
Improvements of Driver Fatigue Detection System Based on 
Eye Tracking and Dynamic Template Matching 

 
WEN-BING HORNG1, CHIH-YUAN CHEN2, JIAN-WEN PENG3, CHEN-HSIANG CHEN4 

1, 2, 4Department of Computer Science and Information Engineering 
Tamkang University 

151 Ying-Chuan Road, Tamsui, Taipei, Taiwan 25137 
3Department of Commerce Technology and Management 

Chihlee Institute of Technology 
313, Section 1, Wunhua Road, Banciao, Taipei, Taiwan 22050 

REPUBLIC OF CHINA 
1horng@mail.tku.edu.tw, 2121710@mail.tku.edu.tw, 

3pchw8598@mail.chihlee.edu.tw, 4897410022@s97.tku.edu.tw 
 
 
Abstract: - Driver fatigue detection plays an important role in intelligent transportation systems for driving 
safety. Therefore, it becomes an essential research issue these years. Recently, Horng and Chen proposed a 
real-time driver fatigue detection system based on eye tracking and dynamic template matching. In their work, 
the driver fatigue detection system consists of four parts: face detection, eye detection, eye tracking, and fatigue 
detection. However, their work suffers from an exhaustive search in eye tracking with the conventional mean 
absolute difference (MAD) matching function. To remedy the low accuracy in matching and inefficiency in 
search, in this paper, we first propose two new matching functions, the edge map overlapping (EMO) and the 
edge pixel count (EPC), to enhance matching accuracy. In addition, we utilize fast search algorithms, such as 
the 2D-log search and the three-step search algorithms, to expedite search. The experimental results show that 
the 2D-log search with the EPC matching function has the best performance on eye tracking; it only requires 
22.29 search points on average to achieve 99.92% correct rate of eye tracking, as comparing to the original 
work which requires 441 search points with only 96.01% correct rate. By theoretical analysis, the total amount 
of computations for eye tracking in the 2D-log search with EPC only takes up to about 10% of the original 
work. These improvements make the driver fatigue detection system more suitable for implementations in 
embedded systems. 
 
 
Key-Words: - Intelligent transportation system; Driving safety; Driver fatigue detection; Eye tracking; 

Template matching. 
 
1 Introduction 
Driver fatigue has been one of the major causes of 
traffic accidents all over the world. As reported in 
[19], in UK it was estimated that more than 20% of 
traffic accidents have resulted from driver fatigue, 
while in the US there are around 50% of fatigue-
related fatal accidents. Therefore, many countries 
have invested lots of funds in building intelligent 
transportation systems to provide more road safety. 
In addition, researchers have begun to pay more 
attentions to the driving safety problem to decrease 
road crashes. 

To improve driving safety, the related research in 
the literature can be roughly categorized into three 
approaches. The first one is to study the drivers’ 
mental states relating to driving safety [16][17] or 
the cause of driver fatigue resulted from sleep 

deprivation [25]. The second approach is to devise 
auxiliary equipments to improve driving safety, 
such as by designing special car seats [2], by mon-
itoring grip force change on the steering wheel [1], 
or by analyzing EEG (Electroencephalogram) re-
cordings from sensors attached to the human body 
[13][20][24]. The third one is based on image 
processing techniques [6] to detect drivers’ fatigue 
to enhance driving safety. Some of these researchers 
utilized expensive infrared or near-infrared CCD 
cameras for easily locating eye positions [3][7][8] 
[11][14][27], while others employed ordinary CCD 
cameras or cheaper webcams for practical usage [4] 
[5][10][18][21][22][23][26]. However, most of the 
above image-based driver fatigue detection systems 
suffer from the illumination change problem. In 
addition, they might not be suitable for real-time 
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applications due to their complicated computations 
in nature. 

Recently, Horng and Chen [10] proposed a 
vision-based real-time driver fatigue detection 
system based on webcams to cope with the above 
deficiencies. The system can be divided into four 
parts: face detection, eye detection, eye tracking, 
and fatigue detection. It was tested that the average 
correct rate of eye tracking could reach 96.01% and 
the overall correct rate of driver fatigue detection of 
the system could achieve 100%. However, during 
the eye tracking phase of the system, the exhaustive 
search with the conventional mean absolute differ-
ence (MAD) matching function is used. 

In this paper, we improve the Horng-Chen’s eye 
tracking method by increasing both matching 
accuracy and search efficiency. First, we propose 
two new matching functions, the edge map over-
lapping (EMO) and the edge pixel count (EPC), 
specifically designed for eye tracking to increase 
matching accuracy. In addition, we also apply fast 
search algorithms, such as 2D-log search [12] and 
three-step search [15] used in video coding [9], to 
reduce search computation. The experimental results 
show that in the original exhaustive search for eye 
tracking, it requires 441 search points if the search 
range is 10 pixels in each of four directions; 
however, in the 2D-log and three-step searches, they 
require only about 24 and 33 search points on 
average, respectively. As to the correct rate for eye 
tracking, the exhaustive, 2D-log, and three-step 
searches can achieve 99.80%, 99.79%, and 99.86%, 
respectively, if the EMO matching function is used, 
while they are 99.85%, 99.92%, and 99.79%, 
respectively, if EPC is used. These results are much 
better than the original exhaustive search based on 
the MAD matching function whose correct rate is 
96.01% only. The experimental results suggest that 
the 2D-log search with the simple EPC matching 
function can greatly improve the performance of the 
original eye tracking method in terms of search 
efficiency and matching accuracy. It can achieve 
99.92% correct rate of eye tracking while requiring 
only up to about 10% of computations of the 
original work. 

The rest of the paper is organized as follows. In 
Section 2, we briefly review Horng-Chen’s driver 
fatigue detection system. In Section 3, we propose 
two new matching functions to enhance matching 
accuracy and apply fast search algorithms to 
accelerate search efficiency for eye tracking. The 
experimental results are analyzed in Section 4. 
Finally, we conclude the paper in the last section. 

2 Brief Review of Horng-Chen’s 
Driver Fatigue Detection System 

In this section, we briefly review Horng-Chen’s 
driver fatigue detection system [10]. The system 
consists of four components: face detection, eye 
detection, eye tracking, and fatigue detection. Fig. 1 
shows the flow chart of the driver fatigue detection 
system. 
 

Fig. 1  Flow chart of Horng-Chen’s driver fatigue 
detection algorithm 
 

At first, a webcam or an ordinary color CCD 
camera is mounted on the dash board of a car to 
capture the images of the driver for fatigue detection. 
The first frame is used for initial face detection and 
eye location. If any one of these detection proce-
dures fails, then go to the next frame and restart the 
above detection processes. Otherwise, the current 
eye subimages are used as the dynamic templates 
for eye tracking on subsequent frames, and then the 
fatigue detection process is performed. If the eye 
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tracking fails, the face detection and eye location 
processes restart on the current frame. These proce-
dures continue until there are no more frames. 
 
 
2.1 Face Detection 
The RGB color space used to represent color frames 
is first converted into the HSI color space for face 
detection to exclude the brightness factor from 
affecting skin color detection to cope with the 
illumination change problem. A suitable range of 
hue values as well as horizontal and vertical 
projections can correctly detect the face region. The 
upper 2/5 of the detected face region, called the eye 
region, is used for eye location. Fig. 2(a) is a driver 
image. After performing face detection, the eye 
region enclosed in a bounding box is shown in Fig. 
2(b). 
 

  
(a) Original image              (b) Eye region 

Fig. 2  Result of face detection 
 
 
2.2 Eye Detection 
The original color information of the detected eye 
region is first converted into gray scale. Then, the 
Sobel edge operator [6] is used for edge detection in 
the gray-level eye region, gr, as follows. In order to 
reduce computation, an approximate edge magni-
tude, mag(x, y), of a pixel (x, y) in gr is computed as 
follows: 
 

mag(x, y) = |S1(x, y)| + |S2(x, y)|    (1) 
 
where S1(x, y) and S2(x, y) are the Sobel horizontal 
and vertical gradient values of pixel (x, y), respec-
tively, and |z| represents the absolute value of z. 

The edge map, er, of the gray-level eye region gr 
is defined by 
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where black and white stand for the black and white 
pixel values, respectively, and T for some threshold. 

Next, perform horizontal projection on the edge 
map er to find the vertical position of the eyes. Then, 

the left and right eye positions can be located by 
finding the largest connected components in er from 
the center. Finally, the eye subimages in the gray-
level eye region gr are located, which are used as the 
dynamic eye templates for eye tracking. Figs. 3(a) 
and 3(b) show the gray-level eye region image and 
its corresponding edge map. After performing eye 
detection, two eye templates enclosed in bounding 
boxes are also shown in Fig. 3. 
 

  
(a) Eye region         (b) Edge map 

Fig. 3  Result of eye detection 
 
 
2.3 Eye Tracking 
Consider an eye template gt of width w and height h, 
located at the position (a, b) in the original frame. 
The search area of a new frame for eye tracking is 
the eye template position by expanding a reasonable 
number of pixels in each of four directions: left, 
right, up, and down, as depicted in Fig. 4. Let dx_max 
and dy_max be the maximum displacements of the x-
axis and y-axis, respectively. Thus, the size of the 
search area is (w + 2dx_max) × (h + 2dy_max), and the 
number of search points for the exhaustive search is 
equal to (2dx_max + 1) × (2dy_max + 1). This search 
area in the new color frame is first converted into a 
gray-level one, gs, for eye tracking. 
 

 
Fig. 4  Search area of an eye template for tracking 

 
 

The following mean absolute difference (MAD) 
matching function is used for eye template matching: 
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where p and q are displacements of the x-axis and y-
axis, respectively, in which (a – dx_max) ≤ p ≤ (a + 
dx_max) and (b – dy_max) ≤ q ≤ (b + dy_max). If M(p∗, q∗) 
is the minimum value within the search area, the 
point (p∗, q∗) is the most matching position of gt, 
and let fe denote the matched eye subimage in the 
current color frame for fatigue detection. Finally, 
update the position (a, b) of gt to be the new position 
(p∗, q∗) for tracking on subsequent frames. 
 
 
2.4 Fatigue Detection 
The stable feature of darker eyeball colors is used 
for fatigue detection. The matched fe color subimage 
is first inverted (negated) and then converted into 
the HSI color space. Since the original darker 
eyeballs become brighter ones in the inverted image, 
pixels with low saturation values are regarded as 
eyeball pixels. Fig. 5 shows the results of eyeball 
detection for an open eye subimage and a closed eye 
subimage. If the driver’s eyes close over some 
consecutive frames, then he/she is regarded as 
dozing off, and a warming alarm is triggered to alert 
the driver. 
 

  
(a) open eye                 (b) eyeball pixels 

  
(c) closed eye             (d) no eyeball pixels 

Fig. 5  Results of eyeball detection 
 
 

Table 1 shows the experimental results of the 
driver fatigue detection system on five test videos. 
In these experiments, the driver is regarded as 
dozing off when his/her eyes close over 5 consecu-
tive frames. In this table, each field is stated below: 

 n1 : total number of frames in each video clip,  
 n2 : number of frames of closed eyes,  
 n3 : number of frames of real dozing,  
 n4 : number of frames of detected dozing, 
 n5 : number of frames of correct dozing,  
 n6 : correct rate of fatigue detection,  
 n7 : precision rate of fatigue detection, 

Note that the correct rate n6 = n5 / n3 and the preci-
sion rate n7 = n5 / n4. It was shown that the system 
could reach 100.0% correct rate of fatigue detection, 
while the precision rate could still achieve 89.3%. 
 
 

Table 1 Results of fatigue detection  
Video n1 n2 n3 n4 n5 n6 n7 

1 2634 22 3 3 3 100% 100% 
2 1524 18 4 4 4 100% 100% 
3 2717 43 15 18 15 100% 83.3% 
4 433 6 2 2 2 100% 100% 
5 1399 3 1 1 1 100% 100% 

Total 8707 92 25 28 25 100% 89.3% 
 
 
3 Improving Eye Tracking 
In Horng-Chen’s fatigue detection algorithm, the 
exhaustive search with the MAD matching function 
is used for eye tracking. However, it suffers from 
the inaccuracy matching and the inefficient search 
problems due to the MAD matching function and 
the exhaustive search used. To cope with these 
problems, in this section, we first propose two new 
matching functions, the edge map overlapping 
(EMO) and the edge pixel count (EPC), for template 
matching to improve eye tracking accuracy, instead 
of using the conventional MAD matching function. 
In addition, we apply some fast search algorithms, 
such as the 2D-log search [12] and the three-step 
search [15] used in the MPEG encoding, to improve 
search performance. 
 
 
3.1 New Matching Functions 
The design of matching functions can greatly affect 
the computational complexity and the displacement 
vector accuracy. In the literature, there exist several 
popular matching functions, such as normalized 
cross-correlation function (NCF), mean squared 
error (MSE), mean absolute difference (MAD), and 
number of thresholded differences (NTD). It is 
noted in [9] that if the total noise can be modeled as 
white Gaussian, then NCF is the optional matching 
criterion. However, the white Gaussian noise as-
sumption is not completely valid for real images. In 
addition, NCF requires enormous computation cost, 
which makes it impractical. Among the other three 
matching functions, MAD is usually the most 
popular choice in designing practical image coding 
systems because it is simple and has good perfor-
mance. 

However, the popular MAD is a general-purpose 
matching function, which is not specifically 
designed for eye tracking applications. In this 
subsection, we will propose two simple and efficient 
matching functions which are well suitable for eye 
tracking to improve matching accuracy. 
 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Wen-Bing Horng, Chih-Yuan Chen, 
Jian-Wen Peng, Chen-Hsiang Chen

E-ISSN: 2224-3402 17 Issue 1, Volume 9, January 2012



3.1.1 Edge Map Overlapping Matching Function 
In a human face, there are eyelashes, eyelids, irises, 
and pupils around the eyes. Therefore, the eyes have 
prominent edges around them, as already shown in 
Fig. 3(b). This complicated edge feature of the eye 
has already been used for eye location, as discussed 
in Section 2.2. However, it can also be further used 
for eye tracking. In order to use edge feature for 
designing new matching functions, the search area 
and the eye template must first be converted into 
their corresponding edge maps based on Eq. (2). For 
this purpose, the edge pixel value black and non-
edge pixel value white in Eq. (2) are set to 1 and 0, 
respectively, for convenience and efficiency of com-
putation. 

As defined in Section 2.3, let gt be an eye 
template of width w and height h, located at the 
position (a, b). The search area of a new frame for 
eye tracking is the eye template position by ex-
panding dx_max pixels in both directions along with 
the x-axis and by dy_max pixels in both directions 
along with the y-axis (Fig. 4). Suppose that gs is the 
gray-level image of this search area in the new color 
frame for eye tracking. Let es and et be the edge 
maps of the search area gs and the eye template gt, 
respectively. Then, the edge map overlapping (EMO) 
matching function is defined as follows: 
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where the operator “·” represents the logical-AND 
operation, and p and q are displacements of the x-
axis and y-axis, respectively, in which (a – dx_max) ≤ 
p ≤ (a + dx_max) and (b – dy_max) ≤ q ≤ (b + dy_max). 
The more the overlapped edge pixels there are, the 
higher the matched value is. 
 
 
3.1.2 Edge Pixel Count Matching Function 
We further observe that since the eyes have promi-
nent edges around them within the search area, the 
number of edge pixels could be another stable 
feature for eye tracking. In this case, the eye tem-
plate is regarded as a sliding window moving within 
the search area. We only need to count the number 
of edge pixels in the moving window. Thus, the 
edge pixel count (EPC) matching function is defined 
as follows: 
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where p and q are displacements of the x-axis and y-
axis, respectively, in which (a − dx_max) ≤ p ≤ (a + 
dx_max) and (b – dy_max) ≤ q ≤ (b + dy_max). The more 
the number of edge pixels is counted, the more 
likely the eye position will be. 
 
 
3.2 Fast Search Algorithms 
As shown in Section 2.3, the exhaustive search 
needs to examine every search point within the 
search area, trying to find the best possible match. 
However, it requires a large amount of computations. 
In order to reduce the computational cost, several 
fast algorithms have been proposed at the price of 
slightly impaired performance. In general, a fast 
search algorithm starts with a rough search of a set 
of scattered search points. The distance between two 
nearby search points is called step size. At the end 
of each search step, the most promising search point 
becomes the new center point and another search 
step continues with probably a smaller step size. 
The above procedure is repeated until step size is 
equal to one, and the (local) optimum position is 
reached. 

Note that as pointed out in [9], [12], if the 
matching function is monotonic along any direction 
away from the optimal point, it is guaranteed that a 
well-designed fast search algorithm can converge to 
the global optimal point. However, the real image 
signal is not a simple Markov process, and it con-
tains coding and measurement noises. Therefore, the 
monotonic matching function assumption is often 
invalid, and consequently fast search algorithms are 
often suboptimal. 
 
 
3.2.1 2D-Log Search 
The 2D-log search scheme was proposed by Jain 
and Jain [12]. It starts from the center point (zero 
displacement) of the search area to find the best 
match of the eye template based on some matching 
function. Fig. 6 illustrates an example of the 2D-log 
search procedure, where circles represent the search 
points, and the number enclosed in each circle 
stands for the search step. In each search step, five 
search points in the search area with a diamond-
shape are searched; they are the center point (the 
best matching point in the last step) and the four 
corner points of the diamond-shape with a fixed step 
size, r, as shown in Fig. 6. Let dmax be the maximum 
search range in both x-axis and y-axis, i.e., dmax = 
max(dx_max, dy_max). The initial value of r is set to 
max(2, 2m−1), where m =  max2log d  and  z  
denotes the largest integer less than or equal to z. 
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The step size is reduced to one half when the best 
matching point is the center point or is the boundary 
point in the search area. Otherwise, the step size 
remains the same. The search ends with step size of 
one pixel, and nine search points (the center point 
and its eight neighbor points) are examined at this 
last step. Then, the best matching point at this final 
step is regarded as the best position of the eye. 

In the example of Fig. 6 with dmax = dx_max = 
dy_max = 8, the 2D-log search requires 5 steps and 18 
search points to reach the final destination with 
displacement (7, 3), where the best matching point 
in each search step is represented with a darker 
circle. In this example, the total computational cost 
for 2D-log search is much smaller than the 
exhausted search, which requires 172 = 289 search 
points. 
 

 
Fig. 6  Illustration of 2D-log search procedure 

 
 
3.2.2 Three-Step Search 
The three-step search was proposed by Koga et al. 
[15]. Fig. 7 demonstrates an example of the three-
step search procedure. Like the 2D-log search, the 
process of three-step search also starts from the 
center point of the search area to find the best 
matching position of the eye template. Rather than 
examining five search points at each step as in the 
2D-log search, it examines nine search points within 
the search area, including the center point and the 
other eight points with a square arrangement away 
from the center point with a step size, r, as shown in 
Fig. 7. The initial value of r is equal to or slightly 
larger than half of the maximum search range (r ≥ 
dmax / 2) and is reduced to one half after each search 
step. The search procedure continues until step size 

reduces to one pixel, and the best matching point 
will be regarded as the best position of the eye. 
Similar to Fig. 6, in the example of Fig. 7 with dmax 
= 8, the three-step search requires 3 steps and 25 
search points to reach the final destination. 
 

 
   Fig. 7  Illustration of three-step search procedure 
 
 
4 Experimental Results and Analyses 
Experiments were performed to test the improve-
ment of the eye tracking component of the driver 
fatigue detection system. The same five driver video 
clips used for testing Horng-Chen’s fatigue detec-
tion system were also used to verify this improved 
method for comparison. These videos were captured 
by a SONY PC115 color DV camera with 320 × 240 
true color format. The first four videos were taken 
under different illumination conditions with differ-
ent drivers and backgrounds. The fifth video was 
taken when driving around a parking lot at nightfall 
with large illumination change. 
 
 
4.1 Experimental Results 
The testing environment of the driver fatigue detec-
tion system was a personal computer with a Pentium 
D 3.20 GHz CPU and 1024 MB RAM. Table 2 lists 
the experimental results of eye tracking using the 
MAD, EMO, and EPC matching functions, all with 
the exhaustive, 2D-log, and three-step search 
algorithms. Note that in these experiments, the max-
imum displacement parameters dx_max and dy_max both 
are all set to 10 pixels for the search areas in the eye 
tracking. Note also that the data of the exhaustive 
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search with the MAD matching function were the 
eye tracking experimental results of Horng-Chen’s 
driver fatigue detection system. 
 

Table 2  Results of eye tracking 

      
Video 

Number 
of 

Frames 

MAD matching function 
Exhaustive 

Search 
2D-log 
Search 

Three-step 
Search 

1 2634 8 14 8 
2 1524 6 14 12 
3 2717 46 43 25 
4 433 7 7 5 
5 1399 280 200 191 

Total 8707 347 278 241 
Eye Tracking 
Correct Rate 96.01% 96.81% 97.23% 

 

Video 
EMO matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

1 1 2 2 
2 1 2 2 
3 2 2 2 
4 0 1 0 
5 13 11 6 

Total 17 18 12 
Eye Tracking 
Correct Rate 99.8% 99.79% 99.86% 

 

Video 
EPC matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

1 1 0 0 
2 1 1 1 
3 1 0 1 
4 1 0 1 
5 9 6 15 

Total 13 7 18 
Eye Tracking 
Correct Rate 99.85% 99.92% 99.79% 

 
As shown in Table 2, if the conventional MAD 

matching function is used, the total number of 
tracking failure in the exhaustive search is 347, 
which is higher than those, 278 and 241 in the 2D-
log and three-step search, respectively. However, if 
the proposed EMO matching function is used, the 
total numbers of tracking failure of these three 
search algorithms greatly reduce to 17, 18, and 12, 
respectively. Moreover, if the new EPC matching 
function is used, the total numbers of tracking 
failure further reduce to 13, 7, and 18, respectively, 
for the exhaustive, 2D-log, and three-step search 
algorithms. These results shows that our proposed 
EMO and EPC matching functions outperform the 

conventional MAD matching function under differ-
ent search algorithms, in which EPC is slightly 
better than EMO. 
 

       Table 3  Results of search points  
 

Video 
MAD matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

1 left 441 23.69 32.98 
right 441 22.10 32.99 

2 left 441 23.48 32.96 
right 441 22.09 32.98 

3 left 441 24.19 32.98 
right 441 22.46 32.99 

4 left 441 26.10 32.94 
right 441 23.70 32.98 

5 left 441 25.25 32.98 
right 441 24.21 32.98 

Average 441 23.73 32.98 
Ratio 100% 5.38% 7.48% 

 

Video 
EMO matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

1 left 441 21.52 32.99 
right 441 21.48 33.00 

2 left 441 21.36 32.97 
right 441 21.38 32.98 

3 left 441 21.57 33.00 
right 441 21.60 33.00 

4 left 441 22.55 32.96 
right 441 22.4 32.98 

5 left 441 23.03 32.99 
right 441 23.05 32.98 

Average 441 21.99 32.98 
Ratio 100% 4.99% 7.48% 

 

Video 
EPC matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

1 left 441 21.61 32.98 
right 441 21.61 32.99 

2 left 441 21.65 32.96 
right 441 21.52 32.96 

3 left 441 21.78 32.98 
right 441 21.92 33.00 

4 left 441 22.83 32.96 
right 441 23.25 32.97 

5 left 441 23.26 32.96 
right 441 23.47 32.95 

Average 441 22.29 32.97 
Ratio 100% 5.05% 7.48% 

 
Table 3 gives the numbers of search points 

required to reach the best matching point for each 
eye tracking with three different matching functions 
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as well as three search algorithms. As can be seen 
from Table 3, the number of search points required 
for the exhaustive search is fixed, 441, due to dx_max 
= dy_max = 10. 

For the three-step search, it requires four search 
steps for dmax = 10, in which the step size is de-
creased by the order of 5 (= dmax/2), 3, 2, and 1. 
Theoretically, the number of search points, N, re-
quired for L search steps is N = 8L + 1. In our expe-
riments, the number of search steps for the three-
step search is L = 4, and thus the number of required 
search points is N = 33, which is the upper bound of 
required search points for dmax = 10, as illustrated in 
Table 3. 

Unlike the three-step search, the 2D-log search 
has no fixed number of search steps for a given dmax, 
as shown in Table 4. However, if the center point is 
the optimal matching point (i.e., zero displacement), 
there is a lower bound (minimum number) of search 
steps for the 2D-log search. For dmax = 10, the lower 
bound is 4; its step size in decreasing order is 5, 3, 2, 
and 1, the same as that of the three-step search. The 
number of search points for this case is 21. 
 

Table 4  Results of search steps for the 2D-log 
search with dmax = 10  

Video Left Eye Right Eye 
Max Min Avg Max Min Avg 

1 
MAD 11 4 4.69 11 4 4.29 
EMO 9 4 4.14 8 4 4.12 
EPC 9 4 4.16 8 4 4.16 

2 
MAD 9 4 4.64 10 4 4.29 
EMO 9 4 4.10 8 4 4.11 
EPC 10 4 4.18 9 4 4.15 

3 
MAD 11 4 4.83 11 4 4.38 
EMO 10 4 4.15 10 4 4.15 
EPC 8 4 4.20 9 4 4.23 

4 
MAD 10 4 5.35 10 4 4.70 
EMO 9 4 4.41 9 4 4.37 
EPC 8 4 4.48 9 4 4.59 

5 
MAD 12 4 5.11 12 4 4.84 
EMO 11 4 4.53 9 4 4.54 
EPC 9 4 4.61 9 4 4.67 

 
 
4.2 Analyses 
Although the fast search algorithms, such as 2D-log 
and three-step, requires only up to about 7.5% 
search points of the exhaustive search, they need the 
overhead of computing edge maps to achieve higher 
matching accuracy with the new EMO and EPC 
matching functions.  

Suppose that an eye template gt is of width w and 
height h; it contains n = w × h pixels. Then, the size 

of the search region for the eye template gt is of 
width w + 2dx_max and height h + 2dy_max. Let m be 
the number of pixels of the search region, i.e., m = 
(w + 2dx_max) × (h + 2dy_max).  

In converting a gray-level image into an edge 
map, it needs to apply the Sobel horizontal and 
vertical edge operators to compute the horizontal 
and vertical gradient values, S1(x, y) and S2(x, y), 
respectively. For each Sobel edge operator, it re-
quires 4 additions, 1 subtraction, and 2 multiplica-
tions. Since the required multiplications are simply 
multiplied by 2, it can be implemented by a left shift 
for computational efficiency. For the convenience of 
discussion, subtractions are regarded as additions. 
Therefore, in order to compute the approximate 
edge magnitude mag(x, y) of a pixel (x, y) in gt as in 
Eq. (1), it requires 11 additions, 4 shifts, and 2 
absolute value operations; and for computing the 
edge map et of the eye template gt, it requires 11m 
additions, 4m shifts, and 2m absolute value 
operations. 

If the MAD matching function is used, it requires 
n absolute value operations and 2n − 1 additions. If 
the EMO matching function is used, it only requires 
n logical AND operations and n − 1 additions. Since 
the result of a logical AND operation is a binary 
value, 0 or 1, the addition in the EMO matching 
function can be implemented by a more efficient 
increment operation. Similarly, if the EPC matching 
function is used, it only requires n − 1 increment 
operations. 

A typical eye template in our experiments is of 
size w = 26 and h = 7. Therefore, the number of 
pixels in the template is n = 182, and the number 
pixels in the corresponding search area is m = 1242 
for dmax = 10. Table 5 lists the number of operations 
required for each search algorithm to find the 
optimal matching points with different matching 
function, based on the results of Table 3, where the 
exhaustive, 2D-log, and three-step searches are 
assumed to require 441, 24 (average upper bound), 
and 33 (maximum) search points, respectively. It is 
noted that the 2D-log search with the EPC matching 
function requires only up to above 10% computa-
tions of the original proposal, the exhaustive search 
with MAD. 
 
 
5 Conclusion 
In this paper, we have presented a very efficient eye 
tracking algorithm to improve Horng-Chen’s driver 
fatigue detection system. We proposed two new 
matching functions, EMO and EPC, specifically for 
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eye tracking to improve matching accuracy, rather 
than the conventional general-purpose MAD match-
ing function used in their scheme. In addition, 
instead of using the exhaustive search in their 
system, we have applied fast search algorithms, 
such as the 2D-log search and the three-step search, 
in eye tracking to improve search efficiency. The 
experimental results have shown that the 2D-log 
search with the EPC matching function has the best 
performance. It needs only up to about 10% of 
computations required for the original scheme in 
eye tracking, while it can reach 99.92% correct rate 
of tracking, as comparing to 96.01% in the original 
scheme. This result makes our improved scheme 
more suitable to be implemented in the embedded 
systems. 
 
 

Table 5  Operations required for each search 
algorithm  

Operation 
MAD matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

Addition 160,083 8,712 11,979 
Absolute 80,262 4,368 6,006 

Shift 0 0 0 
And 0 0 0 

Increment 0 0 0 
Total 240,345 13,080 17,985 
Ratio 100% 5.44% 7.48% 

 

Operation 
EMO matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

Addition 13,662 13,662 13,662 
Absolute 2,484 2,484 2,484 

Shift 4,968 4,968 4,968 
And 80,262 4,368 6,006 

Increment 79,821 4,344 5,973 
Total 181,197 29,826 33,093 
Ratio 75.39% 12.41% 13.77% 

 

Operation 
EPC matching function 

Exhaustive 
Search 

2D-log 
Search 

Three-step 
Search 

Addition 13,662 13,662 13,662 
Absolute 2,484 2,484 2,484 

Shift 4,968 4,968 4,968 
And 0 0 0 

Increment 79,821 4,344 5,973 
Total 100,935 25.458 27,087 
Ratio 42% 10.59% 11.27% 
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