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Abstract

Importance sampling has been known as a powerful tool to reduce the variance of
Monte Carlo estimator for rare event simulation. Based on the criterion of minimizing
the variance of Monte Carlo estimator within a parametric family, we propose a general
account for finding the optimal tilting measure. To this end, when the moment generating
function of the underlying distribution exists, we obtain a simple and explicit expression
of the optimal alternative distribution. The proposed algorithm is quite general to cover
many interesting examples, such as normal distribution, noncentral χ2 distribution, and
compound Poisson processes. To illustrate the broad applicability of our method, we study
value-at-risk (VaR) computation in financial risk management and bootstrap confidence
regions in statistical inferences.
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1 Introduction

This paper considers the problem of estimating small probabilities by Monte Carlo simulations.
That is, we estimate z = P (A) when z is small, say of the order 10−2 or 10−3 or so; i.e., A is a
moderate deviation rare event. Such problems appear in the construction of confidence regions
for asymptotically normal statistics; cf. Beran (1987), Beran and Millar (1986), Hall (1987,
1992), Fuh and Hu (2004), and in the computation of value-at-risk (VaR) in risk management;
cf. Jorion (2001), Duffie and Singleton (2003), Glasserman et al. (2000, 2002), Fuh et al. (2011).
It is well known that importance sampling, where one uses observations from an alternative
distribution Q to estimate the target distribution P , is a powerful tool in efficient simulation of
events with small probabilities. Some general references are in Heidelberger (1995), Liu (2001),
and Asmussen and Glynn (2007).

A useful tool in importance sampling for rare event simulation is exponential tilting, cf.
Siegmund (1976), and Bucklew (2004) and references therein. The above mentioned algorithm
is more efficient for large deviation rare event, i.e., z is of the order 10−5 or less. Examples of
such events occur in telecommunications (z = bit-loss rate, probability of buffer overflow) and
reliability (z = the probability of failure before time t). To be more precise, when a sequence
of random vectors {Xn} converge to a constant vector µ, for any event A not containing µ,
the probability P{Xn ∈ A} usually decays exponentially fast as n→ ∞. Efficient Monte Carlo
simulation of such events has been obtained by Sadowsky and Bucklew (1990) based on the large
deviations theory given by Ney (1983).

For moderate deviation rare event simulations, efficient importance sampling has been studied
by Johns (1988), Davison (1988), Do and Hall (1991), and Fuh and Hu (2004, 2007). However,
those papers concern one- and/or multivariate-normal distributions. Extension to heavy-tailed
settings such as multivariate t distribution can be found in Fuh et al. (2011). The goal of this
paper is to provide a simple general account for exponential tilting importance sampling, which
covers all previous results and many other interesting examples.

It is worth mentioning that for events of large deviations P{X ∈ A}, Sadowsky and Buck-
lew (1990) showed that the asymptotically optimal alternative distribution is obtained through
exponential tilting; that is, Q(dx) = C exp(θx)P (dx), where C is a normalizing constant and θ
determines the amount of tilting. The optimal amount of tilting θ is such that the expectation
of X under Q-measure equals the dominating point located at the boundary of A. However, for
moderate deviation rare event, we show that typically the tilting point of the optimal alternative
distribution is in the interior of A, which is different from the dominating point of large deviations
theory. Furthermore, by using the idea of conjugate measure of Q, Q̄(dx) = C exp(−θx)P (dx),
the general account of our approach characterizes the optimal tilting θ, by solving the equa-
tion of the expectation of X under Q-measure equals the conditional expectation of X under
Q̄-measure given the rare event.

There are three aspects in this study. To begin with, we obtain an explicit expression for
the optimal alternative distribution under exponential embedding family. Second, the proposed
algorithm is quite general to cover many interesting examples, such as normal distribution, non-
central χ2 distribution, and compound Poisson processes. Third, the derived tilting formula can
be used to calculate portfolio VaR under jump diffusion models, and to approximate bootstrap
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confidence regions of parameters in regression models.
The rest of this paper is organized as follows. In Section 2, we present a general account

of importance sampling that minimizes the variance of the Monte Carlo estimator within a
parametric family, provide a recursive algorithm for finding the optimal alternative distribution,
and approximate optimal tilting probability measure for moderate deviation events. Section
3 presents several frequently used examples to which we can characterize the optimal titling
probability measures, and reports the relative efficiency of the proposed method with respect to
the naive Monte Carlo through a simulation study. In Section 4, we demonstrate the performance
of the tilting formula by investigating two examples: calculating portfolio VaR and bootstrapping
confidence regions. Concluding remarks are given in Section 5. The proofs are deferred to the
appendix.

2 Importance Sampling

2.1 A general account in importance sampling

Let (Ω,F , P ) be a given probability space, X be a random variable on Ω and A be a measurable
set in R. To estimate the probability of an event {X ∈ A}, we shall employ the importance
sampling method. That is, instead of sampling from the target distribution P of X directly, we
sample from an alternative distribution Q := Qθ. Suppose X has moment generating function
Ψ(θ) = E[eθX ] under P for θ ∈ R. Then we consider the exponential tilting measure Q of P ,
which has the form

dQ

dP
=

eθX

E[eθX ]
= eθX−ψ(θ),

where ψ(θ) is logΨ(θ), the cumulant generating function of X . The question is how to choose an
alternative distribution Q so that the importance sampling estimator has the minimum variance.

The importance sampling estimator for p = P{X ∈ A} based on a sample of size n is

p̂n =
1

n

n∑

i=1

1{Xi∈A}
dP

dQ
, (2.1)

where 1B is the indicator function of an event B, Xi, i = 1, . . . , n, are independent observations
from Q, and dP/dQ is the Radon-Nikodym derivative assuming P is absolutely continuous with
respect to Q. Set

G(θ) = EQ

[
1{X∈A}

dP

dQ

]2
= E

[
1{X∈A}

dP

dQ

]
= E[1{X∈A}e

−θX+ψ(θ)],

where the expectation without any qualification is under the target probability measure P un-
less otherwise stated. Observing that, since the estimator p̂n is unbiased, the variance of the
importance sampling estimator is

varQ(p̂n) = n−1(G(θ)− p2).
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We remark that when A = {ω : X(ω) > a} for some constant a > 0, large deviation theory
considers the following inequality

G(θ) ≤ e−θa+ψ(θ),

and minimizes the above upper bound. The first-order condition (after taking logarithm) gives

ψ′(θ) = a. (2.2)

Note that the approximation (2.2) is more accurate when P{X > a} is small, i.e., a is sufficient
large. In contrast to the large deviation theory, our goal is to solve the optimization problem
for θ

θ∗ = argmin
θ
G(θ). (2.3)

θ∗ is hence the desired quantity for selecting the tilting measure that minimizes the variance of
the importance sampling estimator within a suitable parametric family.

To minimize G(θ), the first-order condition gives

∂G(θ)

∂θ
= E[1{X∈A}e

−θX+ψ(θ)(−X + ψ′(θ))] = 0.

Dividing eψ(θ) for both sides of the above equation, we have an equivalent condition,

E[1{X∈A}e
−θX(−X + ψ′(θ))] = 0, (2.4)

and therefore θ∗ is the solution of

ψ′(θ) =
E[1{X∈A}Xe−θX ]

E[1{X∈A}e−θX ]
. (2.5)

Ideally, closed-formed formulas of the right-hand-side (RHS) of (2.5) needs to be derived via
analytic procedures. Then, standard numerical procedures (or a recursive algorithm presented
in Section 2.2) can be applied to find θ∗ satisfying (2.5). However, the derivation for a closed-
formed formula of the RHS of (2.5) may be tedious and complicated in general cases. In this
respect, the tilting measure given in (2.2) in the large deviation theory seems to be preferred
because of its simplicity. To prove that the RHS of (2.5) can be represented in a simple formula,
we consider the conjugate measure Q̄ := Q̄θ of the measure Q, which is defined as

dQ̄

dP
=

e−θX

E[e−θX ]
= e−θX−ψ̃(θ), (2.6)

where ψ̃(θ) is log Ψ̃(θ) with Ψ̃(θ) = E[e−θX ].
To present a connection between Q̄ and Q, we consider their probability densities with respect

to Lebesgue measure L. It is straightforward to see that ψ̃(θ) = ψ(−θ), which implies

dQ̄θ

dL = e−θx−ψ̃(θ)
dP

dL = e−θx−ψ(−θ)
dP

dL = e(−θ)x−ψ(−θ)
dP

dL =
dQ−θ
dL . (2.7)
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The following theorem states the existence and uniqueness for the optimization procedure
(2.3), and provides a simplification on the RHS of (2.5) using Q̄. Before that, we need a condition
for Ψ(θ) being steep to ensure the finiteness of the moment generating function Ψ(θ). To define
steepness, let θmax := sup{θ : Ψ(θ) <∞} (for light-tailed distributions, we have 0 < θmax ≤ ∞).
Then steepness means Ψ(θ) → ∞ as θ → θmax.

Theorem 1 Suppose the moment generating function Ψ(θ) of X exists and second order con-
tinuously differentiable for θ ∈ I ⊂ R. Furthermore, assume that Ψ(θ) is steep and E[X|X ∈
A] > E(X) := µ. Then there exists a unique solution for the optimization problem (2.3), which
satisfies

ψ′(θ) = EQ̄θ
[X|X ∈ A]. (2.8)

The proof of Theorem 1 will be given in the Appendix.
In summary, the three-step procedures to find θ∗ are

1. Calculate the cumulant generating function ψ(θ) of X and its derivative ψ′(θ).

2. Find the exponential tilting measure Q.

3. Find θ∗ as the solution of ψ′(θ) = EQ̄θ
[X|X ∈ A].

Remark 1: Note that the optimal tilting point θ∗ obtained in (2.8) highlights the fact that the
tilting probability measure depends on the likelihood ratio (or the embedding probability Q in
terms of Q̄), the region, and the statistics of interest. Simple cases such as normal distribution
and t-distribution are in Fuh and Hu (2004), and Fuh et al. (2011), respectively, by using the
technique of change of variables. The idea of using conjugate measure in Theorem 1 seems to
be new and simple according to our best knowledge.
Remark 2: In addition, characterization (2.8) is easy to implement as will be illustrated in
Sections 3 and 4. Furthermore, it provides an insightful interpretation of θ∗, which can be used
to compare with the large deviation tilting. To be more specific, when A = {w : X(w) > a} for
a > µ, it is known that θ∗ satisfies ψ′(θ) = EQθ

X . (2.8) indicates that the optimal tilting θ∗

satisfies

EQθ
X = EQ̄θ

[X|X > a] > a. (2.9)

A comparison between (2.9) with (2.2) shows that the large deviation tilting parameter is the
dominating point a; while the optimal tilting θ∗ is inside the region of {w : X(w) > a}. Similar
interpretation can be applied to the case of A is a convex set in Rq. However, when A = {w :
X(w) ∈ (−a, a)c}, where c denotes the complement, it is nature to spit A = {w : X(w) >
a} ∪ {w : X(w) < −a} and apply importance sampling for each part. A simple guidance for the
stratification, based on relative efficiency, can be found in Fuh and Hu (2004).

Remark 3: To approximate z = EZ where Z ≥ 0 P -a.s.. Define P ∗(dw) = |Z|
E|Z|P (dw) and

L∗ = E|Z|
|Z| . It is known (cf. Theorem 1.2 in Chapter V, Asmussen and Glynn, 2007) that

the importance sampling estimator ZL∗ under P ∗ has zero variance. By using similar idea,
tilting probability obtained by (2.8) can be regarded as an approximation of the zero variance
importance sampling estimator within a parametric class.
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2.2 Calculating the optimal alternative distribution

Before employing the importance sampling method, it is first necessary to identify the optimal
alternative distribution. Since the optimal θ in (2.8) cannot be computed directly, to find θ in
the third step, we consider a simple recursive procedure for a general equation,

g(θ) = h(θ), (2.10)

for some functions g(θ) and h(θ). In our setting, g(θ) = ψ′(θ) and h(θ) = EQ̄[X|X ∈ A].
A simple recursive procedure is implemented as follows.

1. Start with an arbitrary θ0. Set i = 1.

2. Calculate ti = g(θi−1) and find θi as the solution of h(θ) = ti.

3. Set i = i+ 1. Return to 2 until (θi+1 − θi)/θi becomes very small.

Because the exact objective function G(·) is difficult to optimize directly, the proposed
method replaces G with a quasi objective function and does optimization on the latter. In
the preceding algorithm, the initial value θ(0) can be chosen as a dominating point of the event
{X ∈ A}. Furthermore, if θ(0) is sufficiently large, the density of X decreases rapidly and the
solution of (2.5) is close to θ(0). Therefore, fast convergence of the recursive algorithm is to be
expected.

Let θ∗ be the solution to (2.10), i.e., g(θ∗) = h(θ∗). By using an argument similar to Theorem
2 of Fuh et al. (2011), we have the following proposition.

Proposition 1 Choose a dominating point of the event {X ∈ A} as the initial value θ(0). Then
i) the recursive algorithm either converges to θ∗ or alternates in the limit between a pair of

values θ 6= θ̄ satisfying
g(θ) = h(θ̄) and h(θ) = g(θ̄). (2.11)

ii) If there does not exist θ 6= θ̄ such that (2.11) holds, then the recursive algorithm converges
to the solution of (2.10).

In this subsection, we introduce a simple recursive algorithm. Alternative root-finding algorithms
such as bisection method, Newton’s method, secant method, etc. can also be used to find the
root in (2.10).

2.3 Approximating optimal tilting probability measure

In this subsection, we get the optimal tilting probability measure by approximating ψ′(θ) for a
moderate deviation event. Let X1, . . . , Xn be i.i.d. random variables from a distribution function
F , with mean µ and variance σ2. We want to estimate by simulation of the probability

P (Sn/n ≤ an), (2.12)

for some an, where Sn =
∑n

i=1Xi. Note that the probability is small when an − µ < 0, and
an − µ = O(1). Assume that the moment generating function of X1 exists for some θ belonging
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to some interval Θ which contains the origin, and let ψ(θ) := logE(exp(θX1)) denote the
cumulant generating function of X1. Note that µ = ψ′(0), σ2 = ψ′′(0). By using the technique
developed in Section 2.1, we first embed the original probability P in the following exponential
family

dQ̄θ

dL (x) = exp(θx− ψ(θ))
dP

dL (x). (2.13)

The class of estimators considered for the probability defined in (2.12) is

δn = I(Sn/n ≤ an)
n∏

j=1

dP (Xj)

dQθ(Xj)
, (2.14)

where {Xj} are distributed from Qθ. By Theorem 1, we have that if µ = 0 and an = a < 0, the
optimal point θ∗ in simulations is given by ψ′(θ∗) = EQ̄(θ∗)[X|X > a]. Or ψ′(θ∗) = a for large
deviation tilting.

The starting point of the approximation is that an−µ = o(1), or that the probability (2.12) is
not exceedingly small. For instance one may be interested in the probability P (Sn−nµ ≤ aσ

√
n)

for a < 0, and this leads to an = µ+aσ/
√
n. The point θ∗ can be approximated in the following

manner by a one-term Taylor expansion of ψ′(θ∗):

ψ′(0) + θ∗ψ′′(0) ∼= EQ̄θ∗
[X|X > an] =⇒ µ+ σ2θ∗ ∼= EQ̄θ∗

[X|X > an]. (2.15)

The calculations above suggest that when an − µ → 0, expansions for (2.13) and the optimal
choice of parameter θ∗ can be obtained through the first few moments of F (more specifically,
through the mean and variance) without appealing to the properties of moment generating
function. Therefore it is illuminating to consider a slightly different approach to the problem of
estimating (2.12), with an = µ+aσ/

√
n, especially, for heavy-tailed distributions. An alternative

approach for heavy-tailed distribution without moment generating function is via the method of
transform random variables, cf. Asmussen and Glynn (2007).

Example: Pareto distribution. Let f(x) = α(1 + x)−α−1 and f̃(x) = α̃(1 + x)−α̃−1, where
α̃→ 0. Here we consider α̃ = αθ(a), and θ(a) is a solution of

µ+ σ2θ = EQ̄θ
[X|X > an]. (2.16)

Remark 4: Note that in (2.13), we apply the idea of exponential embedding for a non-parametric
distribution F . Further approximation can be done on (2.14) via the LAN family. This idea had
been carried out in the bootstrap setting of Fuh and Hu (2004, 2007). More detailed analysis
along this line and the comparison of non-paremetic importance sampling in Zhang (1996) and
Neddermeyer (2009), for instance, will be published in a separate paper.

3 Examples and Simulation Study

3.1 Examples

To illustrate the general account of importance sampling, in this subsection, we study three
examples: normal distribution, noncentral χ2 distribution and compound Poisson processes,
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and report several other interesting distributions. The simulation event is {X > a} for a given
random variable X and some a > 0. In these examples, we explicitly calculate a closed-form
formula of EQ̄[X|X ∈ A] when possible.

Example 1: Normal distribution

Let X be a random variable with standard normal distribution, denoted by N(0, 1), with
probability density function (pdf) dP

dL = e−x
2/2/

√
2π. Standard calculation gives Ψ(θ) = eθ

2/2,
ψ(θ) = θ2/2 and ψ′(θ) = θ. In this case, the tilting measure Q is N(θ, 1), a location shift, and
Q̄ is N(−θ, 1). Applying Theorem 1 and using the fact that X|{X > a} is a truncated normal
distribution with minimum value a under Q̄, θ∗ needs to satisfy

θ =
φ(a+ θ)

1− Φ(a + θ)
− θ. (3.1)

Alternatively, G(θ) = eθ
2
(1−Φ(a+ θ)), and θ∗ must satisfy the first-order condition, 2θ(1−

Φ(a + θ)) = φ(a + θ), or equivalently, θ = φ(a+ θ)/2(1− Φ(a + θ)). By using 1−Φ(x)
φ(x)

∼ 1
x
as

x → ∞, it is easy to see from equation (3.1) that θ∗ ∼ a when a is large. This is the same as
the large deviation tilting probability.

We remark the normal distribution has been analysed in Fuh and Hu (2004), for illustration,
we consider this example from our general account and provide a simple and explicit character-
ization for θ∗, in the sense that the right-hand-side of (3.1) is a straightforward application of
Theorem 1.

Example 2: Noncentral χ2(λ, κ) distribution

Let Zi be independent, normally distributed random variables with mean µi and variances σ2
i ,

for i = 1, . . . , κ. Then the random variable X =
∑κ

i=1

(
Zi

σi

)2

is distributed according to the

noncentral χ2 distribution. It has two parameters: κ which specifies the number of degrees of

freedom, and λ, the noncentrality parameter, is defined as λ =
∑κ

i=1

(
µi
σi

)2

.

The pdf of X is

dP

dL =
1

2
e−(x+λ)/2

(
x

λ

)κ/4−1/2

Iκ/2−1(
√
λx), x ≥ 0, (3.2)

where Iv(z) is a modified Bessel function of the first kind given by

Iv(z) = (z/2)v
∞∑

j=0

(z2/4)j

j!Γ(v + j + 1)
.

Alternatively, the pdf of X can be written as

dP

dL =
∞∑

i=0

e−λ/2(λ/2)i

i!
fYκ+2i

(x), x ≥ 0, (3.3)
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where Yq is a chi-square distribution with q degrees of freedom, denoted by Yq ∼ χ2(q). By
representation (3.3), the noncentral χ2 distribution is a Poisson weighted mixture of central χ2

distributions. Suppose that a random variable N has a Poisson distribution with mean λ/2, and
the conditional distribution of X given N = i is χ2 with κ + 2i degrees of freedom. Then the
unconditional distribution of X is noncentral χ2 with κ degrees of freedom, and noncentrality
parameter λ, or,

X|{N = i} ∼ χ2(κ+ 2i), N ∼ Pois(λ/2).

Let the likelihood ratio dQ
dP

= eθX−ψ(θ), where ψ(θ) = logE[exp(θX)]. To derive the tilting
formula of X , note that Ψ(θ) = exp

(
λθ

1−2θ

)
/(1− 2θ)κ/2, ψ(θ) = λθ

1−2θ
− κ

2
log(1−2θ), and ψ′(θ) =

λ+κ(1−2θ)
(1−2θ)2

. Therefore, the exponential tilting measure Q becomes

dQ

dL =
dQ

dP

dP

dL = eθx−ψ(θ)
∞∑

i=0

e−
λ
2 (λ

2
)i

i!

1

Γ(κ+2i
2

)2
κ+2i

2

x
κ+2i

2
−1e−

x
2 (3.4)

=

∞∑

i=0

e−
λ

2(1−2θ) ( λ
2(1−2θ)

)i

i!

1

Γ(κ+2i
2

)( 2
1−2θ

)
κ+2i

2

x
κ+2i

2
−1e

− x
2

1−2θ .

Hence, by (3.4) X can be characterized by X|{N = i} ∼ Γ
(
κ+2i
2
, 2
1−2θ

)
with N ∼ Pois

(
λ

2(1−2θ)

)

under Q. By Theorem 1, θ∗ is the solution of the following equation

λ+ κ(1− 2θ)

(1− 2θ)2
= EQ̄[X|X > a], (3.5)

where X follows X|{N = i} ∼ Γ
(
κ+2i
2
, 2
1+2θ

)
with N ∼ Pois

(
λ

2(1+2θ)

)
under Q̄.

When λ = 0, this reduces to χ2(κ) distribution and the optimal θ∗ needs to satisfy

κ

1− 2θ
= EQ̄[X|X > a]. (3.6)

When the degree of freedom κ equals 2, χ2(2) distribution reduces to the exponential distribution
with mean 2. By the memoryless property, we have an explicit formula for C(θ) and hence θ∗

needs to satisfy 2
1−2θ

= a + 2
1+θ

. As a result, we have an explicit solution for

θ∗ =
−1 +

√
1 + a2

a
< 1. (3.7)

Note that the tilting formula (3.7) can also be found in Example 1 on p.22 of L’Ecuyer, Mandjes
and Tuffin (2009).

Example 3: Compound Poisson process

Let Rt =
∑N(t)

n=1 log Yn be the compound Poisson process, where jump event N(t) is assumed
to follow a Poisson process with parameter λ, and the jump sizes Yn are assumed to follow a
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lognormal distribution with parameters of location η and scale δ2. Let A = {Rt > rp} for a
given rp, and compute

P (Rt > rp) =

∞∑

n=0

e−λt(λt)n

n!
P (

n∑

i=1

Zi > rp|N(t) = n)

=
∞∑

n=0

e−λt(λt)n

n!
P (Z >

rp − nη√
nδ2

|N(t) = n),

where Zi, i = 1, . . . , n, are i.i.d. normal with mean η and variance δ2 and Z =
∑n

i=1 Zi−nη√
nδ2

.

Denote f(Rt) = Rt − rp, and let the likelihood ratio

dQ

dP
= eθf(Rt)−ψ(θ), (3.8)

where ψ(θ) = logE[exp(θf(Rt))].
Here the original measure P under N(t) ∼ Pois(λt) and log Yn ∼ N(η, δ2) becomes

dP

dL =
e−λt(λt)n

n!
(

1√
2πδ2

)ne−
∑n

i=1(zi−η)2

2δ2 .

and

E[eθf(Rt)] = e−θrpE[eθ
∑N(t)

i=1 Zi ] = e−θrp
∞∑

n=1

e−λt(λt)n

n!
E[eθ

∑n
i=1 Zi|N(t) = n]

= e−θrp
∞∑

n=1

e−λt(λt)n

n!
e(θη+

1
2
θ2δ2)n = eλt(e

θη+1
2 θ2δ2−1)−θrp.

Therefore, ψ(θ) = λt(eθη+
1
2
θ2δ2 − 1) − θrp, and ψ′(θ) = λteθη+

1
2
θ2δ2(η + θδ2) − rp. Hence, the

likelihood ratio (3.8) becomes

dQ

dP
= eθ

∑n
i=1 zie−λt(e

θη+1
2 θ2δ2−1).

For a given N(t) = n,

dQ

dL =
dQ

dP

dP

dL = eθ
∑n

i=1 zie−λt(e
θη+1

2 θ2δ2−1) e
−λt(λt)n

n!
(

1√
2πδ2

)ne−
∑n

i=1(zi−η)2

2δ2

=
(λteθη+

1
2
θ2δ2)ne−λte

θη+1
2 θ2δ2

n!
(

1√
2πδ2

)ne−
∑n

i=1(zi−(η+θδ2))2

2δ2 .

As a result, Rt =
∑N(t)

i=1 Zi with Zi ∼ N(η+ θδ2, δ2) and N(t) ∼ Pois(λeθη+θ
2δ2/2t) under Q. By

Theorem 1, θ∗ needs to satisfy

λteθη+
1
2
θ2δ2(η + θδ2)− rp = EQ̄ [Rt|Rt > rp] ,

where Rt =
∑N(t)

i=1 Zi with Rt|{N(t) = n} ∼ N(η − θδ2, δ2) and N(t) ∼ Pois(λe−θη+θ
2δ2/2t)

under Q̄.
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Table 1 reports importance sampling tilting probability for eight distributions: Binomial, Pois-
son, exponential, normal, χ2, Gamman, noncentral χ2, and uniform. The case of t distribution
can be found in Fuh et al. (2011). This table includes the family of tilting probability Q and
ψ′(θ). Note that in Table 1, when A = {X > a} for some a > 0, then EQ̄[X|X > a] = a+ 1

1+θ
for

exponential distribution E(1) and = φ(a+θ)
1−Φ(a+θ)

−θ for standard normal distribution. By Theorem

1, we have that Q̄ = Q−θ in Examples 1–7.

Table 1: Summary of distributions and their tilting measures.

Ex P Q ψ′(θ)

1 B(n, p) B(n, peθ

peθ+(1−p))
npeθ

1−p+peθ

2 Pois(λ) Pois(λeθ) λeθ

3 N(0, σ2) N(θ, σ2) θσ2

4 E(1) E( 1
1−θ )

1
1−θ

5 χ2(κ) Γ(κ
2
, 2
1−2θ

) κ
1−2θ

6 Γ(α, β) Γ(α, β
1−βθ )

αβ
1−βθ

7 NCχ2(κ, λ) X|{N = i} ∼ Γ(κ+2i
2
, 2
1−2θ

), N ∼ Pois( λ
2(1−2θ)

) λ+κ(1−2θ)
(1−2θ)2

8 Uniform(0, 1) ∝ eθX1{0≤X≤1}
eθ

eθ−1
− 1

θ

11



Table 2: Relative efficiency for different distributions.

p N(0, 1) E(1) χ2(1) Γ(4, 10) χ2(2, 10)

0.0001 2409.74 818.53 603.61 1282.87 1529.46
0.001 290.90 109.88 82.74 166.00 192.20
0.01 38.06 16.57 12.90 23.74 26.54
0.05 9.98 4.99 4.04 6.76 7.34
0.1 5.77 3.13 2.60 4.10 4.38

3.2 Simulation Study

In this subsection, we present some numerical results on relative efficiency using the method
outlined in Theorem 1 for estimating tail probabilities of p = P{X > a} for some a > 0. The
relative efficiency is defined as the variance ratio between the crude Monte Carlo estimator and
the importance sampling estimator.

Table 2 compares the relative efficiency (RE) for various distributions. Here a is chosen
such that p = 0.1 (central event), 0.05, 0.01 (95%, 99% confidence interval), 0.001 (VaR type
probability) and 0.0001 (rare event). Monte Carlo sample size is 10, 000 for each case. Note that
the relative efficiency in normal case is the largest.

Simulations are conducted for central χ2(κ), noncentral χ2(λ, κ) and gamma Γ(α, β) dis-
tributions. Since the results are almost the same, we only report the simulation results for
noncentral χ2(λ, κ) distribution in Table 3. We can see that the proposed method is signifi-
cantly more efficient than the naive Monte Carlo in 10, 000 simulations for all probabilities of
p = 0.1, 0.05, 0.01, 0.001 and 0.0001. Furthermore, the efficiency gain is larger for smaller
probabilities against the naive method. The normal case can be found in Fuh and Hu (2004),
which will be used, along with its square and compound Poisson model, for VaR computation.
Normal distribution and χ2 distribution will be used for importance resampling in bootstrapping
confidence region of parameters in regression model.

12



Table 3: We compare the performance, in terms of means and standard errors (SE), of estimating
the probability P (NCχ2(κ, λ) > a) using the naive Monte Carlo method (MC) and our impor-
tance sampling method (IS) for a combination of parameters (κ, λ) and a variety of boundary
values a with a sample size of 10,000. p is the theoretical value of the probability of interest.
θ∗ is the optimal tilting parameter. Both the relative efficiency (RE) and the benchmark RE
(RE*) are reported, where the former is calculated as the ratio of the variance of the Monte
Carlo estimate over that of the importance sampling estimate, and the later is calculated as
p(1− p)/(G(θ∗)− p2).

(κ, λ) p a θ∗ MC IS RE RE*

mean SE mean SE

(2, 1) 0.0001 24.28 0.38 0.000000 0.000000 0.000097 0.000003 0.00 1059.49
0.001 18.65 0.36 0.001200 0.000346 0.000981 0.000027 168.64 136.82
0.01 12.85 0.33 0.010300 0.001010 0.009940 0.000226 20.04 19.51
0.05 8.64 0.29 0.050100 0.002182 0.049579 0.000913 5.71 5.59
0.1 6.77 0.26 0.101400 0.003019 0.099657 0.001610 3.52 3.42

(2, 5) 0.0001 37.05 0.31 0.000200 0.000141 0.000104 0.000003 2653.12 1381.16
0.001 29.88 0.28 0.001200 0.000346 0.001045 0.000025 198.95 173.94
0.01 22.23 0.25 0.009600 0.000975 0.009987 0.000202 23.28 24.22
0.05 16.38 0.21 0.047500 0.002127 0.049684 0.000830 6.56 6.76
0.1 13.64 0.19 0.098600 0.002981 0.099130 0.001493 3.99 4.07

(5, 1) 0.0001 30.02 0.36 0.000000 0.000000 0.000101 0.000003 0.00 1213.85
0.001 24.07 0.34 0.001000 0.000316 0.001030 0.000026 152.60 156.69
0.01 17.83 0.30 0.009800 0.000985 0.009918 0.000209 22.13 22.30
0.05 13.17 0.26 0.049000 0.002159 0.049644 0.000856 6.36 6.37
0.1 11.03 0.23 0.101400 0.003019 0.099369 0.001522 3.93 3.89

(5, 5) 0.0001 41.73 0.30 0.000100 0.000100 0.000101 0.000003 1401.51 1434.04
0.001 34.35 0.28 0.000600 0.000245 0.001008 0.000024 106.09 181.10
0.01 26.42 0.24 0.011800 0.001080 0.010086 0.000200 29.05 25.28
0.05 20.29 0.20 0.046300 0.002101 0.048860 0.000805 6.81 7.05
0.1 17.38 0.18 0.093900 0.002917 0.098820 0.001448 4.06 4.22
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4 Applications

To illustrate the applicability of our proposed tilting formula, we present two applications in this
section. In subsection 4.1, we apply the importance sampling for portfolio VaR computation, to
which the tilting formula is given under the multivariate jump diffusion model of the underlying
assets. In subsection 4.2, we study importance resampling for bootstrapping confidence regions
in regression models. By using the idea of pseudo-maximum likelihood estimator (PMLE) and
the criterion of minimizing variance of the Monte Carlo estimator under a parametric family, we
propose a titling formula based on the parametric family of normal (or χ2) distributions.

4.1 Evaluating Value at Risk

As a standard benchmark for market risk disclosure, VaR is the loss in market value over a
specified time horizon that will not be exceeded with probability 1 − p. Hence define VaR as
the quantile lp of the loss L in portfolio value during a holding period of a given time horizon
∆t. To be more specific, we express the portfolio value V (t, S(t)) as a function of risk factors
and time, where S(t) = (S(1)(t), . . . , S(d)(t))T comprises the d risk factors to which the portfolio
is exposed at time t and T denotes the transpose of a matrix. The loss of the portfolio over the
time interval [t, t +∆t] is L = V (t, S(t))− V (t + ∆t, S(t + ∆t)). Therefore VaR, lp, associated
with a given probability p and time horizon ∆t, is given by

P (L > lp) = p. (4.1)

Assume S(t) follows a d-dimensional jump diffusion model such that the return processes are
described by the stochastic differential equations

r
(i)
t =

dS(i)(t)

S(i)(t)
= µ(i)dt+ σ(i)dW (i)(t) +

N(t)∑

j=1

log Y
(i)
j , i = 1, 2, . . . , d, (4.2)

where (W (1)(t),. . . ,W (d)(t)) is a standard Brownian motion in Rd, N(t) ∼ Pois(λdt) is a Pois-

son process, log Y
(i)
j are independent and identically distributed (i.i.d.) random variables with

N(η(i), δ(i)
2
) distribution. Here the drift parameters µ(i), volatility parameters σ(i), jump fre-

quency λ, and jump size parameters η(i), δ(i) are given. Furthermore, we assume that the Brow-
nian motion and the Poisson process are independent. Denote log Yj ∼ N(η, δTΣJδ), where

η =




η(1)

η(2)

...
η(d)


 , δ =




δ(1) 0 · · · 0
0 δ(2) · · · 0
...

...
. . .

...
0 · · · · · · δ(d)


 ,ΣJ =




1 ρJ12 . . . ρJ1d
ρJ12 1 . . . ρJ2d
...

...
. . .

...
ρJ1d . . . . . . 1


 .

For simple notations, denote

µ =



µ(1)∆t

...
µ(d)∆t


 , σ =



σ(1)

√
∆t

...

σ(d)
√
∆t


 , X =



X(1)

...
X(d)


 ∼MN(




0
...
0


 ,Σ),
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Σ =




1 ρ12 . . . ρ1d
ρ12 1 . . . ρ2d
...

...
. . .

...
ρ1d . . . . . . 1


 , J =




∑N(∆t)
j=1 log Y

(1)
j∑N(∆t)

j=1 log Y
(2)
j

...∑N(∆t)
j=1 log Y

(d)
j



.

A discrete version of (4.2) is

r
(i)
t = µ(i)∆t + σ(i)

√
∆tX(i) +

N(∆t)∑

j=1

log Y
(i)
j , i = 1, . . . , d. (4.3)

Next we shall describe a quadratic approximation to the loss L. Let r = (r(1), . . . , r(d))T be
a vector of return of d assets. Denote ∆S = [S(t + ∆t) − S(t)] ≈ r as the change in S over
the corresponding time interval. The delta-gamma methods refine the relationship between risk
factors and portfolio value by including quadratic as well as linear terms. The delta-gamma
approximation to the change in portfolio value is

V (t+∆t, S +∆S)− V (t, S) ≈ ∂V

∂t
∆t + δT∆S +

1

2
∆STΓ∆S,

where δ = (δ1, . . . , δd)
T and Γ = [Γij ]i,j=1,...,d, with

δi =
∂V

∂Si
, Γij =

∂2V

∂Si∂Sj
, i, j = 1, . . . , d,

and all derivatives are evaluated at the initial point (t, S). Hence we can approximate the loss

L ≈ a0 + aT1 r + rTA1r, (4.4)

where a0 = −∂V
∂t
∆t is a scalar, a1 = −δ is an d-vector and A1 = −Γ/2 is a symmetric matrix.

Under the jump diffusion process assumption of r, we have

L = a0 + aT1 µ+ aT1 σX + aT1 J + µTA1µ+ σTZTA1Zσ

= b0 + aT1 σX + aT1 J + σTZTA1Xσ, (4.5)

where b0 = a0 + aT1 µ+ µTA1µ and J = (
∑N(∆t)

j=1 log Y
(1)
j , . . . ,

∑N(∆t)
j=1 log Y

(d)
j )T .

To have a simple approximation, we neglect the quadratic approximation of the jump part
in (4.4) as it is very small compared to the return of portfolio. Let C be the square root of the
positive definite matrix Σ such that CTC = Σ. We can transform the distribution of X into
Z, which is multivariate normal distributed with identity covariance matrix, so that X = CZ.
Moreover, C can be chosen so that CTA1C is diagonalized with diagonal elements λ1, . . . , λd.
Denote Lb := L− b0, then

Lb = aT1 σX + aT1 J + σTXTA1Xσ = aT1 σCZ + σTZTCTA1CZσ + aT1 J

= bTZ + σTZTΛZσ + aT1 J =

d∑

j=1

bjZj + λj(σ
(j))2∆tZ2

j + aT1 J, (4.6)
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where bT = aT1 σC.
By using the tilting formula developed in Theorem 1 of Section 2, we consider a family of

alternative distributions. Let the likelihood ratio of the alternative probability measures with
respect to the target measure P be of the form

dQ

dP
= eθ(Lb−rp)−ψ(θ), (4.7)

where Lb is defined in (4.6), rp is the pth quantile, and ψ(θ) = logE[exp(θ(Lb − rp))] is the
cumulant generating function of Lb − rp under the target probability measure P . The domain
of θ will be specified after Equation (4.12). The problem of finding the optimal alternative
measure is then reduced to that of identifying the θ-value that yields the minimal variance for
the importance sampling estimator.

We now proceed to find the probability density under the alternative measure Q. A simple
calculation leads that

ψ(θ) = logE(eθLb−θrp) (4.8)

=
1

2

d∑

i=1

(
(θbi)

2

1− 2θλi(σ(i))2∆t
− log(1− 2θλi(σ

(i))2∆t)

)

+λ∆t

(
e
θaT1 η +

1

2
θ2aT1 (δ

TΣJδ)a1 − 1

)
− θrp,

and

ψ′(θ) =

d∑

i=1

(
θ(bi)

2(1− θλi(σ
(i))2∆t)

(1− 2θλi(σ(i))2∆t)2
+

λi(σ
(i))2∆t

1− 2θλi(σ(i))2∆t
)− rp

+λ∆te
θaT1 η +

1

2
θ2aT1 (δ

TΣJδ)a1
(aT1 η + θaT1 (δ

TΣJδ)a1). (4.9)

From (4.7), and (4.8), it follows that the importance sampling is done with an exponential
tilting measure. Therefore, given N(∆t) = n,

dQ

dL =
dQ

dP

dP

dL =
d∏

j=1

1√
2πσj(θ)

exp

{
− (zj − µj(θ))

2

2σ2
j (θ)

}
×

(
λ(θ)

)n

e−λ(θ)

n!
(4.10)

×
(

1

(2π)d/2|δTΣJδ|1/2

)n

exp

{
− 1

2

n∑

i=1

(v(i)− η(θ))T (δTΣJδ)
−1(v(i)− η(θ))

}
,

where

µj(θ) =
θbj

1− 2θλj(σ(i))2∆t
, σ2

j (θ) =
1

1− 2θλj(σ(i))2∆t
, (4.11)

and

λ(θ) = λ∆te
θaT1 η +

1

2
θ2aT1 (δ

TΣJδ)a1
, η(θ) = η + θaT1 (δ

TΣJδ). (4.12)

16



That is, in (4.10) Zj, j = 1, . . . , d, are independent N(µj(θ), σ
2
j (θ)), and Ji are compound

Poisson processes with jump frequency λ(θ) and jump size V (i), i = 1, . . . , n has mean η(θ)
and variance matrix δTΣJδ. To guarantee the rational of Q under exponential twisting of
measures, the constant θ must satisfy 1− 2θλ(1)(σ

(i))2∆t > 0 and 1− 2θλ(d)(σ
(i))2∆t > 0, where

λ(1) = max1≤i≤d λi and λ(d) = min1≤i≤d λi.
To have an efficient importance sampling for approximating P{Lb > rp} for some rp > 0, we

need to characterize the optimal titling θ via Theorem 1. Before stating the result, we define
some quantities that facilitate the presentation of it. In view of (4.11), define

µ̄j(θ) = µj(−θ), σ̄2
j (θ) = σ2

j (−θ), λ̄(θ) = λ(−θ), η̄(θ) = η(−θ). (4.13)

Let V̄ (j) has a d-variate normal distribution with mean η̄(θ) and variance matrix δTΣJδ and
N(∆t) follows a Pois(λ̄(θ)). Applying Theorem 1, it is straight forward to obtain the following
corollary.

Corollary 1 Let θ be such that 1± 2θλ(1)(σ
(i))2∆t > 0 and 1± 2θλ(d)(σ

(i))2∆t > 0. Under the
quadratic approximation to a portfolio VaR, the optimal alternative distribution Q minimizing
the variance of the importance sampling estimator has θ satisfying

ψ′(θ) = EQ̄[Lb|Lb > rp], (4.14)

where ψ′(θ) is in (4.9), EQ̄ is the expectation under Pθ, which has the form (4.10) but replaced
by the three joint distributions: N(µ̄j(θ), σ̄

2
j (θ)), Pois(λ̄(θ)), and V̄ (j).

The optimal θp satisfying (4.14) can be searched by standard numerical methods or the re-
cursive algorithm presented in Section 2.2. Next we present the importance sampling algorithm
for multi-variate jump diffusion model as follows:

1. Compute the θp such that ψ′(θp) = Eθp[Lb|Lb > rp].

2. (i) Generate (Z1, . . . , Zd)
T ∼ (N(µ1(θp), σ

2
1(θp)), . . . , N(µd(θp), σ

2
d(θp)))

T .

(ii) Generate N(∆t) ∼ Pois(λ(θp)).

(iii) Given N(∆t) = n generate

V (i) = (log Y
(1)
i , log Y

(2)
i , . . . , log Y

(d)
i )T ∼ N(η(θp), δ

TΣJδ), i = 1, . . . , n.

3. Repeat step 2 k times to have Lb,i defined in (4.6) for i = 1, . . . , k. Compute p̂(θp) =
1
k

∑k
i=1 1¯{Lb,i>rp}e

−θp(Lb,i−rp)+ψ(θp).

4. Repeat steps 2 and 3 with Monte Carlo size M , and compute sample variance v̂arp(θp).
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In Table 4, we compare the relative efficiency (RE) with fifteen risk factors of the proposed
method (PSD) with respect to the naive method (NV) in estimating the loss probabilities P{Lb >
x} with different values of x. Here the relative efficiency, RE(Method1,Method2), is the variance
under Method 2 divided by that under Method 1. The parameters are λ = 1, η(1) = η(2) = . . . =
η(15) = 0, δ(i) = i/100, µ(i) = i/100, σ(i) = 0.1 + i/100 and ρij = 0.3 for all i 6= j, sample
size k = 1, 000 and Monte Carlo replication M = 10, 000. In Table 4, we set b1 = 0.044,
b2 = 0.0589891, b3 = 0.0720326, b4 = 0.0838734, b5 = 0.0948957, b6 = 0.105325, b7 = 0.115304,
b8 = 0.124929, b9 = 0.134271, b10 = 0.143378, b11 = 0.152289, b12 = 0.161034, b13 = 0.169635,
b14 = 0.178112, b15 = 0.186479, λ1 = 5.2 and λ2 = . . . = λ15 = 0.7 with quadratic approximation
function for a fifteen-variate jump diffusion model. We can see that the proposed method is
significantly more efficient than the naive Monte Carlo in 10, 000 simulations for all values of x.
Furthermore, the efficiency gain is larger for smaller probabilities against the naive method.

Table 4: Quadratic approximation function compared with naive method and a multi-variate
jump diffusion model in Monte Carlo simulation.

rp 0.824 1.166 1.549
p 0.0500 0.0100 0.00100

NV p̂ 0.0501 0.00998 0.00099
v̂arp 4.80E-05 1.00E-05 9.85E-07

PSD p̂(θ) 0.0501 0.00999 0.000100
v̂arp(θ) 5.12E-06 2.69E-07 3.65E-09

RE(p̂(θ), p̂) 9.36 37.15 269.79

p denotes the true tail probability, rp denotes the quantile of p, p̂ and v̂arp are the mean and variance of

the probability estimator with Monte Carlo, p̂(θ) and v̂arp(θ) are the mean and the variance of the tail

probability estimator with importance sampling, RE(p̂(θ), p̂) is the relative efficiency of p̂(θ) relative to

p̂ in a multi-variate jump diffusion model.

4.2 Bootstrapping confidence regions in regression model

Consider a regression model

Yi =

p∑

j=1

xijβj + εi for i = 1, 2, . . . , n, (4.15)

where p ≥ 2, ε1, . . . , εn are i.i.d. mean zero random variables with distribution F (·). Denote σ2

as the variance of ε1. Let xi = (xi1, . . . , xip)
T , β = (β1, . . . , βp)

T . In vector and matrix notation,
we write Yi = xTi β + εi for i = 1, 2, . . . , n, and

Y = Xβ + ε, (4.16)
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where X = (xij)n×p, Y = (Y1, . . . , Yn)
T and ε = (ε1, . . . , εn)

T . Then the least-squares estimator
of β is

β̂ = (XTX)−1XTY. (4.17)

Consider the problem of finding a confidence region C in Rp that covers the vector β with
prescribed probability (1− α). Denote β0 as the true parameter. Under the assumption of X is
full rank p, the statistics of interest is

T :=
(β̂ − β0)

T (XTX)(β̂ − β0)

pσ̂2
, (4.18)

where σ̂2 is the sample variance. In particular we would like to estimate the probability of
the event {T ∈ A}, where A is chosen to be a circular confidence region for the unknown

parameter β0. Let T ∗ = (β̂∗ − β̂)T (XTX)(β̂∗ − β̂)/pσ̂∗2, where β̂∗, σ̂∗2 are the bootstrap
estimators of β̂ and σ̂2, respectively, for given data. Then the bootstrap estimator of P{T ∈ A}
is û = P{T ∗ ∈ A|ε̂} = E(1

¯{T
∗∈A}|ε̂), where ε̂ = (ε̂1, . . . , ε̂n).

To illustrate our proposed method, we select a sample from a regression model in Longley
(1967) in which the data set is available at
http://www.itl.nist.gov/div898/strd/general/dataarchive.html. We choose this classical data
set of labour statistics because it is one of the first used to test the accuracy of least squares
computations. It is noted that the same algorithm can be applied to current statistical data set.

The response variable (y) is the Total Derived Employment and the predictor variables
are GNP Implicit Price Deflator with Year 1954 = 100 (x1), Gross National Product (x2),
Unemployment (x3), Size of Armed Forces (x4), Non-Institutional Population Age 14 & Over
(x5), and Year (x6).

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + εi i = 1, 2, . . . , n (4.19)

where the εi is assumed by normal distribution with mean zero and variance σ2 under PMLE.
The least squares estimator (MLE) of β is

β̂ = (β̂0, . . . , β̂6) = (−3482258.63, 15.0618,−0.0358,−2.0202,−1.0332,−0.0511, 1829.15).

The sample variance σ̂2 is 55761.60. The bootstrap estimator of P{T > a} is α̂ = P{T ∗ >
a|ε̂} = E(1

¯{T
∗>a}|ε̂), where ε̂ = (ε̂1, . . . , ε̂n).

Let

T ∗ =
(β̂∗ − β̂)T (XTX)(β̂∗ − β̂)

pσ̂∗2
=

∑n
i=1 ε̂

∗
i

2

pσ̂∗2
,

where ε̂∗i follows normal distribution with mean zero and variance σ̂2. Here p = 6 in equation
(4.19).

To apply importance resampling in the setting, note that the original bootstrap distribution
is

dP

dL =
n∏

i=1

1√
2πσ̂

e−
ε̂∗
i

2

2σ̂2 .
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The likelihood ratio based on an exponential change of measure is

dQ

dP
= eθ(T

∗−a)−ψa(θ) =
eθ(T

∗−a)

Eeθ(T ∗−a) , (4.20)

where ψa(θ) = logEeθ(T
∗−a). Let Ta = T ∗ − a. The moment generating function of Ta is

E[eθTa ] = e−θa(1− 2 θ
p
)−

n
2 . Therefore, the change of measure Q is

dQ

dL =
dQ

dP

dP

dL = eθT
∗

(1− 2
θ

p
)−

n
2

n∏

i=1

1√
2πσ̂

e−
ε̂∗
i

2

2σ̂2 =

n∏

i=1

1√
2π σ̂

√

1−2 θ
p

e

− ε̂∗
i

2

2 σ̂2

1−2 θ
p .

Recall that Q̄θ = Q−θ. Then, the optimal titling point of our proposed method can be
obtained by solving

EQ̄θ
[T ∗|T ∗ > a] = ψ′

a(θ) = −a + log(1− 2
θ

p
)−

n
2 . (4.21)

Instead of doing simulation under the normal family, we propose a transformed likelihood
ratio method to obtain the bootstrap estimator of P{T > a}. The method is doing simulation

under the χ2-distribution family. Note that T ∗ =
∑n

i=1X
2
i /p, where Xi = ε̂∗i

2
/σ̂∗2 is a χ2-

distribution with degree of freedom 1. Here the likelihood ratio based on an exponential change
of measure is

dQ

dP
= eθ(T

∗−a)−ψa(θ) =
eθ(T

∗−a)

Eeθ(T ∗−a) , (4.22)

where ψa(θ) = logEeθ(T
∗−a). By using an argument similar as above, the optimal titling point

can be obtained by solving

EQ̄θ
[T ∗|T ∗ > a] = ψ′

a(θ) = −a + log(1− 2
θ

p
)−

n
2 . (4.23)

Note that (4.23) equals (4.21).
Since the relative efficiencies of these two algorithms are almost the same, we only report that

based on normal family. Table 5 reports the relative efficiency of the importance resampling with
respect the naive Monte Carlo simulation. Here α denotes the true tail probability, a denotes
the quantile of T ∗, α̂ and v̂arα are the mean and variance of the probability estimator with
Monte Carlo, α̂(θ) and v̂arα(θ) are the mean and the variance of the tail probability estimator
with importance sampling, RE(α̂(θ), α̂) is the relative efficiency of θ̂ relative to α̂ in a regression
model. Table 6 reports the non-coverage probabilities and averages and standard deviations of
region areas for cubical and spherical confidence regions with nominal coverage probability 95%.
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Table 5: Importance sampling with PMLE compared with naive method and a regression model
in Monte Carlo simulation.

a 3.363 3.756 4.571
α 0.100 0.050 0.010

NV α̂ 0.101 0.049 0.0099
v̂arα 8.94E-04 4.74E-04 1.00E-04

PSD α̂(θ) 0.099 0.050 0.010
v̂arα(θ) 1.98E-04 6.35E-05 3.76E-06

RE(α̂(θ), α̂) 4.51 13.39 26.59

Table 6: Non-coverage probabilities and averages and standard deviations of region areas for
circular confidence regions with nominal coverage probability 95%. The sample is drawn from
a regression model in Longley (1967). The parameter of interest is β. Results are reported for
studentised statistics and naive resampling and importance resampling.

Bootstrap Region Area

Resampling replication Noncoverage Standard
Method size probability Average deviation

Naive 1000 0.054 49214.4 4853.05
Importance 400 0.049 51054.2 5035.12
Importance 200 0.051 52563.7 5174.63
Importance 100 0.053 54853.3 5313.38

5 Conclusions

In this paper, we propose a general account in importance sampling with applications to portfolio
VaR computation and bootstrapping confidence regions. It is shown that our method produces
efficient approximation to the problem. Simulation results confirm the theoretical results that
our method always provides greater variance reduction than the naive Monte Carlo method.
Our numerical experiments demonstrate that the gain in variance reduction can be substantial
in some cases.

The key features of our method are twofold. First, (2.8) characterizes the optimal alternative
distribution for importance sampling under exponential tilting. And the recursive algorithm
facilitates the computation of the optimal solution. The initial value of the recursive algorithm
is the dominating point of the large deviations tilting probability used previously by other
authors; e.g., Sadowsky and Bucklew (1900). The recursive algorithm then sequentially generates
alternative distributions providing greater variance reduction. Due to the nature of the recursive
algorithm, the additional programming effort and computing time are negligible. Second, the
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proposed tilting formula for normal distribution and its square, along with jump diffusion model,
can be used to have more efficient simulation for portfolio VaR computation. We also apply the
proposed titling probability to a parametric family (normal family or χ2 family) which can be
used for constructing bootstrap confidence regions for the unknown parameters in regression
models.

Our method highlights the two aforementioned key features in general settings. By using
the idea of conjugate probability measure, we obtained the optimal tilting parameter via (2.8).
Specific considerations can be found in several papers; see Fuh and Hu (2004) for multivariate
normal distributions, Fuh and Hu (2007) for hidden Markov models, and Fuh et al. (2011) for
multivariate t distribution. Further applications to K-distributions and copula models will be
published elsewhere. In this paper, we assume that the underlying random variables are indepen-
dent over time. A more challenging project is to model the time dependence using, for example,
Markov switching autoregression models or GARCH models. It is expected that our method
can be applied to option pricing, Greeks letters calculation, and correlated default probabilities
among others.

Appendix: Proof of Theorem 1

The existence of the optimization problem (2.3) can be proved by first showing that for
θ ∈ R,

ψ′(θ) is strictly increasing and EQ̄[X|X ∈ A] is strictly decreasing. (A.1)

To prove (A.1), we first note that ψ(θ) is the cumulant generating function of X , and therefore
its second derivative ψ′′(θ) > 0 for θ ∈ I. This implies that ψ′(θ) is strictly increasing. Since
Ψ(θ) is convex and steep by assumption, we have ψ′(θ) → ∞ as θ → θmax. Furthermore, consider
the conditional measure of Q̄ on the set A, denoted by Q̄A, which is defined as

dQ̄A =
1{X∈A}dQ̄∫
1{X∈A}dQ̄

. (A.2)

Then we have

dEQ̄θ
[X|X ∈ A]

dθ
=

d

dθ

(
E[1{X∈A}Xe−θX ]

E[1{X∈A}e−θX ]

)

= −E[1{X∈A}X
2e−θX ]

E[1{X∈A}e−θX ]
+
E2[1{X∈A}Xe−θX ]

E2[1{X∈A}e−θX ]
= −varQ̄A

(X) < 0.

This implies that EQ̄θ
[X|X ∈ A] is strictly decreasing. The existence of the optimization problem

(2.3) follows from EQ̄0
[X|X ∈ A] = E[X|X ∈ A] > µ = ψ′(0).

To prove the uniqueness, we note that the second derivative of G equals

∂2G(θ)

∂θ2
=

∂2

∂θ2
E[1{X∈A}

dP

dQ
] =

∂2

∂θ2
E[1{X∈A}e

−θX+ψ(θ)]

=
∂

∂θ
E[1{X∈A}(+ψ

′(θ))e−θX+ψ(θ)]

= E[1{X∈A}((−X + ψ′(θ))2 + ψ′′(θ))e−θX+ψ(θ)]. (A.3)
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Since ψ(θ) is the cumulant generating function of X , its second derivative ψ′′(θ) > 0. It then

follows from (A.3) that ∂2G(θ)
∂θ2

> 0, which implies that there exists a unique minimum of G(θ).
To prove (2.8), we need to simplify the RHS of (2.5) under Q̄. Standard algebra gives

E[1{X∈A}Xe−θX ]

E[1{X∈A}e−θX ]
=

∫
1{x∈A}xe

−θxdP/Ψ̃(θ)∫
1{x∈A}e−θxdP/Ψ̃(θ)

=

∫
1{x∈A}xdQ̄∫
1{x∈A}dQ̄

. (A.4)

As a result, (A.4) equals
∫

1{x∈A}xdQ̄A = EQ̄A
[X ] = EQ̄[X|X ∈ A],

which implies the desired result.
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