud−1/un

for uù0, zsn ;1d=zsnd (Riemann’s zeta function), and
]uzsn ;ud=−nzsn+1;ud, we then obtain

zs1 − b;1d + zs1 − b;0d − zs1 − b;1 − dd − zs1 − b;dd

= db−1 − 2o
p=1

`
d2p

s2pd!
Gs2p + 1 −bd

Gs1 − bd
zs2p + 1 −bd.

FIG. 2. The log-log plot of the numerical solution of the equal-
time height difference correlation functionGsr ,td vs time t for the
growth processes described by Eqs.(3) and (4) with m=1 (circle),
m=2 (cross), andm=3 (diamond), respectively. The data points for
them=2 andm=3 cases are shifted upward by 5 units and 10 units
for visibility.

FIG. 3. The log-log plot of the numerical solution of the satu-
rated equal-time height difference correlation functionGsatsr
=10,Ld vs the lateral system sizeL for the growth processes de-
scribed by Eqs.(3) and (4) with m=2 and the noise correlation
indices sr ,ud=s0.1,0.1d (circle), s0.2,0.3d (cross), and s0.4,0.4d
(diamond), respectively.
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Consequently, the late time asymptote ofGsr ,td is obtained:

Gsr,tdut@Lz/n .
DrGs2udL2m+2r+4mu−1

n1+2u Fo
q=1

`

A2qsr/Ld2q

+ Asr/Ld4mu+2r+2m−1G s22d

with the coefficients A2q=−2 tanfpsm+r+2mudgGs2q+1
−2m−2r−4mudzs2q+1−2m−2r−4mud / fps2qd ! g and A
=1/hGs2m+2r+4mudcosfpsm+r+2mudgj. By substituting
the exponentx=2mu+r+s2m−1d /2 into Eq. (22), the
asymptote ofGsr ,td in the late time regime can also be ex-
pressed as

Gsr,tdut@Lz/n . o
q=1

`

A2q8 L2sx−qdr2q + A8r2x s23d

with the coefficients A2q8 =DrGs2udA2q/n1+2u and A8
=DrGs2udA/n1+2u. We see that, in the rhs of Eq.(23), the
terms A2q8 L2sx−qdr2q with q,x are all dominant over the
ordinary dynamic scaling termA8r2x, sinceL@ r. To com-
pare them with Eq.(20), it is just like the timet in the
intermediate time asymptote ofGsr ,td being substituted by
OsLz/nd.

From the obtained early, intermediate, and late time
asymptotes ofGsr ,td, we have analytically shown that
Gsr ,td of the growth processes described by Eqs.(3) and(4)
with 2mu+r+s2m−1d /2.1 does satisfy, to the leading or-
der, the anomalous dynamic scaling ansatz given in Eq.(2)
with l substituted byr. The local roughness exponentx8=1
(independent ofm, r, andu) for all the superrough growth
processes described by Eqs.(3) and (4), while the exponent
k=x−1=2mu+r+s2m−3d /2. In addition to the different
spatial scaling behavior betweenGsr ,td and the global inter-
facial width, the other key feature of anomalous dynamic
scaling ansatz is that, at the regimerz/n! t!Lz/n, Gsr ,td
does not saturate but still increases with time and the lateral
system sizeL enters as an important cutoff for this super-
rough situation. In the thermodynamic limitsL→`d, Gsr ,td
then can increase with time indefinitely. For illustration, Fig.
2 shows the numerical solution ofGsr ,td vs t in the log-log
scale for the interfaces described by Eqs.(3) and (4) with
m=1, 2, 3, and the noise correlation indicesr=0.1, u=0.3.
Thus, the corresponding values of the scaling exponents are
x=1.2, 2.8, 4.4,z=2, 4, 6, andks=x−1d=0.2, 1.8, 3.4 for the
m=1, 2, 3 cases, respectively. The parameters are set to be
n=1, Dr=1, r =10, and the lateral system sizeL=105 (for the
m=1 case), 3000 (for m=2), 500 (for m=3). For visibility,
the data points for them=2 and 3 cases are shifted upward
by 5 and 10 units, respectively, in Fig. 2. The straight lines

with the slope equal to 2x /z and 2k /zf=2sx−1d /zg
are drawn along the data to make the crossover more visib-
le.The figure clearly shows thatGsr ,td evolves through three
different time regimes, distinct from the ordinary dynamic
scaling behaviors. In addition, Fig. 3 shows the saturated
value of the equal-time height difference correlation
function,Gsatsr ,Ld, vs the lateral system sizeL in the log-log
scale for the growth processes described by Eqs.(3) and(4)
with m=2, and the noise indicessr ,ud=s0.1,0.1d, s0.2,0.3d,
and s0.4,0.4d. Thus, the corresponding values of the scaling
exponents are sx ,z,kd=s2,4,1d, s2.9,4,1.9d, and
s3.5,4,2.5d for the sr ,ud=s0.1,0.1d, s0.2,0.3d, ands0.4,0.4d
cases, respectively. The parameters are set to ben=1, Dr

=1, and r =10. The straight lines with the slope equal to
2kf=2sx−1dg are drawn along the data. All the data points fit
the analytical prediction very well. Note that, for the ordi-
nary dynamic scaling ansatz, the saturated value ofGsr ,td is
independent of the lateral system sizeL, if r !L. In contrast,
Gsatsr ,Ld→` asL→` for the superrough interfaces. In Sec.
V, we will discuss in detail this intriguing feature, local ori-
entational instability, of the superrough
interfaces.

IV. DIFFERENT-TIME HEIGHT DIFFERENCE
CORRELATION FUNCTION AT THE STEADY STATE

For completeness, we also study the different-time height
difference correlation function at the steady state, which is
defined as

Gssr,td ; kfhsx,td − hsx + r,t + tdg2lLut@Lz/n. s24d

By performing some calculation, we have

khsx,tdhsx + r,t + tdlLut@Lz/n

.
2Dr

Ln
o
n=1

`
e−iknr

kn
2m+2rSE

0

`

dt8 + e2nkn
2mtE

t

`

dt8

+E
0

t

dt8e2nkn
2mt8De−nkn

2mst+t8dst8d2u−1, s25d

leading to

Gssr,td .
2Dr

Ln
o
n=1

`
1

kn
2m+2rF2E

0

`

dt8 − cosknrSe−nkn
2mtE

0

`

dt8

+ enkn
2mtE

t

`

dt8 + e−nkn
2mtE

0

t

dt8e2nkn
2mt8DG

3e−nkn
2mt8st8d2u−1. s26d
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We then derive the asymptote ofGssr ,td in the limit of rz/n!t!Lz/n as follows:

Gssr,td − Gssr,0d.
Dr

pn1+2uE
0

` dk coskr

k2m+2r+4muS2E
0

`

dt8 − e−nk2mtE
0

`

dt8 − enk2mtE
nk2mt

`

dt8 − e−nk2mtE
0

nk2mt

dt8e2t8De−t8st8d2u−1

=
Dr

pn1+2ukc
4mu+2r+2m−1E

0

`

dt8e−t8st8d2u−1S2E
0

`

dx−E
0

`

dxe−x2m
−E

0

st8d1/2m

dxex2m
− e2t8E

st8d1/2m

`

dxe−x2mD
3

coskcrx

x4mu+2r+2m , s27d

with kc;sntd−1/2m. By performing integration by parts systematically and using the following relations[19]:

E
0

`

xa−1Hsin bx

cosbx
Jdx=

Gsad
ba Hsinsap/2d

cossap/2d J with b . 0 andH− 1 , Re a , 1

0 , Re a , 1
J ,

E
0

`

xae−x2m
dx=

1

2m
GSa + 1

2m
D ,

we can first obtain the following double integrals involved in the asymptote ofGssr ,td:

E
0

`

dt8e−t8st8d2u−1E
0

`

e−x2mdx

xaHsin kcrx

coskcrx
J=Gs2udo

j=0

`
s− 1d j

2ms2j + md!
skcrd2j+mGS2j + m − a + 1

2m
D with Hm = 1

m = 0
J ,

E
0

`

dt8e−t8st8d2u−1E
0

st8d1/2m

ex2mdx

xaHsin kcrx

coskcrx
J = o

j=0

`
s− 1d j

2ms2j + md!

GS2j + m − a + 1

2m
DGS1 − 2u −

2j + m − a + 1

2m
D

Gs1 − 2ud
skcrd2j+m

with Hm = 1

m = 0
J ,

E
0

`

dt8et8st8d2u−1E
st8d1/2m

`

e−x2mdx

xaHsin kcrx

coskcrx
J=o

j=0

`
s− 1d j

2ms2j + md!

Gs2udGS1 − 2u −
2j + m − a + 1

2m
D

GS1 −
2j + m − a + 1

2m
D skcrd2j+m with Hm = 1

m = 0
J .

By employing the earlier obtained relations and with some tedious calculation, we eventually obtain the asymptote ofGssr ,td
as follows:

Gssr,tdurz/n!t!Lz/n − Gssr,0d .
Drkc

1−2m−2r−4mu

pn1+2u Fo
q=1

`

d2qskcrd2q + dskcrd4mu+2r+2m−1G s28d

with the coefficients

d2q =
s− 1dq

s2qd ! s2m− 1 + 2r + 4mu − 2qd3Gs2udGS1 + 2q − 2r

2m
− 2uD

−

GS1 + 2q − 2r

2m
− 2uDGS1 −

1 + 2q − 2r

2m
D

Gs1 − 2ud
+

Gs2udGS1 −
1 + 2q − 2r

2m
D

GS1 + 2u −
1 + 2q − 2r

2m
D 4 s29d

for q,m,
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d2q =
s− 1dq

s2m− 1 + 2r + 4mu − 2qdF 1

s2qd!
−

Gs2r + 4mu + 1d
Gs2m+ 2r + 4muds2q − 2m+ 1d! G3Gs2udGS1 + 2q − 2r

2m
− 2uD

−

GS1 + 2q − 2r

2m
− 2uDGS1 −

1 + 2q − 2r

2m
D

Gs1 − 2ud
+

Gs2udGS1 −
1 + 2q − 2r

2m
D

GS1 + 2u −
1 + 2q − 2r

2m
D 4− s− 1dq3Gs2udGS1 + 2q − 2r

2m
− 1 − 2uD

−

GS1 + 2q − 2r

2m
− 1 − 2uDGS2 −

1 + 2q − 2r

2m
D

Gs1 − 2ud
+

Gs2udGS2 −
1 + 2q − 2r

2m
D

GS2 + 2u −
1 + 2q − 2r

2m
D 4 s30d

for qùm, and

d = s− 1dm+14mGs2r + 4mu + 1d
Gs2m+ 2r + 4mud

Gs2udGs− 2r − 4mud

3sin fsr + 2mudpg. s31d

After substitutingkc=sntd−1/2m, the global roughness expo-
nent x=2mu+r+s2m−1d /2, and the dynamic exponentz
=2m into Eq. (28), the asymptote ofGssr ,td can also be
written as

Gssr,tdurz/n!t!Lz/n − Gssr,0d . o
q=1

`

d2q8 t2sx−qd/zr2q + d8r2x

s32d

with the coefficientsd2q8 =d2qf2Drn2sx−qd/z/ spn1+2udg and d8
=df2Dr / spn1+2udg. Indeed, we see that the terms
d2q8 t2sx−qd/zr2q with q,x are all dominant over the ordinary
dynamic scaling termd8r2x in the limit of t@ rz/n.

V. LOCAL WIDTH AND MACROSCOPIC STRUCTURE
FORMATION

With the extensive studies about the asymptotes ofGsr ,td,
one can easily obtain the asymptotes of the local interfacial
width wsl ,td, defined as

w2sl,td ; kkshsx,td − khsx,tdlld2lllL s33d

with k. . .ll denoting the lateral spatial average calculated
within a local window of lateral sizel throughout this paper.
From the definitions ofGsr ,td and wsl ,td, the relation be-
tweenwsl ,td andGsr ,td is obtained

w2sl,td =
1

l2
E

0

l

sl − rdGsr,tddr. s34d

Then, following the derivation in Sec. III, we obtain the as-
ymptotes of the local interfacial widthwsl ,td as follows:

(i) For t! lz/n:

w2sl,td , OX Dr

ns1−2rd/zt
2x/zC . s35d

(ii ) For lz/n! t!Lz/n:

w2sl,td . o
p=1

`

C2p9 t2sx−pd/zl2p + C9l2x s36d

with the coefficients C2p9 =C2p8 / fs2p+1ds2p+2dg and C9
=C8 / fs2x+1ds2x+2dg.

(iii ) For t@Lz/n:

w2sl,td . o
p=1

`

A2p9 L2sx−pdl2p + A9l2x s37d

with the coefficients A2p9 =A2p8 / fs2p+1ds2p+2dg and A9
=A8 / fs2x+1ds2x+2dg. Note that, in the intermediate
time regime lz/n! t!Lz/n, the leading anomalous
term fC29t

2sx−1d/zl2g and the subleading anomalous
terms hC49t

2sx−2d/zl4, . . . ,C2fxg9 t2sx−fxgd/zl2fxgj dominate over
the ordinary dynamic scaling termC9l2x and, in the
late time regime t@Lz/n, the leading anomalous term
fA29L

2sx−1dl2g and the subleading anomalous terms
hA49L

2sx−2dl4, . . . ,A2fxg9 L2sx−fxgdl2fxgj dominate over the ordi-
nary dynamic scaling termA9l2x for w2sl ,td of the growth
processes described by Eqs.s3d and s4d with 2mu+r+s2m
−1d /2.1. The main reason causing the difference between
the local and global scaling is that all these superrough in-
terfaces are associated with local orientational instability but,
at the same time, with periodic boundary conditions restrict-
ing the development of global interfacial widths, as illus-
trated in Fig. 1.
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Finally, we would like to quantitatively investigate the
temporal development of local orientational instability of this
class of superrough growth processes. The term “local inter-
facial orientation” quantitatively refers tossl ,td, the slope of
a straight line segment obtained by least squares fit to the
interfacial configuration in the local window of sizel at a
given timet. By some calculation, we have

ssl,td =
12

l2
ksx − kxlldhsx,tdll . s38d

Subsequently, after some tedious calculation, we obtain the
explicit relation betweenGsr ,td andks2sl ,tdlL

1/2, the average
magnitude of the local interfacial orientation, as follows:

ks2sl,tdlL =
12

l6
E

0

l

Gsr,tds3l2r − 2r3 − l3ddr. s39d

Next, following the derivation in Sec. III, we obtain the as-
ymptotes ofks2sl ,tdlL as follows:

(i) For t! lz/n:

ks2sl,tdlL , OsDrt
1+2ul2r−3d. s40d

(ii ) For lz/n! t!Lz/n:

ks2sl,tdlL . o
p=1

`

C̃2pt
2sx−pd/zl2p−2 + C̃l2x−2 s41d

with the coefficientsC̃2p=h18p/ fsp+1dsp+2ds2p+1dgjC2p8

and C̃=h18x / fsx+1dsx+2ds2x+1dgjC8.

(iii ) For t@Lz/n:

ks2sl,tdlL . o
p=1

`

Ã2pL
2sx−pdl2p−2 + Ãl2x−2 s42d

with the coefficients Ã2p=h18p/ fsp+1dsp+2ds2p+1dgjA2p8

and Ã=h18x / fsx+1dsx+2ds2x+1dgjA8.
Recall that, for the systems obeying the ordinary dynamic

scaling ansatz, the local interfacial orientation saturates
quickly after the growth time reaching the regimet@ lz/n. In
contrast, for the growth processes described by Eqs.(3) and
(4) with 2mu+r+s2m−1d /2.1, the leading anomalous

term fC̃2t
2sx−1d/zg and the subleading anomalous terms

hC̃4t
2sx−2d/zl2, . . . ,C̃2fxgt

2sx−fxgd/zl2fxg−2j dominate over the or-

dinary dynamic scaling termC̃l2x−2 in the intermediate time
regime lz/n! t!Lz/n and the system sizeL enters as an
important cutoff for the temporal development of local ori-
entational instability.

VI. CONCLUSION

In conclusion, we take an extensive study of a class of
superrough interfacial growth processes with finite lateral
system sizeL in 1+1 dimensions described by linear growth
equations with spatiotemporally power-law decaying corre-
lated noise, Eqs.(3) and (4). By using the scaling analysis,
we have the global roughness exponentx=2mu+r+s2m
−1d /2 and the dynamic exponentz=2m, independent ofr
and u. Thus, the interfacial growth processes described by
Eqs.(3) and (4) with 2mu+r+s2m−1d /2.1 display super-
roughening phenomena. Since some of these processes have
extremely long relaxation time, we first develop a very effi-
cient method capable of simulating the interface morphology
of these growth processes even in the very late time. We
numerically observe that this class of superrough growth
processes indeed gradually develop macroscopic structures
with the lateral size comparable to the lateral system size.
The cause of the anomalous dynamic scaling behaviors in the
superrough growth processes governed by Eqs.(3) and(4) is
totally attributed to the formation of global mountains and
valleys in the interface morphology. The asymptotes of the
equal-time height difference correlation functionGsr ,td are
summarized as follows:

5
Gsr,td,OS Dr

ns1−2rd/zt
2x/zD for t ! rz/n;

Gsr,td.o
q=1

`

C2q8 t2sx−qd/zr2q + C8r2x for rz/n ! t ! Lz/n;

Gsr,td.o
q=1

`

A2q8 L2sx−qdr2q + A8r2x for t @ Lz/n.

Note that, in the intermediate time regime, the terms
hC28t

2sx−1d/zr2, . . . ,C2fxg8 t2sx−fxgd/zr2fxgj are all dominant over

the ordinary dynamic scaling termC8r2x and, in the late time
regime, the termshA28L

2sx−1dr2, . . . ,A2fxg8 L2sx−fxgdr2fxgj are
all dominant over the ordinary dynamic scaling termA8r2x

for the growth processes described by Eqs.(3) and (4)
with 2mu+r+s2m−1d /2.1. The local interfacial width has
the asymptotic behaviors similar to those ofGsr ,td and
distinct from the scaling behaviors of the global interfacial
width. Through our detailed analytic study, we explicitly
obtain not only the leading anomalous dynamic scaling term
but also all the subleading anomalous dynamic scaling terms
which are dominant over the ordinary dynamic scaling term.
Next, we take a quantitative study on the temporal develop-
ment of local orientational instability of these superrough
interfaces. The asymptotes of the average magnitude of local
interfacial orientation, ks2sl ,tdlL

1/2, are summarized as
follows:
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5
ks2sl,tdlL,OsDrt

1+2ul2r−3d, for t ! lz/n;

ks2sl,tdlL.o
p=1

`

C̃2pt
2sx−pd/zl2p−2 + C̃l2x−2, for lz/n ! t ! Lz/n;

ks2sl,tdlL.o
p=1

`

Ã2pL
2sx−pdl2p−2 + Ãl2x−2, for t @ Lz/n.

The term “local orientational instability” quantitatively refers

to the anomalous termshC̃2t
2sx−1d/z, . . . ,C̃2fxgt

2sx−fxgd/zl2fxg−2j
dominant over the ordinary dynamic scaling termC̃l2x−2 in
the intermediate time regimelz/n! t!Lz/n and the global
lateral system sizeL enters as an important cutoff due to the
periodic boundary conditions.

By contrast, the well-known Kardar-Parisi-Zhang(KPZ)
equation [20] with spatiotemporally correlated noise in 1
+1 dimensions do obey the ordinary dynamic scaling ansatz
[21,22]. Especially for the case of purely spatially correlated
noise(rÞ0 andu=0), thes1+1d-dimensional KPZ interface
conserves the Galilean invariance and thus holds the scaling
relation x+z=2, very different from the superrough inter-
faces described by Eqs.(3) and (4). The explicit relation
between the scaling exponents(x and z) and the noise cor-
relation indices(r and u) for the s1+1d-dimensional KPZ
interfaces with purely spatially(or temporally) correlated
noise has been obtained by the extensive dynamical
renormalization-group calculations in Refs.[21,22]. For ex-
plicit comparison with the superrough interfaces described
by Eqs.(3) and (4), we list out their results as follows:

(i) for rÞ0 andu=0:

5x = 1/2 andz= 3/2 with 0, r ø 1/4,

x =
1 + 2r

3
andz=

5 − 2r

3
with 1/4, r , 1;

(ii ) for r=0 anduÞ0:

5
x = 1/2 andz= 3/2 with 0, u ø 0.167,

x . 1.69u + 0.22 andz.
1.44 + 3.38u

1 + 2u

with 0.167, u , 1/2.

The most distinct difference between the KPZ interfaces and
the superrough interfaces described by Eqs.s3d and s4d is
that in the former cases there exists a critical value of the
noise correlation indexsrc=1/4 or uc.0.167d marking the
stability boundary between the short-range and long-range
noise fixed points, while for the latter cases the long-range
noise correlations are always prevalent in the renormaliza-
tion group sense. In a word, the presence of correlations in
noise can change the scaling exponents and produce a
family of continuously changing universality classes. This
might be one of the reasons why the values of the scaling
exponents reported in experiments scatter over a consid-
erable range. The results derived in this report can help
for pinning down this issue and offer a reference for the
interpretation of experiments.
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