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Abstract— In this paper, we analyze the non-uniformity
of sliding distance on both wafer and polishing pad from
kinematic point of view. Use the Fourier series expansion, we
can show that in steady state the non-uniformity is determined
by the ratio between rotary speeds of platen and wafer carrier
(m), and the ratio of wafer radius to the distance between the
center of platen and wafer ( Rc

d
). In general, the non-uniformity

of wafer increases with |m| and Rc

d
. An important observation

for polishing pad is that in two particular ranges of the ratio
m, the larger Rc

d
produces the smaller non-uniformity. Then

a ring type polishing pad is proposed for the purpose of
improving the non-uniformity of both wafer and pad. However,
it turns out that the result is much worse than we expected.

I. INTRODUCTION

Chemical mechanical polishing/planarization (CMP) has
emerged recently as a vital processing technique for a
higher degree of planarization in submicron VLSI beyond
the resolution of 0.35µm [1]. Although CMP has been
widely used for a few years, the mechanism of the material
removal is yet to be explored. The primary factors affecting
planarization efficiency are mechanical (downforce on the
wafer, platen speed, pad structure) and chemical (slurry
chemistry). To improve throughput, material removal rate
(MRR) is maximized. Removal rate and removal rate unifor-
mity across a wafer are also strong functions of downforce,
platen speed, pad structure and slurry chemistry. Among
them, relative velocity distribution on the wafer surface
is considered as an important factor affecting the spatial
distribution of removal rate since it determines the sliding
distance of given point on the wafer The early work of
Runnels et al. [2] and Hocheng et al. [1, 3] had analyzed
some aspects of kinematics in CMP. However, many topics
still remain open in this area.

In this study we adopt two dimensionless parameters to
analyze the non-uniformity of both wafer and pad. Namely,
the ratio between rotational speeds of wafer carrier and
platen (m) and the ratio of wafer radius to the distance
between the center of platen and wafer. At first, a classic
kinematic mehtod is implemented to derive the relative
velocity at the contact point in the first part of section II.
Then a dimensionless sliding distance and the related non-
uniformity is defined and determined as the performance
index for the polishing result.

Finally a ring type polishing pad is proposed for the
purpose of improving the non-uniformity of both wafer and
pad. However, it turns out that the result is much worse
than we expected.

II. KINEMATIC ANALYSIS OF RELATIVE VELOCITY

DISTRIBUTION

Fig. 1 depicts a typical CMP schematic, and Fig. 2
shows the definitions of the kinematic parameters of CMP,
in which �Lp is the position vector of point p relative to
pad center, �Lc is the position vector measured from carrier
center, and �d = d�i is the postilion vetoer of carrier center
measured from carrier center, �i is a unit vector along �d.
In this figure, the pad and wafer are rotating with angular
velocities �ωp = ωp

�k and �ωc = ωc
�k respectively, where �k is

the unit vector orthogonal to wafer and pad surface.
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Fig. 2. The kinematic parameters of the CMP (top view)

The well known Preston equation, empirically found from
the experiment of the glass polishing in 1927, has been
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proposed to predict the material removal rate of CMP [1,
4]. According to the Preston equation, the material removal
rate

Ṁ = −κpPV, (2.1)

where P is the contact pressure distribution at contact point,
V is the magnitude of the relative velocity at contact point
p between wafer and polishing pad and κp is a constant
representing the effect of the other remaining parameters
including the chemical reaction, pad property, . . ., and so
on [5].

Now we are going to express the relative velocity in
terms of the parameters of wafer. At any instant, the relative
velocity �v between pad and carrier at any contact point p is

�v = �vp − �vc = �ωp × (�d + �Lc) − �ωc × �Lc,

= (�ωp − �ωc) × �Lc + �ωp × �d.
(2.2)

Define the magnitude of �v as V
∆
= ‖�v‖. It can be shown

that

V =
√

�v · �v = ωcd

∥∥∥(m − 1)ρc�ec + m�i

∥∥∥ , (2.3)

where the dimensionless distance

ρc
∆
=

‖�Lc‖

d
, (2.4)

and �ec is the unit vector in the direction of �Lc, m is defined
as the ratio of rotational speeds,

m =
ωp

ωc

. (2.5)

Note that negative m stands for wafer and pad rotate in
opposite direction, and

�ec ·�i = cos(ωct + θ), (2.6)

where θ is the initial angular position of the contact point
on the wafer measured from �d.

Similarly, we can derive the distribution of the relative
velocity on the pad as follows,

�v = �vp − �vc

= (�ωp − �ωc) × �Lp + �ωc × �d.
(2.7)

It follows that the magnitude of relative velocity can be
shown as

V = ωcd

∥∥∥(m − 1)ρp�ep +�i

∥∥∥ , (2.8)

where the dimensionless distance

ρp
∆
=

‖�Lp‖

d
, (2.9)

�ep is the unit vector in the direction of �Lp, and

�ep ·�i = cos(ωpt + φ), (2.10)

φ is the initial angular position of the contact point on the
polishing pad measured from �d.

Fig. 3 shows the normalized relative velocity distribution
V

ωcd
at a particular instant for m = 1.5 on wafer and pad

respectively, in both figures i-axis stands for the �d direction,
and j-axis is the direction of �k×�i. From these two figures,
we can see that both the inclination of the surfaces is m−
1 = 0.5 in this case.
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Fig. 3. The normalized relative velocity V
ωcd

on wafer and pad

A. The Sliding Distance Distribution on the Wafer

For convenience, we define the normalized sliding dis-
tance as

Sn(ρc, θ,m)
∆
=

1

ωcdT

∫ T

0

V dt, (2.11)

where T is the elapsed time. Hence, if ωp = ωc, that is
m = 1, then we have V = ωcd, and

Sn(ρc, θ, 1) = 1, (2.12)

which implies the magnitudes of the relative velocity is
the same throughout the contact surface on the wafer [6,
7]. Henceforth, the wafer can achieve global planarization
theoretically if the pressure distribution is uniform and no
other effects are considered.

However, for m �= 1, the normalized sliding distance can
be obtained from the following

Sn(ρc, θ,m) =
1

ωcdT

∫ T

0

V dt,

=
2|(m − 1)ρc + m|

ωcT

∫ 1
2 [ωcT+θ]

1
2 θ

√
1 − kc sin2(τ)dτ,

(2.13)

where the parameter kc is defined as

kc
∆
=

4(m − 1)mρc

[(m − 1)ρc + m]
2 . (2.14)

Since the integrand of equation (2.13),
√

1 − kc sin2(τ), is
is an even periodic function with period π, we can write it
as a Fourier series expansion

√
1 − kc sin2(τ) = a0 +

∞∑
n=1

an cos(2nτ),

where an, n = 0, 1, . . . , are the corresponding Fourier
coefficients. In particular, the coefficient

a0 =
2

π

∫ π
2

0

√
1 − kc sin2(τ)dτ. (2.15)
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It follows that as the elapsed time T → ∞, i.e. in the steady
state,

Sns(ρc,m)
∆
= lim

T→∞
Sn(ρc, θ,m)

= |(m − 1)ρc + m|a0.
(2.16)

The resulted normalized sliding distance here is identical
to the one obtained by Chen and Lee [8], in which the
result was obtained through a three link manipulator model.
Fig. 4 clearly indicates that the larger the ρc is, the larger
the normalized sliding distance will be. Hence, for fixed
rotational ratio m, the material removal of wafer at the edge
area is higher than that at the central area. This conclusion
is consistent with the one given in [9] and the references
therein. While in [9], the result was obtained through a
Taylor series expansion, it is valid only for small ρc and
m ≈ 1.
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Fig. 4. The steady state normalized sliding distance Sns(ρc, m) on wafer.

B. The Sliding Distance Distribution on the Pad

Next, consider the material removed of pad at a specific
point p. For a long enough period of elapsed time, T , the
actual contact time, Tc(ρp), between wafer and pad is (See
Fig. 5)

Tc(ρp) = T
2θp(ρp)

2π
, (2.17)

where θp(ρp) can be found through vector analysis

θp(ρp) =

⎧⎨
⎩cos−1 1+ρ2

p−
R2

c
d2

2ρp
, 1 − Rc

d
≤ ρp ≤ 1 + Rc

d

0, otherwise,

in which ρp is defined by (2.9). Note that the maximum

contact time occurs at ρp =

√
1 −

(
Rc

d

)2
. Therefore,

the normalized sliding distance of contact point p on the
polishing pad for a period of elapsed time, T , can be
calculated by

Sn(ρp, φ,m)
∆
=

1

ωcdT

∫ Tc(ρp)

0

V dt

=
1

T

∫ Tc(ρc)

0

∥∥∥(m − 1)ρp�ep +�i

∥∥∥ dt

=
2|(m − 1)ρp + 1|

ωpT

·

∫ 1
2 (ωpTc(ρp)+φ)

1
2 φ

√
1 − kp sin2(τ)dτ,

(2.18)

where

kp =
4(m − 1)ρp

[(m − 1)ρp + 1]
2 . (2.19)

Use the same reasons given in Section II-A, the steady state
of the normalized sliding distance on the pad can be written
as

Sns(ρp,m) = |(m − 1)ρp + 1|
θp(ρp)

π
a0, (2.20)

where

a0 =
2

π

∫ π
2

0

√
1 − kp sin2(τ)dτ. (2.21)
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Fig. 5. Pad creep and recovery region and θp(ρp)

According to the Preston’s equation ( 2.1), pad wear
is proportional to the sliding distance. Thus, the shape
of deformation across the pad radius becomes uneven as
polishing time goes on. This phenomenon can be observed
from Fig. 6, in which we assume Rc

d
= 2

3 .
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Fig. 6. The steady state normalized sliding distance Sns(ρp, m) on pad.

Although, the condition ωp = ωc can be used to achieve
the global planarization for wafer, if we only take into ac-
count the effect of relative velocity. However, the polishing
pad still undergoes an uneven deformation, it will leave a
bowl shape concavity on the pad surface [9]. This bowl
shape concave will seriously affect the polishing process,
because it directly change the contact surface profile, as a
result will destroy the uniform contact pressure distribution
that is required.
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C. The Uniformity of Wafer and Pad

In this section, let us examine the effects of rotational
speeds, m =

ωp

ωc
, and the distance between two centers, d.

For comparison, let us define the non-uniformity (NU) as

NU(
Rc

d
,m)

∆
=

std(Sns(ρ,m))
mean(Sns(ρ,m))

,

{
0 ≤ ρ ≤ Rc

d
, for wafer,

1 − Rc

d
≤ ρ ≤ 1 + Rc

d
, for pad

,

(2.22)

to be our performance index, where “std” and “mean” are
the standard deviation and mean of Sns taken over the
defined dimensionless radius ρ.
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Figure 7 and 8 illustrate the numerical results for various
values of ratio m and Rc

d
. From these two figures, some

conclusions can be drawn:
For the wafer surface:
1) When the ratio m = 1, we have NU = 0, which

agrees with previous discussion, while for m < 1,
the non-uniformity of wafer surface increases rapidly.
Negative m gives much higher value of NU than
positive m does.

2) The non-uniformity increases as Rc

d
increases, that

is, either the size of the wafer is larger or the centers
between the pad and wafer is closer.

For polishing pad surface:
1) For m > 0 the minimum value of NU of pad occurs

at m ≈ 2, while for m < 0, the minimum non-
uniformity occurs at m ≈ −0.5.

2) For two particular ranges of values of m, (e.g. m =
1.5), the non-uniformity decreases as Rc

d
increases;

on the other hand, for some other values of m (e.g.
m = 1), the related non-uniformity increases as
Rc

d
increases. This observation was never discovered

in literatures and is quite different from what we
observed from wafer.

3) The NU-surface is symmetric with respect to m = 1.
When Rc

d
≈ 1, as |m| → ∞, the non-uniformity

reaches a steady state NU ≈ 0.37.

In general, as d increases (implies Rc

d
decreases) both

the non-uniformity of wafer and polishing pad decrease.
It supports the conclusion that increasing of d helps the
improving the quality of polishing. Increasing the distance
d also implies the increase of the size of polishing pad.
However, polishing pad is one of the main cost in CMP. It
may restrict the selection of d.

Note that Some other additional kinematic factors of
CMP may also can to be considered to improve the non-
uniformity in addition to m and Rc

d
, see for example [7].

III. RING TYPE POLISHING PAD

The above discussions are based on changing the rota-
tional speeds and the distance between the centers of carrier
and platen. In this section, we are going to discuss the effect
of polishing pad with a ring shape. The main difference
of this ring type pad with traditional one is the change
of contact area. By changing the contact area of ring type
polishing pad we “wish” that we would be able to improve
the polishing result from kinematic perspective.
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Fig. 9. The schematic of ring type polishing pad
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Figure 9 illustrates the structure and kinematic variables
of the ring type polishing pad system, in which �Lp and �Lc
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are the position vector of contact point p on the ring relative
to the center of polishing pad and wafer respectively, d is
the distance between the centers of wafer and ring type
polishing pad, w is the width of the ring, and �ωp and �ωc

are the rotational velocity of pad and wafer respectively.
Here we assume that

w � Rp. (3.1)

where Rp is the inner radius of pad. Obviously, if the center
of the wafer is not under the contact area of the ring type
polishing pad, then there will exist a non-polished area on
the wafer surface (See Fig. 10). Therefore, the distance
between centers must be larger than the inner radius of ring
and smaller than the outer radius,

Rp ≤ d ≤ Rp + w, (3.2)

or,

1 ≤
Rp

d
≤ 1 +

w

d
. (3.3)

If we assume that the rotational speed of pad is much
higher than the carrier, that is,

|m| 	 1, (3.4)

then the magnitude of relative velocity of contact point p,
V , can be approximated by the following

V = ωcd

∥∥∥(m − 1)ρc�ec + m�i

∥∥∥ ,

≈ ωc|m|d
∥∥∥ρc�ec +�i

∥∥∥ .
(3.5)

Note that from Fig. 9 it is easy to obtain the following
relationship

ρc�ec +�i = ρp�ep. (3.6)

In addition, because of (3.1), we have ρp ≈
Rp

d
, it follows

that the dimensionless relative velocity on contact area can
be given by

V

ωcd
≈ |m|ρp ≈ |m|

Rp

d
≈ |m|, (3.7)

where we have applied the assumptions (3.3) and (3.1).
This implies the relative velocity at any point on the
contact surfaces between ring and polishing pad will be
approximately equal to a constant. This can be observed
from Fig. 11, where we assume m = 10 and w

d
= 0.1

respectively.
From Fig. 12, we can see that for a period of elapsed

time T , the actual contact time at a particular contact point,
Tc(ρc), is

Tc(ρc) = T
2ψ(ρc)

2π
. (3.8)

It can be proved that ψ(ρc) can be determined by

ψ(ρc) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos−1
ρ2

c+1−
Rp+w

d

2

2ρc

− cos−1
ρ2

c+1−
Rp
d

2

2ρc
, for ρc > w

d
,

π, otherwise,

. (3.9)
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Fig. 11. The distribution of relative velocity at an instant on the wafer
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Fig. 12. The definitions of variables used for ring type polishing pad

Meanwhile if w
Rp

� 1 equation (3.9) can be approximated
by

ψ(ρc) =

{
2 tan−1 l/2

Lc
≈ 2 tan−1

w
d

2 sin β
, for ρc > w

d
,

π, otherwise,

in which l is the length of the segment perpendicular to �Lc

at contact point p and intersecting with pad, and β is the
interior angle between �Rp and �d,

β(ρc) = cos−1
ρ2

p − ρ2
c + 1

2ρp

≈ cos−1 (
Rp

d
)2 − ρ2

c + 1

2
Rp

d

Hence, for a period of elapsed time T , the dimensionless
sliding distance is

Sn(ρc, θ,m)
∆
=

1

ωcdT

∫ Tc(ρc)

0

V dt,

=
1

T

∫ Tc(ρc)

0

‖(m − 1)ρc�ec + m�i‖dt,

=
2|(m − 1)ρc + m|

ωcT

·

∫ 1
2 [ωcTc(ρc)+θ]

1
2 θ

√
1 − kc sin2(τ)dτ,

(3.10)

where the parameter kc is defined by (2.14). In the steady
state,

Sns(ρc,m)
∆
= lim

T→∞
Sn(ρc, θ,m)

= |(m − 1)ρc + m|
ψ(ρc)

π
a0,

(3.11)
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where a0 is given by (2.15). For the case m 	 1, w
d
� 1,

we have

Sns(ρc,m) ≈

{
2|m|

π
tan−1 w/d

2 sin β
, for ρc > w

d

|m|, otherwise
. (3.12)
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Fig. 13. Sns(ρc, m) on wafer when polished by a ring pad

Fig. 13 shows the normalized sliding distance distribution
vs m and ρc. Fig. 14 depicts the difference between the
exact and approximated expression for Sns, as we can tell
from this figure these two matches quite well. Note that
Sns on the wafer is not perfectly symmetric with respect
to m = 0. Although the sliding distance, Sns, in the outer
region is much more robust to the variation of m than the
wafer polished by traditional pad is, the material removed
in central part of wafer will be much higher than that of the
rest part. This result turns out not as good as we expected.
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Finally, use the previously defined non-uniformity (2.22),
we have

NU(
Rc

d
,m)

∆
=

std(Sns(ρ,m))
mean(Sns(ρ,m))

, 0 ≤ ρ ≤
Rc

d
, (3.13)

As we have expeced from the distribution of sliding dis-
tance, the NU of wafer is very poor (see Fig. 15).

IV. CONCLUSION

In this paper, we analyze the non-uniformity of sliding
distance on both wafer and polishing pad from kinematic
point of view. It is shown that the steady state non-
uniformity is determined by two parameters, m and Rc

d
.
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Fig. 15. NU of Sns(ρc, m) on wafer when polished by a ring pad

For a fixed ratio of Rc

d
, the steady state non-uniformity

distribution is an elliptic integral function of m. Roughly
speaking, we find that the non-uniformity of wafer increases
with |m| and Rc

d
. While negative m produces much larger

non-uniformity than positive one. An important observation
for polishing pad is that in two certain ranges of the ratio
m, the larger Rc

d
produces on the contrary the smaller non-

uniformity, this was never discovered in literatures to the
knowledge of author. Then a ring type polishing pad was
proposed for the intension of improving the non-uniformity
of both wafer and pad. However, it turns out that the result
is much worse than the traditional mechanism.

In the future, other mandatory factors including pressure
distribution, interaction with slurry, etc. will be taken into
account step by step.
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