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A spontaneous self-healing mechanism, called dislocation-mediated healing (DMH), is demonstrated

by molecular-dynamics simulation in ideal (i.e., constrained in two dimensions) and adsorbed mono-

layers. The self-healing involves a rapid condensation of the vacancies into dislocation dipoles. It is

complete at temperatures above the self-diffusion temperature. An associated collapse of the shear

modulus similar to the Kosterlitz-Thouless dipole dissociation is observed for high vacancy concentra-

tions. The phenomenon is observed in monolayers with a lang-range interparticle interaction and is

more effective as the mobility of the vacancies increases. In Lennard-Jones monolayers (LJM's) a small

compressive pressure is required to observe the effect. In a system with a longer-range potential it has

been observed even with the monolayer under expansion. It also occurs in monolayers with nearest-

neighbor piecewise-linear force interactions (PLFM s) under pressure provided that a third degree of
freedom is present. But in general, in PLFM s vacancies agglomerate into clusters (voids) ~ The same ap-

plies to LJM's below a critical pressure which decreases with temperature and vacancy concentration.
The annealing of the vacancies by the formation of voids is a slower process than DMH, usually by at
least an order of magnitude.

I. INTRODUCTION

Vacancies are the simplest and most common defects
in any solid. They are particularly abundant in thin
films, membranes, and surfaces where exchange with the
environment and damage from external projectiles offer
additional avenues for the creation of these defects. In
physisorbed monolayers concentrations as high as 10
at. %%uobefor emeltin ghav ebee nreported. 'Th e logical
questions are how a lattice sustains such a high vacancy
concentration and whether at these concentrations the
lattice is still an elastic medium. From another perspec-
tive it is intriguing to determine under what conditions
the vacancy damage will repair itself in a two-
dimensional system. This question has potentially a wide
range of applications. In a protective coating, for in-
stance, one form of lifetime-limiting damage is erosion by
bombardment by atmospheric gases or space dust. Also,
organic membranes and cells usually show self-repair ten-
dencies and it is intriguing to investigate whether their
intrinsic physical structure favors healing.

Recently we have shown that, although vacancies are
local defects, a concentration of just a few percent can
have profound consequences on the macroscopic physical
properties of a simple monolayer. Specifically we demon-
strated, by a constant pressure molecular-dynamics (MD)
simulation, a unique self-repair mechanism in an ideal
(i.e., with in-plane degrees of freedom only) slightly
compressed Lennard-Jones monolayer (LJM). The self-
repair is associated with a shear modulus collapse similar
to the melting scenario proposed in the Kosterlitz-
Thouless-Halperin-Nelson-Young (KTHNY) theory of
two-dimensional melting. In this mechanism, which we

could call dislocation-mediated healing (DMH), vacan-
cies condense rapidly into dislocation dipoles, repairing
the lattice; the dipoles then dissociate inducing an inter-
mediate quasifluid state, leading eventually to the anneal-
ing of the defects at the edges. These effects occur for
temperatures just above the self-diffusion temperature.
In the present paper we give a more detailed discussion of
the above results and investigate further the conditions
which favor DMH, focusing notably on the effects of the
range of the interparticle interaction, the pressure, and
the third degree of freedom (in the direction normal to
the plane of the monolayer).

The paper is organized as follows. The following sec-
tion introduces the three model systems used in our simu-
lations. Section III discusses the calculation of the elastic
constants. In Secs. IV and V the results for the various
ideal monolayers are presented, including a subsection on
constant pressure versus constant volume simulations
(Sec. IV C). In Sec. VI we present the effects of the third
degree of freedom. We conclude in Sec. VII with a dis-
cussion.

II. THE MODEL SYSTEMS

Monolayers can appear in many forms with various in-
teractions. We focus on monolayers formed of particles
interacting with central forces. Two types of monolayers
are considered in detail in this paper, one with a long-
range interaction, the Lennard-Jones potential (LJP)
monolayer (LJM), and the other held together by the
nearest-neighbor piecewise linear force potential (PLFP),
the piecewise linear force monolayer (PLFM). The self-
healing mechanism discussed above is seen mainly in the
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w is taken to be 0.15d0, as in Ref. 4. For this value of w
the dislocation core has only one broken bond. Smaller
values of w lead to more broken bonds in the core. The
4-8P is given by

V4 s(r)=4e'
4

CT

(3)

with a cutoff at r =(2.5)' o'=5. 196o'.
Monolayers formed of particles interacting with cen-

tral forces will tend to form triangular lattices. This is
the closest packing in two dimensions and it is favored at
densities where- the nearest-neighbor interparticle dis-
tance is close to the minimum of the interparticle interac-
tion. That is the case whenever the pressure is not too
large, as is the case in our situations. Lattices with fewer
nearest neighbors are obtained at very high pressure.

The LJM and PLFM have been extensively studied, al-
though the motivations of the studies were diff'erent. The
PLFM has been used mostly in simulations of the plasti-
city of solids ' whereas the LJM was used extensively in
attempts to understand the nature of the melting transi-
tion in two dimensions (for reviews see Refs. 7 and 8).
Recently the melting behavior of the PLFM was also con-
sidered. Usually the role of the vacancies in the change
of the elastic properties has been ignored. This paper at-
tempts to assess their significance. The fact that one po-
tential is very short range (PLFP) and the others relative-
ly long range (LJP and 4-8P) will allow us to determine
whether vacancy related properties are significantly a1-
tered by the range of the interacting potential. We also
considered the effects of the substrate by applying a
smooth (without corrugation) holding potential to the
LJM and the PLFM. The potential chosen is the type
occurring in physisorption and is of the van der Waals
type. It was first calculated by Steele' for a graphite
structure and his potential is given by

ideal LJM. The other system, the PLFM, exhibits very
different behavior. It usually does not heal, but rather
tends to develop voids. To explore further the effect of
the range of the interacting potential, we also consider
the monolayer with a 4-8 potential (4-8P) interaction, in
short called the 4-8M. The reasons for choosing the 4-8P
are that it is easy to compare it with the LJP and PLFP
and that it has a longer range than either of the other
two.

The LJP energy between two atoms at a distance r
from each other is given by

'12 ' '6

V (r) =4ELJP
T

The cutoff of the LJP in our simulations was chosen to be
r =2.50.. The PLFP energy between two atoms at a dis-
tance r from each other is given by

,'«(r dp) ——~w— , r & dp+ w

Vptpp(r)= ' —K(r dp 2w) dp+w (r dp+2w

0, r)dp+2w .

6 —10 —44+co' 2 o. zV (z)=
a d 5

1 z—+0.61
3

—3

(4)

where a, is the area of the basal-plane unit cell and d the
interlayer spacing. It can be rewritten in reduced units as

V&&b(z) =Op[a &z
' —azz —

—,
' (a3z +0.61 ) ] (5)

III. CALCULATION OF THE ELASTIC CONSTANTS

Elastic constants yield valuable dynamical and
mechanical information about the effect of the vacancies
on the monolayer. For example, they yield information
concerning the stability or strength of the system and can
be used as order parameters to monitor the healing pro-
cess. In a continuum theory vacancies have no effect on
the elastic properties of a system of particles. Conse-
quently the effects we will be discussing in this paper are
beyond the predictions of continuum elasticity theory.

At zero temperature the calculation of elastic constants
follows the arguments first given by Born and Huang'
and also found in Ref. 13. The elastic constants are ob-
tained from the long-wavelength limit of the elastic
waves.

To obtain an expression for the e1astic constants which
is valid at finite temperatures, an approach different from
the one used at zero temperature is necessary. Squire,
Holt, and Hoover' showed in 1969 that expressions in

a0 can be used as a measure of the strength of the holding
potential. In our simulation, we took a, =0.1230,
Q2=0. 6148, and a3=1.1293. These would be the values
for Xe adsorbed on graphite. Several values of a0 were
considered, a0 =0.4ad0, 0.3ad o, and 0.03ad0. The largest
value applies to Xe on graphite but, as we shall see, for
that value the potential is already strong enough to
prevent any significant change from the ideal monolayer
case. Most calculations were done for ap =0.3adp, which
gives a depth of the holding potential of about
V,„b(0.8855) = —0. 1995m'd p.

We first performed simulations at constant pressure
and constant temperature with periodic boundary condi-
tions (PBC). The damped force method was used to keep
the temperature constant and the Andersen method for
maintaining the pressure constant. " To investigate the
dependence of our results on the choice of the ensemble
we also performed some constant-volume and constant-
temperature simulations.

The three potentials have been chosen to have the same
depth, equal to aw, and the same minimum (cr =2 '

dp
and o'=2 'r dp). For the PLFP the depth is set by the
value of w which has been taken as 0.15dp; consequently
for the LJP and the 4-8 potential s=a'=0. 0225~dp. The
basic time step is O. lt0, where t0 is the unit of time
&m/a. Unless otherwise mentioned our samples are
rhombuses with 28 atoms on the side. Some simulations
were done on rhombuses with 51 atoms on the side to see
if there are any qualitative size efFects.
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1 —H/kg T
e d7)

N.A
(6)

where d~ is the differential volume element in (6N)-
dimensional phase space and

~2

H=g ' + g P(r,, } .
i i)j

(7)

Using the second law of thermodynamics (see, for in-

stance, Ref. 15),

TdS =dE+ VoTr(tde), (8)

the canonical ensemble (which implies constant volume}
can be easily derived from the Helmholtz free energy
Q=E T—S=—k~TlnZ, where kt) is the Boltzmann
constant and Z the classical partition function for the
crystal. Z is a relatively simple sum over all
configurational energies:

dQ= Sd—T V—
() gt pdep~ .

ap

From (9) we obtain the following

(9)

ap

Capy5

an
V, Be, ,

Bt p

Bers

1 BQ
V() Be pBe s

(10}

For an isotropic solid such as the two-dimensional tri-
angular lattice, there are only two independent elastic
constants. Traditionally A, =C»22=C, 2 and }M=C,z, 2

=C44 are chosen to characterize the system. Using Eq.
(11)these constants can be written as

where Vo is the volume of the unstrained system, t is the
internal thermodynamic tension tensor, and e is the mac-
roscopic strain tensor, we find

2 Py 2 z 2 Py 2 + Pz 2
y

2

(12)

+ 2 + (13)

where the quantities hx and hy represent the x and y
coordinates of r;j=r, —r, r the modulus of that vector,
and A the area of the system. The sums are over all pairs
of particles. The last thermal average in each equation is
required when an external pressure is exerted on the
solid. It arises from the term in the free energy which
guarantees equilibrium with respect to volume change
(for details see Ref. 16). The last term in Eq. (13) is the
kinetic-energy contribution.

The above formulas have been used in Monte Carlo
simulations. They are also applicable to constant-volume
MD simulations. For an ensemble in which the angles of
the MD cell vector and the diagonal thermodynamic ten-
sion is kept constant but the size of the system can fiuctu-
ate (for instance, see Ref. 17), the expression for (M can be
shown to be still applicable.

For uniform dilation, such as in Andersen's ensem-
ble, the conserved thermodynamic potential is basically
bibb's potential and can be written as'

A=E —TS+P(V—V())=E TS+ Vog t e—, (14)

from which it follows that

1 A
ap

Vo Be p z., ~.. (16)

Cap@5
tap B'A

V() Be pBers z;,
(17)

for i' and kAl. Only off-diagonal elastic constants,
such as the shear modulus, are accessible from this ther-
modynamic potential.

The fundamental connection between thermodynamics
and statistical mechanics gives

A= —k& T lne, (18)

where

drostatic pressure.
Frotn Eq. (8) we obtain

d A= SdT Voge—dt —
V() gt pdep, {15)

since in this case the macroscopic strain tensor e and
the thermodynamic stress tensor t are scalar s:
3e Vo={V—Vo) and t =P, where P is the internal hy-

1 —H/k~ Te=
3~ e d~ de»d e22de33N!

(19)
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2

H= g + gP(r;. )+ Vpgt e
i i)j a

(20) A, =(&3/4) 1+
&3~

(27)

Because of the integration in 8 over the diagonal ele-
ments of the strain, the formulas for the off-diagonal elas-
tic constants are the same as in the canonical ensemble,
i.e., Eq. (13) still applies. In the present work, Eq. (13)
was used to calculate p in both the constant-pressure and
constant-area ensembles and the results were found to be
consistent (see Sec. IV C).

Diagonal elements of C &z& cannot be obtained from
Eq. (17) as is evident from Eq. (15), but they have to be
expressed in terms of fluctuations in the strain' ' as

k~T
(C ') ttrs=5(e mrs) . (21)

p=(&3/4)(4 —3p' )K,

X=(&3/4)(5p'" —4)~,

(22)

But as pointed out by Sprik, Impey, and Klein ' and oth-
ers, ' the rate of convergence of Eq. (21) is unsatisfac-
tory. It is much more eScient to Grst determine the equi-
librium lattice constant for the pressure of interest using
a constant pressure simulation and then do a simulation
in the corresponding canonical (constant volume) ensem-
ble using formulas obtained from Eq. (11), i.e., in our
case Eqs. (12) and (13). This can be understood if one ob-
serves that Eq. (21) follows the fluctuations in a macro-
scopic quantity which evolves slowly, especially in a large
system. In contrast Eqs. (12) and (13) calculate the elastic
constants by probing microscopic features of the system
where fluctuations occur on a shorter time scale.

Elastic properties for the two-dimensional LJM do not
seem to be available in print even for zero temperature.
Values are, however, reported for some rare-gas solids
which are very close to the LJM. In contrast, simple
analytical results can be derived for the PLFM at zero
temperature. For this case the Lame parameters are
given by

Hence the zero-temperature elastic constants for a per-
fect PLFM at a pressure of 0.0053~ are A, =0.446~ and
@=0.425m, varying little for a large range of pressures.
In contrast, for the LJM with P=0.0087m, A, =0.836K
and p=0. 825~. The LJM, because of its longer range in-
teractions, is a stiffer solid.

IV. RESULTS FOR THE IDEAL
LJM AND PI.FM

First, we consider the ideal monolayer which has only
in-plane degrees of freedom. Some preliminary results on
the slightly compressed LJM and PLFM have been re-
ported earlier. For the range of pressure of interest, the
melting temperature is about the same in both systems,
specifically 0.

010~do�/ks

for the LJM (Refs. 24 and 7)
and 0.011xdp/ks for the PLFM. In comparison the
self-diffusion temperature for vacancies TD in these sys-
teins is approximately 0 0055.+0 0005. ~dp2/ks.

A. Low-temperature elastic constants (below T~)

At temperatures below Tz, the vacancies do not move
over long time intervals. The elastic constants measure
the weakening of the system in the presence of the de-
fects. Figure 1 shows the variation, as a function of va-
cancy concentration c„,of the shear modulus (p) and the
bulk modulus (B =A, +p, ), normalized to their respective
perfect lattice values po and 80. The temperature was
T=0.002zdp/ks and vacancy concentrations from 0 to
3.8 at. % were considered. The pressure on the LJM was
0.0087~ while on the PLFM it was 0.0053K.

The range of the potential seems to have little effect on
the rate of decrease of the shear or bulk modulus with in-
creasing vacancy concentration. The shear modulus loses
a fifth of its value for a 4 at. % concentration

where p is the density relative to the equilibrium.
Using the formula for the contribution of the interpar-

ticle interactions to the pressure,

P= gE; r;
2W,.„. 'J 'J ' (24)

where F; and r, are, respectively, the force of interaction
and the vector joining particles i and j, it is straightfor-
ward to show that, in the perfect PLFM with only
nearest-neighbor interactions, at zero temperature the
pressure P is related to the lattice constant d by

M

0.95-
M

0o 0.90-
O
M

0.85—
Q)

U
0.80—Q)

U
M

pl pp

8/Bp

doP=&3 —1 x .
d

(25)

0.75
1 2

vacancy concentration (at. %)

Using this equation, the elastic constants can be rewritten
in terms of P:

—Pp=(v 3/4) 1 —&3—

FIG. 1. Variation of the shear modulus p {squares) and the
bulk modulus B=A,+p {circles), both normalized to the zero
vacancy values po and Bo, respectively, as a function of vacancy
concentration for the LJM {full symbols) and the PLFM {open
symbols) at the temperature 0.002~do /k&.
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of vacancies. This corresponds to bp/go=(p —pq)/
po= —5e„. The bulk modulus decreases at the slightly

lower rate b,B/Bo = —3.5c„. As Fig. 1 shows, there is a
scatter in the data with vacancies present. For each con-
centration there are many possible configurations of va-

cancies. Figure 1 shows the average over several
configurations for each concentration.

B. Self-reyair mechanisms (above Ta)

As the temperature is raised, the vacancies start to
move. Two types of behavior, which are i11ustrated in

Fig. 2, are observed above the diffusion temperature. Ei-
ther the vacancies condense rapidly into a dislocation di-

pole, what we call dislocation-mediated healing (DMH)
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FIR. 2. (a} Typical low-temperature configuration of atoms for either the LJM or the PLFM for a vacancy concentration of
c„=2.56 at. %. {b) and (c) Same configuration after relaxation during a time t =46000to and 56500to, respectively, at the tempera-
ture T=0.006xdo/k~ in the LJM with pressure 0.087sc (the arrows placed at the cores of the dislocations are Burgers vectors). This
is an example of dislocation-mediated healing. In (b) we have a 60' dipole with the burgers vector making an angle of 60' with the
vector joining the two dislocations. The vacancies are lines up in a row. In {c) the dislocations have glided along the direction of
their burgers vector. (d)-{f) started with the same initial configuration {a), but are for the PLFM at the same temperature as the
LJM, but with pressure P=0.0053m. They show the different stages of the formation of a large void: {d) at t=360000to, (e) at
t =1118000to,and (f) at t=1850000to.
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[Figs. 2(b) and 2(c)], or they difFuse slowly into small va-
cancy clusters [Fig. 2(d}], which eventually anneal out of
the system by forming a large void [Figs. 2(e) and 2(I}].

0.6
(a)

M 0.4-
LI00

o 02-
Q)

N ~ 0.006

o 0.009

1. The Lennard-Jones monolayer

In the I.JM, under slight pressure (specifically 0.0087'.
in the runs below) the first scenario occurs when the va-
cancies are in sufBcient number. For fewer than 15 va-
cancies in a rhombus 28 atoms on the side (or c„&1.9
at. %), the vacancies diffuse into small vacancy clusters.
For 15 vacancies or more (or c„+1.9 at. %), the vacan-
cies are removed by condensing into a "large" vacancy
dislocation dipole (separation equal to larger than 15
atomic rows) [see Fig. 2(b)]. The PBC introduce a
periodicity in the behavior of our systein [see Fig. 3(a)].
For more than 28 vacancies (or c„)3.6 at. %) there are
more vacancies than would fit into one dipole, so 28 va-
cancies are annealed out and the remainder form vacancy
clusters unless their numbers exceed the minimum re-
quired to form a second large dipole. When a dipole is
present in the sample, the shear modulus collapses [see
Fig. 3(a)]. The dipole appears very quickly, within a few
thousand tp or a few nanoseconds if parameters appropri-

ate to Xe are used. To complete the process, which
means that the average lattice constant and the shear
modulus have stabilized, takes longer, about 30000to (or
about 20 ns with Xe parameters}. This is an upper limit
obtained with vacancies uniformly placed on the sample.
With other configurations the times were shorter.

The above behavior, which we call dislocation-
mediated healing, is consistent with our findings on the
properties of dislocation dipoles in LJP-type mono-
layers. ' In these references it is shown that dipoles
containing less than 15 vacancies {or c„&1.9 at. %)
behave more like composite pinned defects than elastic
dipoles. They are the favored defects at very low vacancy
concentrations. On the other hand, a logarithmic depen-
dence of the energy on size makes large dipoles favorable
at higher concentrations. These move nearly freely in the
direction of their Burgers vector over a wide range of an-

gles (45'-135'). ' The high mobility of the dislocations
leads to a loss of shear strength and translational order.
One dipole is sufficient, although the effect may be
enhanced by the screening resulting from similar dipoles
(in our case in the neighboring cells of our periodic struc-
ture}. The collapse in the shear modulus is similar to
what occurs in the melting mechanism proposed by the
KTHNY (Ref. 3) theory of two-dimensional melting,
where dislocation dipoles are thermally activated, and
under the action of their mutual screening dissociate,
leading to a collapse of the shear modulus without loss of
the bond orientational order.

DMH is observed for all pressures larger than a critical
value 0.0066m for T=0.006irdo/kii a temperature just
slightly above the di8'usion temperature TD. For smaller
pressures void formation is observed. In a typical run the
annealing by the formation of a large void occurred
within 100000to, slower than DMH. In Fig. 4 we have
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FIG. 3. Variation of the shear modulus (in units of ~) as a
function of vacancy concentration for temperatures of
0.006K'd o /kg and 0.009vd o /kz for (a) the LJM (at a pressure
P =0.0087~) and {b) the PLFM (P =0.0053~).

FIG. 4. Pressure versus temperature phase diagram of the
LJM showering regions of dislocation-mediated healing and void
formation in the solid phase for a vacancy concentration
c„=0.0256 at. %%uo . Th e liqui d, soli d, an dga sphas eboundarie s
are Monte Carlo results of Barker, Henderson, and Abraham
(Ref. 24). (Pressures in units of ~ and temperatures in units of
Kd o /k~ . To convert pressures to e/u and temperatures to
e/k& multiply by 35.28 and 44.44, respectively. )
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mapped out a phase diagram of the LJM showing in the
solid phase the regions of DMH and void formation for a
vacancy concentration c„=0.0256 at. %%uo . Th e line

separating regions of DMH and void formation is a func-
tion of c„,moving towards lower pressures with increas-
ing c„. When the temperature is raised DMH is more
rapid and persists to lower pressures. Below
TD- 0.0055~d c/~s vacancy diffusion is very slow and

the self-difFusion temperature is a natural boundary for
DMH. Going to high temperatures the critical line goes
to zero as the temperature approaches the tricritical
point located at T=0.00934~dnlktt close to the zero
pressure line. 2

With the increase of the temperature towards the melt-
ing line the shear modulus collapse is more complete and
occurs at lower vacancy concentrations. This can be seen
in Fig. 3(a) for 2 =0.0087a. It should be noted that the
liquid-solid phase boundary is for zero-vacancy concen-
tration. In this paper we restrict ourselves to the solid
phase. The question of healing in the liquid phase opens
up a new range of issues, which will not be addressed in
this paper.

The preference for void formation at low pressure can
be understood if one notes that as the pressure is de-
creased and can even become negative, the energies of the
vacancy and the short dislocation dipoles drop rapidly,
making these defects and associated small defect clusters
very favorable. These in turn then act as nuclei for a
larger void.

2. The piecewise linear force rnonolayer

Void formation is the usual response of the short-range
potential system, the PLFM, under vacancy damage.
The vacancies form clusters which eventually combine
into large voids [see Figs. 2(d) and 2(f)]. This typically
takes much longer than DMH or even void formation in
the LJM (at least by an order of magnitude). The precise
time depends on the distribution of the vacancies. In the
example shown in Fig. 2(f), it was as high as l. 85 X 10 to
at T=0.006adolks with a pressure of 0.0053m'. The
PLFP is nearest neighbor, so as soon as a triangle of va-
cancies is formed, additional vacancies in the cluster do
not add to the energy. In eflect, one has a free surface
and the vacancies anneal out, but remain within the sys-
tem. The temperature-induced diffusion smooths out the
elastic constants even before the voids are formed [see
Fig. 3(b)). There is no collapse of the shear modulus,
which is reduced only by an amount comparable to the
reduction in density. In this system vacancy clusters
have lower energies than vacancy dislocation dipoles in
contrast to those in the LJM.

We have also considered pressures of 0.01' and 0.02m

for c„=0.0256 at. % at a temperature of 0.006Kdo/k~
and still 6nd no DMH. A larger sample size is not ex-
pected to make any difference either. A sample of 51 X51
atoms for c„=2.56 at. '% showed the same cavitation
behavior.

Zero and negative pressures were also considered with
similar results. While the system under negative pressure
expanded, the zero-pressure system contracted. This

TABLE I. The shear moduli in constant-volume I'p„) and
constant-pressure (p~) ensembles for the LJM system at
T=0.006Kd0 lkg with P =0.0087K.

0.0000
0.0064
0.0130
0.0193

0.490
0.465
0.450
0.281

0.498
0.472
0.446
0.286

latter behavior is a peculiarity of the PLFM. The ab-
sence of a hard core in the PLFP favors interstitial types
of defects at Snite temperature.

V. MONOLAYER W1TH THE
4-8 IN'I'KRAC. IION POTENTIAL

Suspecting that the difference in behavior observed in
the LJM and the PLFM was due to the longer range of
the LJP with its ensuing consequences on vacancy in-

TABLE II. The shear moduli in constant-volume (p„) and
constant-pressure (p~) ensembles for the PLFM system at
T=0.006Kdo/kg with P =0.0053K.

0.0000
0.0256

0.419
0.370

0.419
0.370

C. Constant pressure vs constant volume

The work described above was done in the constant-
pressure and the constant-temperature ensemble with
PBC. To check whether the choice of the ensemble has
any influence on the behavior of the two systems we per-
formed simulations in the constant-volume and constant-
temperature ensemble for both the compressed LJM and
PLFM with PBC. To avoid biasing the results, we did
not use the output data (velocities, coordinates, etc.) of
the constant-pressure runs as the input data of the
constant-volume run. We started with samples of areas
equal to the average area of a constant pressure run with
the same number of vacancies after the initial compres-
sion which usually only takes about 2000tc. This means
that there is a slight overcompression in the constant
volume compared with the corresponding constant-
pressure run. The same behavior is observed as in the
constant pressure runs for the LJM and PLFM, but
things happen over a longer time scale. It appears that
volume fluctuations in the constant-pressure run favor
large-scale readjustments of the particles and hence ac-
celerate the healing.

Just to emphasize how similar the behavior in the two
ensembles are, we show the shear moduli calculated in
the constant-volume simulation. As can be seen from
Tables I and II they are very close to those obtained in
the constant-pressure runs at the same temperature and
average pressure.



B. JOOS, Z. ZHOU, AND M. S. DUESBERY

00000 QOQQQOOQQ QQO QQQOQQQ 000oooooo ooooooooooaooooooaoo
OOOOOOOQOOOOOOOOO 000000 OOOO0000000000000004 000000000 0 4OOOOQOOOOOOOOOOOOOQOOOOOOOO000000000400QQ0000000000000400000000000000000040000000oooooooooooooooaoooooaooooo400000000400000C+00000040000oooooa oooo oooooooooooooooa ooQooooooooaoooooooooooooooooooooooaoooooooooooaoooooooooo00000000000000QQQQQ000004004oooooooooooaoooooaooooooaoooooooooooooooooooooooooooaoooooooaoaoooeo oooooooooooooooQoooooooooaooooooooooooooooo

QQQQ 000 OOOOQ00400000QOOQOQ00004000000000 004004QQOOQOOOOOOOOOOOOQOooooOoo OOOoooaoaoaaaoooooooooooooooooaoooaoooooaoaaaoaooeooooooooooooaoooooaooo4OooOaaOOOOoaaaaoaooooooeoo4oo aoooeOoo aOo oooaoaooooao044oooaaooooeooooo000 Qooaoa 0 440000004 00 00 000 0aooooooaaoooooaooaoooaooooQooooooaooooooooaooaooooooo

temperature 0.006@do/kz. We found the behaviors sen-
sitive to the pressure and the strength of the holding po-
tential.

A. PLFM

For a very weak holding potential, the adsorbed atoms
form rapidly a multilayer film instead of a monolayer.
This is what is shown in Fig. 6(a) where ao, the measure
of the strength of the holding potential [see Eq. (5)], is
equal to 0.03~d~o, c„=1.3 at. %%uo, th epressur e is0.0053K,

and the configuration is for a time t =2000to.

FIG. 5. Configurations of atoms of the system with the 4-8
interaction potential at T=0.0015~de/k& and c„=2.56 at. %,
at pressure —0.0087~ and at t =20000t p and d =0.9517dp.

teractions and dislocation properties, we considered a
monolayer with an even longer-range interaction than the
LJP, the 4-8P defined in Eq. (3). This system, the 4-8M,
was found to exhibit DMH at all pressures considered,
from P =0.0087~ down to —0.0087~, i.e., a DMH is pre-
ferred over the formation of voids even at negative pres-
sures. At zero pressure the melting temperature is
0.0095~d 0/ks and the self-diffusion temperature
0.0036+0.0005~do/k~. Typically a vacancy concentra-
tion of c„=2.56 at. %%uowa schosen . Th eDM Hwa s found
to be rapid also at zero pressure with a completion time
of -30000to at T=0.006~do/kz, a fairly large tempera-
ture in this system. With negative pressure the DMH
still appears quickly, but its completion time is very sensi-
tive to temperature. With P = —0.0087~ and
T=0.0045ado/ks the lattice parameter stabilizes after
20000to, but after 450000to, the lattice is still partially
disordered when T=O 006~d /0k~. .

Contrary to the other two systems with a shorter-range

potential, partial DMH was observed in the 4-8M below
the isolated vacancy diffusion temperature, specifically at
T=O 0025ad.o/k~ and 0 0015xdo./k~. The healing is
not complete. As seen in Fig. S, isolated vacancies
remain in the system.

VI. EFFECT OF THE THIRD DEGREE OF FREEDOM

So far we have only considered the ideal monolayer,
which is constrained to a two-dimensional space. In a
real adsorbed system there is, however, always the third
degree of freedom. The monolayer will be held by a hold-
ing potential, which can be weak or strong, and may or
may not have significant lateral variations. We will not
consider here the e8ects of the lateral variations. The
third degree of freedom opens up new trajectories to the
particles and, if the holding potential is not too strong,
we can expect to find some qualitative changes in the
healing mechanisms.

To study the changes brought about by the third de-
gree of freedom, we applied a smooth (unmodulating)
holding potential to both the LJM and the PLFM at the
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FIG. 6. Configurations of atoms for the PLFM with a
smooth holding potential at T=0.006&cd p/kz for several values
of ap, the strength of the holding potential: (a) ap=0. 03~de,
c„=1.3 at. %, pressure 0.0053&&, and at t =2000tp, (b)
ap =0.3rd p, c„=2.5 at. %, pressure 0.0053~, and at
t —167 000tp and d =0.9814dp. (c) The same as (b) lout the
pressure is 0.0035~, and t =535 000tp and d =0.9957dp.
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In contrast, with a strong holding potential (such as
with ao =0.4ad0) the behavior of the system is similar to
that of the ideal monolayer.

For an intermediate strength of the holding potential,
something interesting happens. Though the interparticle
interaction is short range, we find that the system will ex-
hibit DMH with ao =0.3xd o, c„=2. 5 at. %, and pressure
equal to 0.0053m. Figure 6(b) shows configurations with
these conditions at time 167000tp. Similar to the ideal
compressed monolayer, the vacancies are removed to
condense into a large vacancy dislocation dipoles.

However, as we have found in the ideal monolayer,
when the pressure becomes very low, the systein shows
no DMH. Cavitation is, however, quite slow. For a la-
teral pressure of 0.002~, after 535000tp, as seen in Fig.
6(c), the voids are still fairly small and show no haste in
condensing into a larger cavity. (The same applies for a
pressure of 0.0035m. )

B. LJM

At the intermediate strength of the holding potential
a0=0. 3~do~, DMH is still observed in the LJM, and
remains pressure dependent. At pressures below 0.0095m

voids are formed. But the time needed to form a large
void is still considerably less than in the PLFM. For
P=0.0095m, a completed DMH was observed within
20000tp. For P =0.0087~ a single large void was formed
within less than 100000tp.

VH. CONCLUSIONS

In summary, just above the self-difFusion temperature
and well below the melting temperature, only a very low
concentration of isolated vacancies can be sustained in an
ideal monolayer. What happens to the vacancies depends
strongly on the range of the interparticle interaction. A
short-range interaction favors the formation of voids,
which can eventually combine to form a large cavity.
When there is a sufficient number of vacancies, mono-
layers with long-range interparticle interactions heal
through the creation of a dislocation dipole and an inter-
mediate disordered state is formed, a process that we call
dislocation-mediated healing. For the system with the 4-
8P, the DMH remains rapid at zero pressure and still
occurs, albeit slowly, at negative pressures. In the LJM,
with the intermediate-range LJP, both behaviors are ob-
served. The range of the LJP is not sufficient to permit
spontaneous DMH without the application of a little
pressure.

The healing is rapid, of the order of nanoseconds when
rare-gas parameters are used. Void formation is slow, the
more so for the shorter-range potential.

Dislocations weaken the shear strength of the mono-
layer, but even fairly large voids (-30 atoms) have no

dramatic efFect on the shear modulus, which seems to be
mainly a function of the vacancy concentration.

If we consider the efFects of the substrate, the situation
becomes more complex. We found that a third degree of
freedom favors DMH even in the short-range force sys-
tem. This may be due to the increased mobility of the va-
cancies which facilitates the annealing process. In an ac-
tual monolayer adsorbed on a substrate, the corrugation
in the substrate field may have to be considered. The
substrate corrugation does two things: (i) it screens out
the interactions between atoms decreasing the efFective

range of the interparticle interaction and (ii) increases the
barrier to diffusion of the vacancies. Therefore, the
effects of the substrate modulating field seem to
discourage DMH. The high vacancy concentration ob-
served in some rare-gas monolayers adsorbed on graphite
indicates significant substrate corrugation effects. The
exchange with the gas occurs in a difFerent time scale
than the healing of the monolayer and cannot account for
the large concentration of vacancies. Structurally these
monolayers are therefore quite different from ideal mono-
layers and are not good candidates for DMH.

It would be interesting to investigate the role that va-
cancies play in the melting of a physisorbed system in
particular one with a weak substrate corrugation, such as
Xe on Ag(111). In an experimental environment
thermal vacancies are unavoidable. The vacancies may
condense into clusters or they may play a catalytic role in
the creation of dislocation dipoles in a form of DMH,
producing a melting transition with persistence of bond
orientational order as predicted by KTHNY (Ref. 3)
theory. The melting transition, from a thermodynamic
standpoint, may or may not be continuous.

With respect to the self-healing of damaged two-
dimensional systems, such as membranes, our studies
suggest that several conditions permit physical mecha-
nisms to be operative: difFusion of the vacancies, a long-
range interparticle interaction, and pressure. As we saw
above for the PLFM with a third degree of freedom or
the 4-8 M, the predominance of one property can dimin-
ish the reliance on the others. In biological membranes
enough of the above conditions may be satisfied to have
physical mechanisms of self-healing. The molecules usu-
ally form liquid phases, which presumably implies high
difFusion constants. They are embedded in a pressuriz-
ing fluid and long-range interactions can be present.
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