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The spin-splitting energies of the conduction band for ideal wurtzite materials are calculated within
the nearest-neighbor tight-binding method. It is found that ideal wurtzite bulk inversion asymmetry
yields not only a spin-degenerate line �along the kz axis� but also a minimum-spin-splitting surface,
which can be regarded as a spin-degenerate surface in the form of bkz

2−k�
2=0 �b�4� near the �

point. This phenomenon is referred to as the Dresselhaus effect �defined as the cubic-in-k term� in
bulk wurtzite materials because it generates a term �wz�bkz

2−k�
2���xky −�ykx� in the two-band k ·p

Hamiltonian. © 2007 American Institute of Physics. �DOI: 10.1063/1.2775038�

In recent years a great deal of research in semiconductor
physics has been focused on an emerging field—spintronics.
One of the most promising proposals is the spin transistor
due to Datta and Das.1 Recently, a different type of spin
transistor, the resonant spin lifetime �RSL� transistor is
proposed,2,3 which is based on the special properties of the
spin lifetime tensor due to the interplay between bulk inver-
sion asymmetry �BIA� and structure inversion asymmetry
�SIA� in the zinc-blende4 or wurtzite5 quantum wells �QWs�.
In the zinc-blende semiconductors, BIA yields a cubic-k term
�called Dresselhaus effect�6 and SIA leads to a linear-k term
�named Rashba effect�7 in the two-band k ·p Hamiltonian.
The Dresselhaus and Rashba effects in zinc-blende semicon-
ductors have been well understood because they have been
studied intensively by many theoretical methods such as the
two-band k ·p, eight-band k ·p, and tight-binding �also
known as the linear-combination-of-atomic-orbital �LCAO��
methods.6–11 In bulk wurtzite semiconductors, there are two
wurtzite bulk inversion asymmetry �WBIA� effects; one is
the Dresselhaus effect which leads to a k3 term in the two-
band k ·p model and the other is the wurtzite structure inver-
sion asymmetry �WSIA� effect, which yields a linear-k term
in the two-band k ·p model.12,13 The WSIA effect, which may
also be called as the Rashba effect in bulk wurtzite, has been
vigorously investigated since 1950s.13 However, the Dressel-
haus effect in bulk wurtzite is still unknown. In this letter, we
shall investigate the Dresselhaus effect in bulk wurtzite
within the nearest-neighbor LCAO method.10,14 In the
nearest-neighbor LCAO model, ideal wurtzite structure
�c /a=0.633 and u=d� /c=0.375, where d� is the length of the
bonds parallel to the c axis� yields only the Dresselhaus ef-
fect, while deviations from ideal structure generate the
WSIA effect.12 Recently, Tsubaki et al.15 and Lo et al.16,17

independently observed a large spin-splitting energy in the
two-dimensional electron gases �2DEGs� of GaN/AlGaN
wurtzite heterostructures; moreover, the spin-splitting energy
at Fermi surface can be changed dramatically from
0 to 10 meV, by varying the carrier concentrations or the
gate voltages.15,16 These imply that not only large spin split-
ting energies12 but also a spin-degenerate surface16 exists in
the bulk wurtzite semiconductors. In this letter, we shall
demonstrate that a cone-shaped minimum-spin-splitting
�MSS� surface does exist in the ideal wurtzite Brillouin zone,
due to the Dresselhaus effect. Near the � point, the MSS
surface can be regarded as a spin-degenerate surface because
its splitting energies are generally small. Such spin-
degenerate surface can be described by an equation of bkz

2

−k�
2=0 �b�4�, where k� =k� �x̂ cos �+ ŷ sin ��, kx ��M, and

ky ��K.
To study the Dresselhaus effect in bulk wurtzite, the

band structures for ideal wurtzite materials AlN, ZnO, CdS,
CdSe, and ZnS are calculated using the nearest-neighbor
LCAO method. The LCAO Hamiltonian H�k� can be written
in the following form:

H�k� = H0�k� + HSO�k� = �H0
↑↑�k� 0

0 H0
↓↓�k�

�
+ �HSO

↑↑ HSO
↑↓

HSO
↓↑ HSO

↓↓ � . �1�

The Hamiltonian without the spin-orbit terms �i.e., H0
���k�,

�=↑ or ↓� has been given in Ref. 14, the tight-binding pa-
rameters are listed in Table I of Ref. 14, and the renormalized
spin-orbit splittings of the anion and cation p states �e.g.,
�N=9 meV and �Al=24 meV� in HSO�k� have been reported
in Refs. 10 and 11. In this letter, only the results for AlN will
be shown as an example for studying the Dresselhaus effect.
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Figure 1 shows the absolute values of the spin-splitting
energy �i.e., 	�E�k� ,� ,kz�	� as a function of k� for �=0°, 15°,
and 30° in the planes of �a� kz=0, �b� kz=0.3� /c, and �c�
kz=0.5� /c. It is seen that in each kz plane, the three curves
��=0°, 15°, and 30°� are strongly � dependent for k�

	0.9� /c. However, as k� decreases, they become less � de-
pendent. They even become nearly � independent when k�


0.6� /c. These imply that the LCAO Hamiltonian exhibits
a sixfold symmetry at large k� but exhibits a circular-
symmetry-like behavior at small k�. We refer to this phenom-
enon as the wurtzite rotation symmetry �WRS� effect. The
most interesting phenomenon found in Fig. 1 is that each
curve exhibits a MSS point located at k�

MSS�kz ,�� �note that
k�

MSS�0,��=0�. This means that a cone-shaped MSS surface
exists in the ideal wurtzite Brillouin zone. The MSS surface
can be regarded as a spin-degenerate surface because the
spin splitting on the MSS surface is generally very weak. For
the spin degeneracy, specifically speaking, there are 12 spin-
degenerate lines on the MSS surface and they appear only
when � equals 0° and integer multiples of 30° �see inset of
Fig. 1�c��. Totally, there are 13 spin-degenerate lines in the
Brillouin zone if the spin-degenerate line �A �k� =0� due to
time-reversal symmetry is also included.

Figure 2 shows the projections of the MSS surface �solid
lines� and the spin-degenerate surface of k�

2−4.028kz
2=0

=�E �dash lines� onto the planes of �i� kz=0.2� /c, �ii� kz
=0.4� /c, and �iii� kz=0.6� /c. It is seen that the projections
of the spin-degenerate surface �dashed lines� exhibit a
circular-symmetry behavior, while the projections of the
MSS surface �solid lines� exhibit a wurtzite-rotation-
symmetry behavior . It is also seen that the dash line and
solid line are nearly identical at small kz �see Fig. 2�i�� but
have significant difference at large kz �see Fig. 2�iii��. These
indicate that the hexagonal-cone-shaped MSS surface can be
well described by a circular-cone-shaped spin-degenerate
surface �i.e., bkz

2−k�
2=0=�E, b=4.028� when kz is not too

large due to the WRS effect. The existence of the spin-
degenerate surface bkz

2−k�
2=0 implies that the spin-splitting

energy �E near the � point can be written in the form of
�E=2�wzk��bkz

2−k�
2�, in which �E=k� =0 represents the spin-

degenerate line �A. When the spin directions are also taken
into account,7,18 the spin-orbit component of the two-band
k ·p Hamiltonian HSO �k� can be written as

HSO�k� = �wz�bkz
2 − k�

2���xky − �ykx� . �2�

Here the spin directions are determined by examining the
conduction-band eigenvectors of the LCAO Hamiltonian.
The value of �wz evaluated from the k�

3-dependent curve in
the inset of Fig. 1�a� is about 0.74 meV Å3. This confirms
that in the nearest-neighbor LCAO model, ideal wurtzite
structure yields the cubic-k terms of �wz�bkz

2−k�
2���xky

−�ykx� in the two-band k ·p Hamiltonian. This phenomenon
is referred to as the Dresselhaus effect in bulk wurtzite. Note
that in the above equation �Eq. �2��, the high-order terms
have been neglected. When the high-order terms are also
taken into account, the spin-degenerate surface will become
a MSS surface. The coefficients b for some other ideal
wurtzite materials �b�, �=ZnO, CdS, CdSe, and ZnS� were
also calculated. It is interesting to find that 
b is nearly equal
to the ratio of the average length of �M and �K to �A �see
inset of Fig. 1�b�� for all the wurtzite materials �i.e., 
b
���M +�K� / �2�A�=2.032�. This means that the Dressel-
haus effect mentioned above is valid for all the wurtzite ma-
terials.

From the above discussions, we conclude that the
Dresselhaus effect yields the cubic-k terms shown in Eq. �2�,
and therefore, produces a cone-shaped MSS surface in the
Brillouin zone. When the WSIA effect is also taken into ac-
count in Eq. �2�, the two-band k ·p Hamiltonian becomes
HSO �k�= ��wz−�wz�k�

2−bkz
2�� ��xky −�ykx�, where �wz is the

WSIA coefficient. This explains why the WSIA effect �s-pz
mixing at k=0� can change the shape of the MSS surface. As
shown in Fig. 3, the MSS surface for real wurtzite AlN has a
shape of hexagonal hyperboloid of two sheets �Fig. 3�b��, but
the MSS surface for ideal wurtzite AlN has a shape of hex-
agonal cone �Fig. 3�a��. Here the band structures for real
wurtzite AlN are obtained by differentiating the bond in the
�001� direction from three other bonds.19 Certainly, the MSS
surface will have a shape of hexagonal hyperboloid of one
sheet if �wz/�wz	0 �Please refer to Fig. 1�a� of Ref. 16.�. If
the WSIA effect �e.g., strain induced WSIA effect� is ex-
tremely strong, the MSS surface may be completely elimi-
nated. The strong coupling between the conduction bands
�e.g., �C1−�C3 coupling12 in GaN� should also have signifi-
cant influence on the shape of the MSS surface. Its influence

FIG. 1. �Color online� Spin-splitting energy as a function of k� for �=0°,
15°, and 30° on the planes of �a� kz=0, �b� kz=0.3� /c, and �c� kz=0.5� /c
using the LCAO method. The first Brillouin zone with symmetry points is
shown in the inset of �b�.

FIG. 2. �Color online� Projections of the minimum spin-splitting surface
�solid lines� and the reference spin-degenerate surface k�

2=4.028kz
2 �dash

lines� onto the planes of �i� kz=0.2� /c, �ii� kz=0.4� /c, and �iii� kz

=0.6� /c.
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is currently under investigation using the second-nearest-
neighbor LCAO method and will be reported in the near
future. The spin splitting energies for real wurtzite AlN were
also calculated using the local-density approximation �LDA�
of the density-functional theory �DFT�. The DFT-LDA re-
sults confirm the fact that the MSS surface for real wurtzite
AlN has a shape of hexagonal hyperboloid of two sheets.

In the two-band k ·p model, the 2D wurtzite Hamiltonian
can be written as7,18

HIA�k� = ��IA − �wzk�
2���xky − �ykx� , �3�

and the effective spin splitting becomes �E�k�=2��IAk�

−�wzk�
3�. Here �IA=�R+�BIA, �BIA=�wz+�wzb�kz

2�, and �R

is the Rashba coefficient. Clearly, a spin-degenerate Fermi
surface given by �R+�BIA−�wzkF

2 =0 can be achieved in
2DEGs of wurtzite heterostructures by varying k� �e.g., car-
rier concentration�, �R �e.g., gate voltage�, �wz �e.g., crystal
field or strain�, and b�kz

2� �e.g., quantum well width�. These
phenomena indeed have been partly observed in the
experiments.15,16 The 2D �001�-grown wurtzite Hamiltonian
is indeed very similar to the 2D �111�-grown zinc-blende
Hamiltonian, except that the former does not have the �z

component of the k3 terms �i.e., ��3kx
2−ky

2�ky�z /
6 as shown
in Eq. �9� of Ref. 4, where z is oriented along the growth
direction�. The Dresselhaus effect yields a �z component of
the k3 terms in 2D �111� zinc-blende Hamiltonian but not in
2D �001� wurtzite Hamiltonian because the wurtzite crystals
have a sixfold rotation �001�-axis symmetry but the zinc-
blende crystals have a threefold rotation �111�-axis symme-
try. Thus, we suggest that the �001� wurtzite QWs �e.g.,
GaN/AlN� are also the potential candidates for spintronic
devices such as the RSL transistor,2,3 in addition to the �111�

zinc-blende QWs.4,5 Note that, due to our calculations, the
three spin lifetime components all show a resonant behavior
in �001� wurtzite QWs, when the Fermi surface is spin
degenerate.5 This reveals the importance of the Dresselhaus
effect, because it generates a spin-degenerate surface near
the � point in the wurtzite Brillouin zone. The spin-
degenerate Fermi surface, which has been observed in the
n-type GaN QWs,16 is also expected to be observed experi-
mentally in the p-type GaAs QWs.20

In conclusion, the Dresselhaus effect in ideal bulk wurtz-
ite has been investigated using the nearest-neighbor scheme
of the LCAO method. It is demonstrated that the Dresselhaus
effect yields a hexagonal-cone-shaped MSS surface in the
ideal wurtzite Brillouin zone. The hexagonal-cone-shaped
MSS surface can be regarded as circular-cone-shaped spin-
degenerate surface in the vicinity of the � point. This indi-
cates that the k3 terms generated by the Dresselhaus effect
can be written as �wz�bkz

2−k�
2���xky −�ykx� �b�4� in the

two-band k ·p Hamiltonian. The Dresselhaus effect yields a
spin-degenerate surface in bulk wurtzite but not in bulk zinc
blende, simply because the wurtzite crystals �sixfold rotation
�001� axis� have a higher rotation symmetry than the zinc-
blende crystals �threefold rotation �111� axis�. The existence
of the spin-degenerate surface makes the �001�-wurtzite QW
�e.g., GaN/AlN� a potential candidate for spintronic devices
such as the RSL transistor.
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