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This paper proposes a robust observer-based output feedback control for fuzzy descriptor systems. First,
we represent singular nonlinear dynamic system into Takagi-Sugeno (T-S) fuzzy descriptor model which
have a tighter representation for a wider class of nonlinear systems in comparison to general state-space
models. To achieve the control objective, we design a fuzzy controller and observer in a unified and sys-

tematic manner. The stability analysis of the overall closed-loop fuzzy system leads to formulation of lin-
ear matrix inequalities (LMIs). The advantages of the approach are three fold. First, we consider
conditions of immeasurable states which allows a practical design of sensorless control systems. Sec-
ondly, we address the robustness issue in the system which avoids control performance deterioration
or instability due to disturbance or approximation errors in the system. Third, we formulate the overall
control problem into LMIs. Using the observer and controller gains by solving LMIs, we carry out numer-
ical simulations which verify theoretical statements.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade fuzzy control has been proved to be very fruit-
ful in many applications. Using the T-S fuzzy model (Takagi &
Sugeno, 1985) representation of nonlinear systems into local linear
fuzzy models has lead to vast amounts of research. For example fuz-
zy control (Chang, Chang, Tao, Lin, & Taur, 2012; Jain, Sivakumaran,
& Radhakrishnan, 2011; Joh, Chen, & Langari, 1998; Precup, Radac,
Tomescu, Petriu, & Preitl, 2013; Wang, Tanaka, & Griffin, 1996); fuz-
zy model based chaotic control and synchronization (Lian, Chiu,
Chiang, & Liu, 2001b; Tanaka, Ikeda, & Wang, 1998b); robust fuzzy
control and observer based approaches (Balasubramaniam,
Vembarasan, & Rakkiyappan, 2012; Chiang & Liu, 2012; Chen,
Tseng, & Uang, 1999, 2000; Lendek, Lauber, Guerra, Babuka, &
Schutter, 2010; Lian, Chiu, Chiang, & Liu, 2001a; Soliman, Elshafei,
Bendary, & Mansour, 2009; Sung, Kim, Park, & Joo, 2010; Tanaka,
Ikeda, & Wang, 1996, 1998a; Tognetti, Oliveira, & Peres, 2012; Tsai,
2011; Tanaka & Sano, 1994) which take modeling errors, external
disturbances, measurement errors into considerations. Many of
the mentioned works approach the design of controllers and
observers in an systematic manner. The stability analysis of the
closed-loop system leads to formulation of linear matrix inequali-
ties (LMIs) (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994;
Muralisankar, Gopalakrishnan, & Balasubramaniam, 2012). Then
the controller and observer gains are found once the feasible LMIs

* Corresponding author. Tel.: +886 2 2621 5656x2582; fax: +886 2 2620 9814.
E-mail addresses: pliu@ieee.org (P. Liu), g9478028@cycu.edu.tw (W.-T. Yang),
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are solved. The process of solving LMIs can be done numerically by
powerful packaged software toolboxes (e.g., MATLAB LMI Toolbox).

On the other hand, descriptor systems have a tighter represen-
tation for a wider class of systems in comparison to traditional
state-space models. This concept has also been extended to T-S
fuzzy model descriptor systems (Chang & Yang, 2011; Taniguchi,
Tanaka, & Wang, 2000). Note that using traditional T-S fuzzy mod-
eling for Lagrangian mechanical systems, we need a fuzzy model
representation for the inverse of the inertia matrix. This matrix in-
verse will drastically increase the rule numbers. On the other hand,
if the fuzzy descriptor system is used, the number fuzzy rules will
be decreased. This rule reduction is an important issue for LMI-
based control synthesis since larger number of LMI rules may lead
to infeasible problems.

In this paper, we extend the good properties of fuzzy descriptor
systems and fuzzy observers into the design of robust output feed-
back control for fuzzy descriptor systems. The overall controller
and observer design leads to formulating of LMIs. Then a multi-
ple-stage process is utilized in place of simultaneously solving con-
troller and observer parameters. The advantages of the approach
are three fold. First, we consider conditions of immeasurable states
which allows a practical design of sensorless control systems. Sec-
ondly, we address the robustness issue in the system which avoids
control performance deterioration or instability due to disturbance
and approximation errors. Third, we formulate the overall control
problem into LMIs in a systemic and unified manner.

The rest of the paper is organized as follows. In Section 2, we
introduce the fuzzy descriptor system representation of a singular
nonlinear dynamic system. In Section 3, we carry out the stability
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Fig. 1. State trajectories of descriptor system. State feedback: solid line; observer-based control: dotted line.
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Fig. 2. Controller performance with the observer-based control approach.

analysis of the fuzzy descriptor system and formulate the LMI cri-
terion. In Section 4, we carry out numerical simulations on the con-
trol design. Finally some conclusions are made in Section 5.

2. Preliminaries and problem formulation

A general singular nonlinear system is given as

M(x(t))x(t) = f(x(t)) + gX(0)u(t) + w(t)
y(t) =hx)

where x(t) = [X1(t) X5(t) - - - x(£)]" € R" is the state vector; u(t) = [u(t)
Us(t) - - um(t)]" € R™ is the control input; w(t) is the unknown but
bounded disturbance; M(x(t)), fix(t)), g(x(t)), h(x(t)) are smooth
functions with f{0) = 0; and y(t) € R? is the output. The T-S fuzzy
representation of (1) is as follows:

(1)

Plant Rule k :
IF z;(t) is Ny; and ---
THEN
RHS Plant rule i :
IF z;(t)is F;; and - --
THEN E,x(t)
y(t) =
where Ny, and Fyg are fuzzy sets; E, € R"" is the descriptor matrix;
A; e R™", Bie R™™, C; € R¥*" are constant matrices with appropri-

ate dimensions, and RHS stands for right-hand-side. The inferred
output

and zg(t) is Nig

and z,(t) is F,
= Ax(t) + Biu(t) + o(t)
C,‘X(t)

VEx(t) E}q N{Ax(t) + Biu(t) + Af + w(t)}

Zﬂk
. (2)

y(t) = _vi(z(£)Cix(t) + Ah,

i=1

where j(z(t)) = &L aia(t) = I ou(a(t) = TNy
(#(1)), Bilz(t)) = X2FFii(zi(0)); Niglzi(0)), Fu(zj(t)) are the grade mem-
berships of zj(t) in Ny;, Fy, respectively; and z(t) = [z1(t)za(t) - - - z,(t)].

It is straightforward that pu,(z(t)) and

>0, Yty (z() =1

vi(z(t)) = 0, S, vi(z(t)) = 1. We rewrite the fuzzy descriptor sys-
tem (2) as

ZZM )M (2(0) {Ax"(£) + Biu(t) + Af* + @’ (1)},

i=1 k=1

}:u £))Cix*(t) + Ah
3)
where  Af =f(x(t)) — Yi_yviz(t))Aix(t), Ah = h(x) — 371 vi(z(D))
C; x(t) are approximation errors. Define x*(t) = [x' (t) X' (t)]",
. [1 O . [0 1 . [0 .

=lo o] %=|n g} B=|p) G-l 0
o= |y 0= o)
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If Af*, w*(t), Ah is omitted from (3), then we name the system as an
“approximate system”. On the other hand, (3) is the “true system”.

The fuzzy descriptor system (3) is admissible Masubuchi,
Kamitane, Ohara, and Suda (1997) if there exists V(x*(t))
:x*T(t)E*TXx*(t) and the following conditions are satisfied — (1)
det (SE* — 377 1 Yot vi(2) 1 (2)A;) # 0; (2) the open-loop system is
impulse-free. Consequently, these conditions are satisfied if a com-
mon matrix X RZ™2n det X » 0 such that E'X = X"F* > 0 and
ArX +XTA; < 0.

First, we consider the open-loop system of (3) which is

ZZV £))AiX

i=1 k=

(6) + Af + @ (8). 4)
Second, we now design the controller rule as follows.

Control Rule i: IF z;(t) is Fi; and - - - and z,(t) is F;g THEN
u(t) = -Kpx*(t) fori=1,2,...,r.

where Kj, = [Ki 0] and Kj are controller gains to be chosen later.
We propose a modified PDC

ZZ%

i=1 k=

szx ( ) (5)
to stabilize the fuzzy descriptor system (3).
2.1. Immeasurable states

To estimate the immeasurable states, we design the observer
rule as follows:
Plant Rule k :

IF z;(t)is Ni; and - --

THEN

RHS Observer Rule i :

IF z1(t) is Fi; and --- and z(t) is Fig
THEN Eix(t) = AR() + Bu(t) + Li(y(t) — (1))

y(t) = Cix(t)

and L; is the observer gain of the ith observer rule to be chosen later.
The overall inferred output is

Z/“‘k NERX( Zv, N{AR(t

and zg(t) iS Nig

) + Biu(t) + Liy(t) = y(0)l}

(6)
where z;(t) ~ zg(t) are the premise variables which consist of the
states of the system; F; (j=1,2,...,g) are the fuzzy sets; r is the
number of fuzzy rules; Ei, A;, B; and C; are system matrices with
appropriate dimensions. For simplicity, we assume that the mem-
bership functions have been normalized, ie., > i_T[%,F;(z(t))
= 1. Using the singleton fuzzifier, product inference, and weighted
defuzzifier, the augmented fuzzy system is inferred as follows:

= 33 )0 A () + Bu() + Ly () - 300}
i=1 k=
—ZZZM E){AR(t
i=1 j=1 k=1
+Bju(t) LyCre'(t )+L;kAh}
= vi(z(t)Gx (1), (7)
i=1

where L, = {O L

ik ik

ZZ vi(z(t)) (2

i=1 k=1

] . Instead of (5), the PDC fuzzy controller
t)K;x (b), 8)
where x*(t) = [T (t) T (t)]"

zy observer (7) and denoting e*(t) = x*(t)
ere)’

. Combining the fuzzy controller (8), fuz-

=X (1), e (t) =[e(t)

, we arrive with the system representations:

DD HLL

i=1 j=1 k=1

{( - B,*K;k) (6) + BiKGe' (6) + af + (D)}
Zizvz 1))y (2(1))

i=1 j=1 k=1

{ (A~ L,*kc;) €'(6) + of + ' (t) - LyAh}

£) i (2(8))

)

Assumption 1. There exists a known bounding matrix A¢y such
that [|Af]| < [|Agux(t)]].

From the assumption above, we have

AFTAF = AFTAF < (Agx (1) (Adyx(t)) = (@5x' (1) (DX (1))
where ®;=[A¢y0]. The following theorem gives the sufficient con-
dition of stability for (4) and (9).

Assumption 2. There exist bounding matrices ¢4, ¢c such that
AR < lgae(Oll,  [[30F1 i vi(2(t)  pu(z(0) LAl < [[3214 21k
v;(2(0)) . (2(6)) Ly pce(t) || for all e(t).

According to Assumption 2, we have

AFAf = AFTAF < (dae()) (dae(t)) = (Dae’ (1)) (Dae(£))
where @4 = [¢4 0].

T
Ahl‘kTAhlk - <szl ( ( ))LTkAh>

22,
(szjv o)t ))L:kAh)

< (2;vf(z(r))m(z(r))<z<t>>L;;¢ce<r>>T

(zz 0) 1, 2020 Ly eelt >)

- (lﬁ;iﬁ;v;-(z(t))m(z(t))<z<r>><1>fkce*<t>>T

x @vaz(o)uk(z(r»(z(t))cbikce*<t>>

(z(t))e"T (£)Dj Dyce’ ()

<N a0 (z(0)

i=1 i=k

where ®yc = [Lj¢c 0] for i=1,2,...,r. If w(t), Ah, Af are omitted
from (9), we name the system as an “approximate error system.”

3. Stability analysis

In details, we present the stability criterion for the open-loop
system (4) in the following:
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Theorem 1. The open-loop approximate fuzzy descriptor system (4)
(where Af* and w*(t) are omitted) is quadratically stable if there exists
a common matrix X such that

E'X=X'E >0 (10)
AR X+ XA, <0
Furthermore, if there exists a common matrix X and Q > 0 such that

(10) and

(11)

ARX+ XA+ Of0; +Q + XX X
P | <0

_ 1
02

are satisfied for all the pairs (i,k) except for pairs v(z(t))u(z(t)) = 0 for
all z(t), then the true system (4) has the following robust performance

T ox X ' § 1 /T
/O X" (1)Qx (t)dt < X7 (0)Qx (O)JFF/0 oo (7)||dt. (12)

Proof 1. Choose the Lyapunov function candidate
V(X (t) = x" (HE" Xx'(t).
The time derivative
Vix(t) = %" (HE" Xx'(£) + x7 (HE" X' (¢)
=ﬁ;g;maowudeRnwiX+xM;ywo
io1 k=
+ (Af + o ()X (8) + X" (OXT(Af* + ' (1))
A X+ XA, XT

NN n(e)
i1 k=1 X — 51
430" 0070+ (@) (@0 (1)
+x" (HXTXx (1)

= 3 viat) ()
i=1 k=1

ARX + XA + Of 0 + Q + XX X
xn'(0) n(t)
X ~ b1

%Wme%ﬁm@w>

< —x"(HQX' (1) +%w*

+

T

(O (t)
(13)

where 1'(t) = [x*T(t) @w*(t)]. Integrating on both sides of (13) with
respect to time, we obtain the robust property (12). O

Corollary 1. Let Q = block-diag {Q;1, Q22} >0. The conditions (10) and
(11) are satisfied if there exists feasible solutions to the following EVP
maximize p? $;,83M;, subject to

$1=5 >0 (14)

[t X2 Sy Sy S S5
Y2 A O Sg 0 Sg
S 0 -4 0 0 0

! <0 (15)
S 5 0 -1 0 0
Si 0 0 0 -1 0

A 0 0 0 I

where

A = AlSs + Ssh; + A¢fTA¢f +Qu,
Y1y =S +A'S, — SIE,,
Y22 = —ExSt — SiEx + Qa.

Proof 2. Define

ST 0
X= {53 51]'

Then rewrite E*TX = XE* > 0. The above inequality implies

I 0[S, O S; 0
E'X = - >0,
o olls s)=lo o

X'E = St Ss {I 0}: Si 0 > 0.
0 sj|l0 o0 00

Therefore (14) is proven.
From (11) and using Schur complements, we have

AX+ XA+ ol +Q XX
X %l 0| <0

X 0 -

Then by definition of X, the LMI (15) is obtained. O

In the following, we discuss the case where the overall control-
ler and observer is considered.

Theorem 2. The fuzzy descriptor system (2) along with controller (8)
and observer (6) forming the closed-loop system (9) is asymptotically
stable, if there exist nonsingular matrices P and R, matrices Z;, Z3, R;,
R3, Mj and Hy, and scalars vy, p, €,>0, n=1,2,...,8 satisfying the
following LMIs:

Z1=2,>0, (16)

b1 b L 0 ZjAgf
Oy, b —Zs I 0
Zy ~Zy Wi —5Wi 0

i

<0, i=1,2,...,r. (17)
0 Z; —Lwy

A¢Zy O 0 0 &l

LWy, 0

7




<7>11 &12 27, 0
1, $22 —2Z5 2Z,
ZZI —22§ *%Wn -2 Wi,

P2
0 2y -ZWi, —ZWyp
|2A¢eZ; O 0 0
RI =R, >0,
T le}
<0, i=1,2,...,r
|:Y¥z Y22
X;l T <0, i<j.
Y, Yz

where matrices are denoted as

[ A 2 R! R§
A 0 R!
R 0 -1 0
Y]] _ 1 2
Rs R; 0 —%I
0 0 0 0
-Likd)cl Lik¢c2 0 0
(¢} Kj, esR! &RY eR!
0 O 0 &Ry 0
0 O 0 0 0
Y]Z =
0 O 0 0 0
0 o0 0 0 0
L0 0 0 0 0

Yo, = diag[—esl, —&1l, —&gl, —&sl, —

Ju  Jia 2R] 2R}
A Iy 0 2R
2R, 0 -2 0

Fo_| 2R 2R 0 21
0 0 0 0
ij¢’c] ij¢’c2 0 0
0 0 0 0
LLikpes Lt O 0

r.T T T T T
¢A 87R1 87R3 85R1 85R3

0 0 &R 0 &R
f,-[0 0 0 0 0
0 0 0 0 0
0 0 0 0 ©
0 0 0 0 O

Y‘zz :diag —%8617 —8717 —8717 —851,

—&l, —é&sl,
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2Z1A¢] ]
0
0 <0, i<j.
0
72841 ]
(18)
(19)
(20)
(21)
R ]
0 LI
0 0
0 0 ’
—&gl 0
0 —&gl i
SGR;-_
86R¥
0
0
0
0 -
&6l —861],
0 4Ly 0 oLL]
0 oLl 0 oLL
0 0 0 0
0 0 0 0
—&l 0 0 0
0 -&I O 0
0 0 -&l O
0 0 0 —&sl |

&R &Ry K K]

jk ik

0 &R 0 o0

0 0 0 0
0 0 0 0
0 0 0 0
o 0 0 O]
1 1
—&sl, —28617 —5851,

b1 = —Z§ —Z3+ Qm + &4l,

12 = Z{AiT — M}Bl + ZYE; + 71,

P2 = —ZiEi —EZy + éaz + ElBiB,-T + &4l,

b1 = —2Z8 — 275 + 2641 +2Qa,

12 = ZIA] — MLB] + ZIA] — MLB] +2Z3E, + 27,

2 = —2EZy — 2Z1EL + 2Qup + 2e4] + £;,BBT + £3BB].

Jn1 = JATRy — yCTHL + YRIA; — yHyCi + Sar,

1z = ATRy — CTHY + R — yRTE,,

2= fE,tR1 — R?Ek +Sa2,

i1 = YAIRy — yC H} + AR, — yCIH}, + yRIA; — 7HaC;
+ YRTA; — YHiCi + 2841,

12 =A{Ri — CJHj, + ATRy — C{H}, + 2R] — 29R{E,

22 = —2E;Ry — 2RIE, + 2S.

SN

E
A
k
A

The controller and observer gains are accordingly Kj = Mij{l and
Ly = Rl’lH,-k, if there exists a common matrix Q > 0 and S > 0, the sys-
tem (9) has the following robust performance

! T * T ] Dy 1 T
/0 x"(1)Qx"(t)dt < X' (0)E" Px (OH_F/O low*(T)||dT

/T e’T(1)Se* (1)dt < e (0)E" Re*(0) +l /T |w*(7)||dT 22)
A ( < 2 ), \ I (

Proof 3. Define

S] 0 Qa] 0 :| |:R1 0 :|
= . R= , S
S3 51}’ Q { 0 Qa) Ry R

Sa 0
- { 0 saz}’
yi) = xT(t) eT(0).

Then, we rewrite E‘'P=P'E*>0 as P77 ET=EP'>0 and
E*TR = RTE* > 0. The above inequality implies

{Sl Or{l 0} {1 OHS1 or
= > 0.
S; S 00 0 0]S; S

We then arrive with

zZl -7} {1 0} {1 OHZ1 0} {zl 0}
- = >0,
o zI|loo 0 0]|-7Z5 Z 0 0

where Z, = S;' and Z; = 5;'S;S; . Note that

s sl % 2)=[o 1]
Sy Sill-Zs zy] |0 1]

We consider the Lyapunov function candidate

pP—

V() = Zvi(‘//(t)) (23)
where

Vix () = xT(OETPx' (t), V,(e*(t)) = eT(t)ETRe’(¢b).
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Therefore the time derivative

Vi(x(6)) = xT(OETPX (6) +
Va(er(t)) = &T(t)ERe (t) +

xT(OETPx (1),
eT(HETRe (1)

Therefore the time derivative along (9) is

<SS utelt) el lalt)

i=1 j=1 k=1
{ ") (GhP+ PG ) (6) + €7(0)(BiKG,) P (1)
+X TP (BiKj )e'(6) + (AF T + T (6)Px (1)

TOPT(Af* + (1) + xT(H)Qx(£) — xT(£)Qx"(¢)
1

Ww*T(t)w*(r) - ;w*f(t)w*(r)}

which further leads to

) < 3OS 20y (2(0)

i=1 k=1

x {X*T(t) (GﬁkP + PTG,-ik)X*(t) +eT(t)(BiK;) Px (t)
+xT (0P (BKy)e () + (AFT + T (0)Px’(¢)
+XT(OPT(Af* + (1) + X T(DQX () — xT(H)Qx' (1)

1 * * 1 * *
+Ew”(t)a) (t) — Ew Ttw (t)}
+ZZZZM £)) e (2(1))

i=1 i<j k=1

x {X*T(t) <(G‘J" ; Gir) p o pr (G ; G"")>x*(t)

% * * * T
. (B, K +B; 1<1.,<)
(e
+ (AFT+ o T(E)Px (1) +

itNjk

e*
+ 2

Px*(t) +xT(t)P" (
xT(OP(Af* + o (1))

+xT(0)Qx (t) — xT(H)Qx" (1) + %w”(t)w*(t)

—%w (t)w*(t)}

According to inequality 2x"y < ex"x + ¢ 'y"y, where ¢ > 0, we have

e’ (6)(BiK;)"Px' () + X ()P (B{Kj)e' (1)

i*Nik

< e’ (DP'B;B; Px' (1) + & 'e” (DK Kie' (D), i =]

) (B*K*k + B*K!k>

BiK;, + B K,
e’ ()" ((FBI)

Px () + x (£)P" (5 ’kz

g7 KK
< &X' ()PTBIS' Px*(t) + &5 'e” (t) f"z et (t) + esx” (£)PT

B*B*T «T prx
x %PX*(I')+8§1€*T(I‘)K'2K"< *(f), i
<]j.

and

BiKj, +BK;.) e

(AfT + o T(£))Px* () + x*T(H)PT(Af* + ' (t))
< & AfTAF + eax” (H)PTPX(£) + " (H)PX'(t) + x* ()P ().

We therefore have

0) < 33N vz ()

i=1 j=1 k=1
AW~ i) © - Lish+ a7+ (0] Re @)
+ e (OR[(Ai — LG )€ (6) - LiAh + AF" + 0 (0)]

+ e T(6)Se* (t) — eT(t)Se" () + %w”(t)w*(t)
1

- pw”(r)w*m}

which further leads to

ZZv 0) it (2(0){ e (0) (WikR + R Wi e (£)

i=1 k=
+ Ah}f Re'(t) + eT(ORT AR, + (AfT + o (t))Re* (1)
+eT(ORT(Af* + o (t) + eT(6)Se’ () — eT(t)Se’(¢)

+ %w”(t)w*(t) - %w”(t)a)*(t)}

+2222v1 £) i (2(t))

i=1 i<j k=1

« {e*T(t) <(Wtﬂ< ; lek) R+ R’ (Wuk ‘5 Wﬂk)> e (t)

(Ah + AR (A + ARy
2 T2

+eT(t)R" Re’(t)

eT(OR'(Af" + ' (t)

+eT(t)Se*(t) — eT(t)Se" (t) + %w”(t)a)*(t)
1 .

—?a) THw (t)}.

where Gy = A, — B{K,,

W (z(t))L; Ah, with inequalities

Ah[Re* (t) + e (H)RT AR, <

+ (Af” + o T(t)Re' () +

< &5 ART AR, + ese T (HR"Re (t), i
(AR + AR, )
2

ik
=j, eT(tR

7<Ah?" ; ) Re* (1)

«T «T
—1 Ah; Ahzk Ah]" Ah

el g e T (8

T
Fee (e, ]

and
(AFT + T (t))Re* (1) + eT(ORT(Af* + w' (1))
< &5 ' AFTAS + egx” (DRTRX (1) + ™ (ORX(t) + x* (H)RTw’ (¢).

From the Assumption 1 and 2 above, we have

BiKj,, Wi = Ay, — Li,C, Ay, = =31 > vilz(t))
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V() < 33 020w ZE) [ (OAED) — xT(HQX(¢)
i=1 k=1
L0700 0] + 2353 0z 0) 5 O E(0)
i=1 i<j k=1
x{émAﬁu—xﬂn@%n+%w”mwwﬁ
3N ) )T (OA(E) - eT(B)Se (¢)
i=1 k=1
+piw }+2ZZD] 0)1(2(t))
i=1 i<j k=1
£ * 1 * *
x {gT(t)A4§(t) —eT(1)Se*(t) +Fw THw (t)}
< —x" (H)Qx’(t) — e (t)Se’ () +%w*T(t)w*(t) (24)
where &1(t) = [x(t) *T(0)], () = [e7(t) "(1)], and

A {szl’ +P'Gitc +Q+ &1 P'BiB; P+ &5 Oy + e4P'P P }
1= R
P =

(Giik+Gjik)TP+PT(Gijl<+Gﬁk)+2Q+2821‘D;q’f 2RT
A2=| \ 4+2¢,P"P+&,P"B;B;' P+&;P"B;B; P :
i 2R -1
[ iik iik 1 ikT ik T8 PikcPikc T
W! R+R Wik +S+671K, K+ 65 10! @ R
As= | \+(¢s+&3)R'R+¢5' D\ D,y :
I R — L1
(Wit W) TR+ RT Wi+ W) + 25 + 25 Ol e
T
Aa=| | T q)ch‘DJkC +e5 DDy + 25! ka Ky +é5 Ki*kT Ki, 2R
+(&s+265+€7)R'R
i 2R ~21

Integrating on both sides of (24) with respect to time, we obtain the
robust property (22). Therefore, when E*'P = P'E* > 0, E*"R = RTE* -
>0, A1 <0, Ay <0, A3 <0, Ay<0 the stability and the closed-loop
system (9) is proven. We multiply the inequality A; <0 and A, <0
by the matrix diag[P~", P~"] and its transpose on the left and right,
respectively. Then, we set

AR R
—T 1 3
P = 2| =P
0 Z

where Z; > 0. Define new variables Qq; = PQuP", Qq = PQ,,PT,

w w
11 12}>0

W= PpT — {
Wi, Wa

and by Schur complement, the inequalities A; <0 and A, <0 are
equivalent to (16)-(18), which Mj,=KjZ; (or My =KyZ;). From
the feasible solutions of (19)-(21), substitute Kj = Mij]’1 (or
Ky = MikZ{] ), and scalars &; ~é&4, into the inequality As<O0,
A4<0. Let Hy = RfLik, R3 = YRy, where R; > 0. Then we have A3<0
and A4 < 0, which are equivalent to (19)-(21) by the Schur comple-
ment. This completes the proof of the theorem. O

Since the simultaneous solution of observer gains in (19)-(21) is
not trivial, we utilize the multiple-step method to cope with the
problem. In the first step, the following observer inequality is equal
to the following LMI

1 2 ROR

A im0 R

R0 L1 0 <0, (25)
Rs R 0 -}l

[Ji1 Ji 2RT 2R!

A, Jpm 0 2R

R 0 2 0 <0. (26)
2Ry 2R, 0 —2ZI

From 19 and 25, 26, we are able to solve Hy(Hjx), Ry and then obtain
Li(Li). In the second step, the observer parameters are substituted
into (19)-(21), we the solve the remaining unknown parameters in
(19)-(21). Based on the analysis above, we are summarized as
follows:

Step 1. Give suitable bounding matrices A¢yp, ¢a, dc1, ¢c2 and sca-
lars &; ~ &g in advance. o

Step 2. Solve the LMIPs in (16)-(18) to obtain Z;, Z3,Qq, Qa2, W
and Ki(Kj).

Step 3. Solve the LMIP in (25) and (26) to obtain Hy(Hj), Ry and
Li(Lj,) (note that these are not the final solutions).

Step 4. Substitute Ki(Kj), Li(Lix) into (19)-(21) to obtain Ry, Sa,
Saz and Li(Lj).

Step 5. Substitute gains from Step 1, 2 and 4 into (16)-(21).

Step 6. Check whether (16)-(21) is a negative definite matrix. If
not, go back to Step 1.

Step 7. Output Ki(Ki), Li(Li), p.

4. Numerical simulations

We carry out numerical simulations on the following example
to verify the theoretical derivations. Consider a nonlinear system
(Taniguchi et al., 2000)

(1 +acos 0(t))0(t) = —be>(t) + cO(t) + du(t),

where the range of (t) as |9(t)| < ¢;.
Considering output feedback case with immeasurable states,
the observer descriptor system (6) as the form

quk NEX(t) Zv, N{AR(L)
+LiD’( ) =3O}

+ ApX(t — h(t)) + Biu(t)

Zv, £))Cix(t)

1 0 0 1
52:{0 1—a]7 Al:{c —b¢%}7

0
31:82:{ } C=C=[01 1],

0 1
Az:{c —bfﬁ%}’ d

A¢=[01 0.1], ¢,=[0.01 001],

¢4 =1002 0.02], ¢,=1[0.03 0.03].

We let a=0.2, b=1, c=-1, d=10, ¢1=4, ¢2=0, &1=4, & =12,
e3=12, e4=1.1, =02, =01, &=03, e=02, y=14 and
p=035. The observer membership functions are defined as
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1 (R (1) = HSRO g (3 (£) = S0, (%5(8)) = 2, 05 (R (1)) =

1- @ According to LMIs (16)-(21), we can obtain control
gains Kj and observer gains Ly separately where Ki;=[0.5833
—0.8304], K;2=[0.3829 —1.0396],K>; =[0.5833 0.7696], Ky, =
[0.3829 0.5604] L;; =[—0.4288 —2.0061]", L;, =[-0.3544 —2.1465]",
Ly =[-0.4096 0.6630]", L,, = [-0.3125 0.5497]".

The Figs. 1 and 2 show the convergence result under the obser-
ver-based control law

() = =33 wi(2(0) 20Kk (1)

i=1 k=1

with initial condition x(0) =[0.7 —0.7]" and (0) = [0.3 O.G}T.
5. Conclusions

We have proposed an robust observer-based output feedback
control for fuzzy descriptor systems in presence of immeasurable
states, approximation errors and uncertainty. The observer and
controller design has been implemented in a unified and system-
atic manner where gains are solved by a set of LMIPs. Numerical
simulation results verify the theoretical claims.
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