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Abstract 
 

The convergence of the Intelligent Transportation 
System (ITS) technologies has given rise to new 
opportunities for creative and incentive taxi services 
such as taxipooling. Taxipooling is similar to 
carpooling which is based on the idea that sets of users 
having the same travel destination and sharing 
vehicles. This paper presents two heuristic algorithms 
based on greedy method and the time-space network 
for the case of one origin to many destinations (“one-
to-many”) and many origins to one destination 
(“many-to-one”). These algorithms are used to 
support a field trial at Taipei Nei-Hu Science and 
Technology Park in Taiwan. The results of numerical 
tests have demonstrated that the outcomes of these 
heuristic algorithms are fairly plausible.  
 
1. Introduction 
 

The convergence of the Intelligent Transportation 
System (ITS) technologies, including the Internet, 
wireless communications, geographic information 
system (GIS), positioning technologies, and mobile 
devices, has given rise to new opportunities for taxi 
services. With ITS technologies taxi operators can 
monitor their entire fleet and track mobile user’s 
location and movement on GIS-based maps. Due to 
any information or message about each taxi or user can 
be provided visually and interactively, taxi has become 
a new public transportation system which has high 
mobility and high accessibility in the same manner as 
privately owned cars. 

According to the statistics report [1], the amount of 
taxies in Taipei city has reached 32,824 vehicles up to 
the end of 2006. The average daily working time per 
taxi driver is 10 hours, but the vacancy time is 3 hours. 
Most of taxi drivers are willing to take incentive 
measures such as taxipooling to improve the average 
level of occupancy. Taxipooling is similar to 
carpooling which is based on the idea that sets of users 

having the same travel destination and sharing 
vehicles. 

The carpooling problem has been modeled as a 
vehicle routing problem with pickup and deliveries and 
time windows, and solved with heuristic concepts. Due 
to lack of an efficient information and communication 
support, the problem of automatically creating 
dynamic ride match lists upon carpooling or 
taxipooling demand has been researched for many 
years. Healy [2], Cordeau [3], Fu [4,5], Attanasio [6], 
Diana [7], Baldacci et al. [8] and Calvo et al. [9] 
treated the carpooling problem as a special case of dial-
a-ride problem and proposed their solution techniques 
considering the size and peculiarity of the application 
faced. Previous work suggests that dynamic ride 
matching differs from regular carpooling and 
taxipooling in that ridesharing is arranged for 
individual trips rather than for trips made on a regular 
basis and requests for ridesharing can be made close to 
the time when travel is desired [10]. 

Dynamic rideshare matching differs from traditional 
rideshare matching in following ways: Traditional 
systems assume the traveler has a fixed schedule and a 
fixed set of origins and destinations [11]. A dynamic 
system must take into account each trip individually 
and be able to adjust trips to arbitrary origins and 
destinations at anytime by matching users’ individual 
trips. The other major difference is that dynamic ride 
matching systems must offer the real-time match 
information to the user to accommodate short-term 
(e.g. same day) travel as well as long-term (e.g. future 
days or weeks) trips. Using ITS technologies the 
requirements of dynamic rideshare matching are easier 
to meet than those of for traditional rideshare 
applications [12]. 

This paper is aimed on modeling a dynamic 
rideshare matching application of taking into account 
the Internet and wireless communication network 
infrastructure to meet the requirements of taxi 
passengers from one origin to many destinations (“one-
to-many”) and from many origins to one destination 
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(“many-to-one”). First, the specific taxipooling 
problem is addressed and the concept of solution 
procedure is also introduced. Then, solution techniques 
for two cases of “one-to-many” and “many-to-one” are 
presented. Finally, computational results are analyzed 
and the conclusion follows. 
 
2. The problem and algorithms 
 

The problem being considered in this paper is 
defined around a situation in which a number of 
potential passengers that daily commute between their 
house and workplace. These commuters need 
taxipooling services with the type of “many-to-one” in 
the morning peak hour and the type of “one-to-many” 
in the afternoon peak hour. Passengers can access the 
taxi call center either through a World Wide Web 
(WWW) browser or via mobile phones at any time. 
Given this situation, the problem at hand is deciding 
which passengers should be matched and assigned to a 
taxi in a way of minimizing the distance traveled and 
time of both passengers and taxi. 

Having reviewed related literature, the greedy 
heuristic method is chosen as the algorithm in this 
paper. The solution procedure is to search the nearest 
passenger until satisfying the constraints of passenger’s 
preference and vehicle capacity.  The algorithm 
descriptions for the type of “one-to-many” and the type 
of “many-to-one” are given respectively as follows. 
 
2.1. Algorithm procedure 
 

Although the capacity constraint is set to be four 
passengers for the taxipooling service, it is also 
suitable for over four persons if the pooling vehicle 
larger than a car. The algorithm procedure is shown in 
Fig. 1. 

Step0: Setting parameter D and T. 
1. D is used to restrict the searchable scope that 

prevents routing distance from being too long. 
2. T means the maximum passenger waiting time. 

Step1:Sorting by taxipooling passengers’ 
preferences which can be classified into following 9 
types: 
1. Acceptable number of taxipooling passenger is two 

and female only. 
2. Acceptable number of taxipooling passenger is two 

and male only. 
3. Acceptable number of taxipooling passenger for is 

two and no request for male or female preference. 
4. Acceptable number of taxipooling passenger is three 

and female only. 
5. Acceptable number of taxipooling passenger is three 

and male only. 

6. Acceptable number of taxipooling passenger is three 
and no request for male or female preference. 

7. Only female taxipooling passengers are acceptable. 
8. Only male taxipooling passengers are acceptable. 
9. No request. 
 

 
Figure 1. The algorithm procedure 

 
The matching process will continue from type 1 

to type 9 till the major candidate passengers are 
matched by considering the strictest constraint of 
preference with the first priority. If they can not be 
matched, step 2 will not be taken. 

Step2: Matching all O-D pairs of acceptable 
number of taxipooling passenger is greater than or 
equal to four within the same time period. A simple 
example is shown as follows: 

 
Step3: Matching all O-D pairs of acceptable 

number of taxipooling passenger is equal to three 
within the same time period. 

Step4: Matching all O-D pairs of acceptable 
number of taxipooling passenger is equal to two within 
the same time period. 
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Step5: Matching all O-D pairs of acceptable 
number of passenger for taxipooling is equal to one 
within the same time period. 

Step6: Improving taxi routing sequences by using 
the enumeration method.  For example, if the original 
route is O D1 D2 D3, all possible sequences of 
O D1 D3 D2,O D2 D1 D3,O D2 D3 D
1,O D3 D1 D2, and O D3 D2 D1 will be 
searched to identify the shortest route. 

Step7: If all passengers’ preferences are matched, 
then stop; else, go to step 1. 
 
2.2. The one-to-many algorithm 
 

The one-to-many algorithm is based on a time-
space network shown in Fig. 2.  The vertical axis 
represents the time duration and the horizontal axis 
indicates the passenger location.  A node stands for a 
location at a specific time and an arc designates an 
activity for a taxi.  Theoretically, the higher the density 
of the nodes is, the larger the problem size will be. 
Therefore, a suitable density of nodes should be 
selected according to actual requirements.  In this 
paper the interval between the two nodes is 15 minutes. 
Two types of arcs are described as follows: 
1. Service arc 

A service arc, marked by (1) in Fig. 2, represents a 
taxi movement between two different locations. All 
possible service arcs between two continuous 
locations within a reasonable time period are plotted 
in the network. 

2. Holding arc 
The holding arc, marked by (2) in Fig. 2, represents 
the holding of a taxi at a location within a time 
period.  The algorithm allows taxi waiting at origin 
in order to increase the matching probability. 

 

 
Figure 2. The time-space network of “one-to-

many” 
The searching method is shown in Fig. 3. The mark 

“o” represents an origin, while the mark “d” stands for 
a destination.  The first step is to set a passenger’s “o” 
and begin to expand searching areas until the nearest 
passenger’s “d” is found with the constraints of D, T 
and passengers’ preferences. The flowchart of the 
matching process for the type of “one-to-many” is 
shown in Fig. 4. 

 

 
Figure 3. The searching method on space 

locations 
 

 
Figure 4. Flowchart of matching process for 

“one-to-many” 
 
The detailed steps of the matching process are 

illustrated as follows: 
Step1: A group of passengers is chosen as (O1, 

18:00) in Fig. 5. 
 

 
Figure 5. Step 1 of matching process for 

“one-to-many” 
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Step2: If any taxipooling passenger is assigned to a 
white node shown in Fig. 6, then go to step 3; else, go 
to step 4. 

 

 
Figure 6. Step 2 of matching process for 

“one-to-many” 
 
Step3: Passengers are chosen and the constraints of 

passengers’ preferences are also checked. If the 
constraints are not satisfied, go to step 8; else, a taxi is 
assigned to the node (D1, 18:05) shown in Fig. 7 and 
then go to step2. 

 

 
Figure 7. Step 3 of matching process for 

“one-to-many” 
 
Step4: If the searchable area is smaller than 

parameter D, then go to step 5; else, go to step 6. 
Step5: A new space node is increased to represent 

the white node shown in Fig. 8. 
 

 
Figure 8. Step 5 of matching process for 

“one-to-many” 
 
Step6: If the searchable area is smaller than 

parameter T, then go to step 7; else, go to step 8. 
Step7: A new timing node is increased to represent 

the white node shown in Fig. 9. 
 

 
Figure 9. Step 7 of matching process for 

“one-to-many” 
 
Step8: All select passengers with preference 

constraints are matched. 
Step9: If all passengers at location O1 have been 

searched, then stop; else, go to step 1. 
 
2.3. The many-to-one algorithm 
 

The horizontal and vertical axes are defined to be 
the same as those in the “one-to-many” network.  The 
significant difference is the O-D pairs of the type of 
“many-to-one” that stands for multiple origins and 
only one destination shown in Fig. 10. In this case, 
holding arcs indicate passengers who are waiting for 
the next taxipooling passengers. In practice, if a taxi 
arrives early, the driver will contact the call center to 
remind passengers that they are expected to arrive on 
time. 

 

 
Figure 10. The time-space network of 

“many-to-one” 
 
The steps of matching process for “many-to-one” 

are similar to those of “one-to-many”. The major 
differences are step 1, step 7 and step 9 which can be 
illustrated as follows: 

Step1: A group of passengers is chosen randomly 
from all origins. 

Step7: A new timing node is increased to represent 
the white node shown in figure 11. For example, 
suppose a taxipooling passenger has been searched at 
(O1, 7:00).  Then (O2, 7:05), (O3, 7:10), (O4, 7:05) 
and (O5, 7:05) and his constraints of preferences are 
also checked. If there is no further passenger, the white 
nodes in figure 11 are checked.  It is notified that the 
white node (O1, 7:05) for the same location should be 
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first checked because the other white nodes might be 
influenced by traffic jams. 

 

 
Figure 11. Step 7 of matching process for 

“many-to-one” 
 
Step9: If all passenger locations (O1, O2, O3, …) 

are searched, then stop; else, go to step 1. 
 
3. Numerical tests 
 

To test how well the algorithms may be applied in 
the real world, a field trial of taxipooling is conducted 
at Taipei Nei-Hu Science and Technology Park in 
Taiwan from October 26 to November 17 in 2006[13]. 
There are 10 taxis and 798 passengers participating in 
this pilot project. The “one-to-many” algorithm is 
performed from 6:00 AM to 9:00 AM. The “many-to-
one” algorithm is performed from 6:00PM to 9:00 PM. 
The physical system architecture of the taxipooling 
service can be shown in Fig. 12. 

 

 
Figure 12. The physical system architecture 

of the taxipooling service 
 
As shown in Tab. 1, matching success rates for 

“many-to-one” and “one-to-many” are 53.9% and 
53.6% respectively. There are 481 passengers have 
been matched in total, the matching success rate is 

60.3% on the whole. In additional, the computation 
time of each test is less than 1 second.  It is, of course, 
to be expected that the matching success rate is zero if 
number of passengers is too small or passenger 
locations are too dispersive. In Tab. 1 the matching 
success rate of the 2nd test in the afternoon, the 8th test 
all day and the 9th test in the morning are zero. 

 
Table 1. Matching success rates of the field 

trial in Taipei 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
As shown in Fig. 13, the average number of 

passenger per taxi (e.g. load factor) for “many-to-one” 
and “one-to-many” is 2.4 and 2.3 respectively.  There 
is no significant difference in load factor between 
“many-to-one” and “one-to-many”.  The load factor 
will decrease if the demand for taxipooling declines. 
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Figure 13. Average number of passenger 

per taxi of the field trial in Taipei 
 
The average saving distance is 58,215 km for 

“many-to-one” and 62,272 km for “one-to-many” 
which are shown in Fig. 14 and Fig. 15 respectively. 
The factors affect the average saving distance 
including matching success rates, distributions of 
passenger locations, taxi routing sequences, etc. The 
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results reveal that a good dynamic matching algorithm 
will save more travel distances for the taxipooling 
problem. 
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Figure 14. Average saving distance for 

“many-to-one” 
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Figure 15. Average saving distance for 

“one-to-many” 
 
4. Conclusions 
 

Two heuristic algorithms based on greedy method 
and the time-space network are developed to efficiently 
solve the dynamic taxipooling problem for ‘one-to-
many” and “many-to-one” respectively. These 
algorithms are used to support a field trial at Taipei 
Nei-Hu Science and Technology Park in Taiwan. The 
results of numerical tests demonstrated that the 
outcomes of these heuristic algorithms are fairly 
plausible. The average matching success rate is 60.3% 
and the average saving distance is 63873 km on the 
whole. 

However, the developed algorithms are applicable 
to the case of “one-to-many” and “many-to-one” which 
can more or less describe the commuter travel behavior 
for certain urban areas. The case of “many-to-many” 
which fully represents dynamic ride matching with any 
O-D pairs for taxipooling problem is under 
development. Some advanced heuristic techniques 
such as tabu search method, threshold accepting 
method, genetic algorithm, lagrangian relaxation or 
column generation may provide good solutions if the 

proposed heuristic algorithms are not able to cope with 
the large scale time-space network problems. This 
could be a direction of future work. 
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