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Microwave imaging of a partially immersed
non-uniform conducting cylinder
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Abstract. In this paper, we investigate the imaging problem to determine both the shape and the conductivity of a partially
immersed non-uniform conducting cylinder from the knowledge of scattered far-field pattern of TM waves by solving the
ill-posed nonlinear equation. Based on the boundary condition and the measured scattered field, a set of nonlinear integral
equations is derived and the inverse problem is reformulated into an optimization one. The steady-state genetic algorithm is
then employed to find out the global extreme solution of the object function. As a result, the shape and the conductivity of the
conductor can be obtained. Numerical results are given to demonstrate that even in the presence of noise, good reconstruction
can be obtained.
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1. Introduction

In recent decades, the scientific community has addressed a growing interest to the detection and
imaging of unknown objects located in inaccessible domains through the use of electromagnetic fields at
microwave frequencies. As a matter of fact, the propagation of electromagnetic wave in the microwave
range is significantly affected by the characteristics of the medium. Therefore, it is profitable to exploit
such a phenomenon in order to sense an unknown scenario in a non-invasive fashion. Towards this end,
several researches have been pursued in the framework of non-destructive evaluation and testing and
biomedical diagnostics [1–11].

In general, inverse scattering problem is nonlinear and ill-posed due to lack of enough information
from the measured scattering data [12]. During the imaging process, a large amount of parameters need
to be retrieved from a limited number of independent measurements. Nonlinearity is another difficulty.
The inverse scattering problem is nonlinear in nature because it involves the product of two unknowns,
i.e., the electrical properties of object and the electric field within the object. And it can be solved by
means of iterative optimization algorithm.

Recently, many methods have been proposed to reconstruct the shape of a 2-D perfect conductor
cylinder, which can be classified into two catalogs, in general. The first is based on gradient search-
ing scheme such as the Newton-Kantorovitch method [13,14], the Levenberg-Marguart algorithm [15,
16] and the successive-over-relaxation method [17]. However, for a gradient-based method, it is well
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(a) (b)

Fig. 1. (a) Geometry of the problem in (x, y) plane for the case a > 0. (b) Geometry of the problem in (x, y) plane for the case
a < 0.

known that the convergence of the iteration depends highly on the initial guess. If a good initial guess
is given, the speed of convergence can be very fast. On the other hand, if the initial guess is far away
from the exact one, the searching tends to get fail [18]. In contrast, the second approach is population-
based evolutionary algorithm, such as genetic algorithm [19–27], particle swarm optimization [28–33]
and differential evolution algorithm [32–39]. These evolutionary algorithms are proposed to search the
global extreme of the inverse problem to overcome the drawback of the deterministic methods. Based on
stochastic strategies, these algorithms offer advantages relative to local inversion algorithms including
strong search ability, simplicity, robustness, and insensitivity to ill-posedness. Chiu [40] first applied GA
for the inversion of a buried imperfect conducing cylinder with the geometry described by a Fourier se-
ries (surface reconstruction approach). Moreover, Chiu [20] point out that the inverse problem by using
SSGA is much better than SGA in time costing. The main advantage of Fourier series expansion is that
for complicated shape, such as highly concave, the expansion is efficient if the center of unknown object
is adequate.

In this paper, the scattering object is not immersed in a single medium, but is located right at the
interface of two mediums instead, for which the theoretical and numerical analysis of the scattering
problem become much more difficult. One has to deal with not only the usual target surface boundary
condition, but also the media interface boundary condition. To the best of our knowledge, there are no
investigations on the electromagnetic imaging of partially immersed non-uniform conducting cylinder.
In this paper, the electromagnetic imaging of a partially immersed non-uniform conducting cylinder is
first reported using SSGA. In Section 2, the relevant theory and formulation are presented. In Section 3,
the details of the improved SSGA are given. Numerical results of reconstructed objects of different
shapes and conductivities are shown in Section 4. Finally, some conclusions are drawn in Section 5.

2. Theoretical formulation

An imperfectly conducting cylinder with conductivity profile σ(θ) is partially immersed in a lossy
homogeneous half-space, as shown in Figs 1(a) and (b). Media in Regions 1 and 2 are characterized by
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permittivities and conductivities (ε1, σ1) and (ε2, σ2), respectively. The non-uniform conducting cylin-
der is illuminated by a transverse magnetic (TM) plane wave. The cylinder is of infinite extent in the z di-
rection, and its cross-section is described in polar coordinates in the x, y plane by the relation ρ = F (θ),
and the objects concerned are of star-like shape. We assume that the time dependence of the incident
field is harmonic with factor exp(jωt). Let Einc denote the incident E field from Region 1 with incident
angle φ1. Owing to the interface between Regions 1 and 2, the incident plane wave generates two waves
that would exist in the absence of the conducting object. Thus, the unperturbed fields are given by

Ei(x, y) =

{
Ei

1(x, y) = e−jk1(x sinφ1+(y+a) cosφ1) +Re−jk1(x sinφ1−(y+a) cos φ1), y � −a

Ei
2(x, y) = Te−jk2(x sinφ2+(y+a) cosφ2), y > −a

(1)

where R = 1−n
1+n , T = 2

1+n , n = cosφ2

cosφ1

√
ε2−jσ2(θ)/ω
ε1−jσ1(θ)/ω

k2i = ω2εiμ0 − jωμ0σi (θ) , Im(ki) � 0, k1 sinφ1 = k2 sinφ2, i = 1, 2

Since the cylinder is partially immersed, the equivalent currents exist both in the upper half space and
the lower half space. As a result, the details of Green’s function are given first as follows:
(1) When the equivalent current exists in the upper half space, the Green’s function for the line source

in the Region 1 can be expressed as

G1(x, y;x
′, y′) =

{
G21(x, y;x

′, y′), y > −a

G11(x, y;x
′, y′) = Gf11(x, y;x

′, y′) +Gs11(x, y;x
′, y′), y � −a

(2)

where

G21(x, y;x
′, y′) =

1

2π

∫ ∞

−∞

j

γ1 + γ2
e−jγ2(y+a)ejγ1(y′+a)e−jα(x−x′)dα (2.1)

Gf11(x, y;x
′, y′) =

j

4
H

(2)
0

[
k1
√

(x− x′)2 + (y − y′)2
]

(2.2)

Gs11(x, y;x
′, y′) =

1

2π

∫ ∞

−∞

j

2γ1

(
γ1 − γ2
γ1 + γ2

)
ejγ1(y+2a+y′)e−jα(x−x′)dα (2.3)

γ2i = k2i − α2, i = 1, 2, Im(γi) � 0, y′ < −a

(2) When the equivalent current exists in the lower half space, the Green’s function for the line source
in the Region 2 is given by

G2(x, y;x
′, y′) =

{
G12(x, y;x

′, y′), y � −a

G22(x, y;x
′, y′) = Gf22(x, y;x

′, y′) +Gs22(x, y;x
′, y′), y > −a

(3)

where

G12(x, y;x
′, y′) =

1

2π

∫ ∞

−∞

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a)e−jα(x−x′)dα (3.1)

Gf22(x, y;x
′, y′) =

j

4
H

(2)
0

[
k2
√

(x− x′)2 + (y − y′)2
]

(3.2)

Gs22(x, y;x
′, y′) =

1

2π

∫ ∞

−∞

j

2γ2

(
γ2 − γ1
γ2 + γ1

)
e−jγ2(y+y′+2a)e−jα(x−x′)dα (3.3)

γ2i = k2i − α2, i = 1, 2, Im(γi) � 0, y′ > −a
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For programming purposes, the scattered field can be reformulated according to the following two
cases:

[case1] if a > 0(θ1 > θ2), as shown in Fig. 1(a)

ES(
⇀
r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ES
1 (

⇀
r) = −

θ2∫
θ1−2π

G12(
⇀
r, F (θ′), θ′)J(θ′)dθ′

−
θ1∫
θ2

G11(
⇀
r , F (θ′), θ′)J(θ′)dθ′, y � −a

ES
2 (

⇀
r) = −

θ2∫
θ1−2π

G22(
⇀
r, F (θ′), θ′)J(θ′)dθ′

−
θ1∫
θ2

G21(
⇀
r , F (θ′), θ′)J(θ′)dθ′, y > −a

(4)

[case2] if a < 0(θ1 < θ2), as shown in Fig. 1(b)

Es(
⇀
r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ES
1 (

⇀
r) = −

θ2∫
θ1

G12(
⇀
r , F (θ′), θ′)J(θ′)dθ′

−
2π−θ1∫
θ2

G11(
⇀
r, F (θ′), θ′)J(θ′)dθ′, y � −a

ES
2 (

⇀
r) = −

θ2∫
θ1

G22(
⇀
r , F (θ′), θ′)J(θ′)dθ′

−
2π−θ1∫
θ2

G21(
⇀
r, F (θ′), θ′)J(θ′)dθ′, y > −a

(5)

with

J(θ) = −jωμ0

√
F 2(θ) + F ′2(θ)Js(θ)

Here Js(θ) is the induced surface current density which is proportional to the normal derivative of
electric field on the conductor surface. Note that G1 and G2 denote the Green’s function for the line
source in the Regions 1 and 2, respectively.H(2)

0 is the Hankel function of the second kind of order zero.
The boundary condition requires that the total tangential electric field on the surface of the scatterer must
be zero and this yields an integral equation for J(θ). Js(θ) is the induced surface current density, which
is proportional to the normal derivative of the electric field on the conductor surface. For a conducting
scatterer with non-uniform conductivity profile, the electromagnetic wave is able to penetrate into the
interior of a scatterer, so the total tangential electric field at the surface of the scatterer is not equal to
zero. The boundary condition for this case can be approximated by assuming that the total tangential
electric field on the scatterer surface is related to surface current density through a surface impedance
Zs(ω, θ):

n̂× ⇀

E = n̂× (Zs

⇀

Js) (6)

where n̂ is the outward unit vector normal to the surface of the scatterer. The scatterer of interest here
is a non-magnetic (μ = μ0), imperfecly conducting cylinder with minimum radius of curvature a. The
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surface impedance is expressed as Zs(ω, θ) ∼=
√

jωμ0/σ (θ). This approximation is valid as long as
|Im(Nc)ka| � 1 and σ � ωε0, where “Im” means taking the imaginary part, and Nc is the complex

refraction index of the conductor, given by Nc =
√

1 + σ(θ)
jωε0

. The boundary condition at the surface of
the scatterer given by Eq. (6) then can be applied to yield an integral equation for J(θ) as follows:

[case1] if a> 0(θ1 > θ2), as shown in Fig. 1(a)

Ei
1
(
⇀
r) =

θ2∫
θ1−2π

G12(
⇀
r , F (θ′), θ′)J(θ′)dθ′ +

θ1∫
θ2

G11(
⇀
r, F (θ′), θ′)J(θ′)dθ′

+j

√
j

ωμ0σ (θ)

J (θ)√
F 2 (θ) + F ′2 (θ)

, y � −a

(7)

Ei
2(

⇀
r) =

θ2∫
θ1−2π

G22(
⇀
r , F (θ′), θ′)J(θ′)dθ′ +

θ1∫
θ2

G21(
⇀
r, F (θ′), θ′)J(θ′)dθ′

+j

√
j

ωμ0σ (θ)

J (θ)√
F 2 (θ) + F ′2 (θ)

, y > −a

[case2] if a< 0(θ1 < θ2), as shown in Fig. 1(b)

Ei
1(

⇀
r) =

θ2∫
θ1

G12(
⇀
r , F (θ′), θ′)J(θ′)dθ′ +

2π−θ1∫
θ2

G11(
⇀
r, F (θ′), θ′)J(θ′)dθ′

+j

√
j

ωμ0σ (θ)

J (θ)√
F 2 (θ) + F ′2 (θ)

, y � −a

(8)

Ei
2(

⇀
r) =

θ2∫
θ1

G22(
⇀
r , F (θ′), θ′)J(θ′)dθ′ +

2π−θ1∫
θ2

G21(
⇀
r, F (θ′), θ′)J(θ′)dθ′

+j

√
j

ωμ0σ (θ)

J (θ)√
F 2 (θ) + F ′2 (θ)

, y > −a

For the direct scattering problem, the scattered field ES is calculated by assuming that the shape is
known. This can be achieved by first solving J in Eqs (7) and (8) and then calculating ES in Eqs (4) and
(5) for the cases 1 and 2, respectively. For the inverse scattering problem, we assume the approximate
center of the scatterer is known, then, the shape function F (θ) and conductivity profile σ(θ) can be
expanded as:

F (θ) =

N/2∑
n=0

Bn cos(nθ) +

N/2∑
n=1

Cn sin(nθ) (9)

σ(θ) =

N/2∑
n=0

Dn cos(nθ) +

N/2∑
n=1

En sin(nθ) (10)
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where Bn, Cn, Dn and En are all real numbers to be determined, and 2(N + 1) is the total number of
unknowns for the shape function and conductivity profile. Note that the discretisation number of J(θ)
for the inverse problem must be different from that for the direct problem, since it is crucial that the
synthetic data generated through a direct solver are not like those obtained by the inverse solver. In our
simulation, the discretisation number for the direct problem is twice as many as that for the inverse
problem.

The parameters Bn, Cn, Dn and En are coded using Gray code [20], and the processes of reproduc-
tion, mutation and crossover of SSGA are employed to optimize Bn, Cn, Dn and En. Here, we use an
improved SSGA for our imaging problem. More details of the improved efficient SSGA are addressed
in next section.

3. Efficient steady state genetic algorithm

Genetic algorithms belong to the global optimization method and are based on the idea of genetic
recombination and evaluation in nature [41]. In a traditional GA, each reproduction cycle can produce
up to the entirely new generation of children, which then replaces the parent generation. But in the
steady state GA (SSGA), it only has a portion of the current generation to be replaced by children
generated in the reproductive cycle, resulting in overlapping generations. The temporary population of
children is inserted into the original parent population, by replacing certain selected individuals in the
parent population. As a variant to the traditional GA, SSGA is to insert the temporary population into
the parent population, producing a temporarily expanded parent population. Individuals are selected
and deleted from the expanded population until the original population size is reached again. The key
distinction between an SSGA and a traditional GA is on the number of fitness calculation. In a traditional
GA, it uses the high crossover rate and mutation rate to generate nearly all the population in each new
generation. On the contrary, SSGA only need to generate a small portion of population in each new
generation [20]. In other words, the number of fitness calculation corresponding to the new generation
is large in a traditional GA compared with SSGA. Note that most CPU time consumed in the simulation
is contributed from the calculation of the fitness value. As a result, SSGA is very suitable for inverse
problem in regard of reducing the number of fitness calculation.

The SSGA starts with a population containing a total of Np candidates (i.e., Np is the population size).
Each candidate is described by a chromosome. The initial population can simply be created by takingNp

random chromosomes. Then, the SSGA iteratively generates a new population, which is derived from
the previous population through the application of the reproduction, crossover, and mutation operators.
During the course, the SSGA is used to maximize the following objective function:

GOF =

{
1

Mt

Mt∑
m=1

∣∣∣Eexp
s (r̄m)−Ecal

s (r̄m)
∣∣∣2/ |Eexp

s (r̄m)|2 + α
[∥∥F ′(θ)

∥∥2]}−1/2

(11)

where Mt is the total number of the measurements. Eexp
s (

⇀
r) and Ecal

s (
⇀
r) are the measured scattered

field and the calculated scattered field, respectively. The factor α |F ′(θ)|2 can be interpreted as certain
extra smoothness requirement for the boundary F (θ). The optimal value of α is mostly dependent on the
dimensions of the geometry. One can always choose an enough large value to ensure the convergence,
although overestimation will result in a very smooth reconstruction.
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Fig. 2. (a) Shape function for example 1. The star curve represents the exact shape, while the solid curves are calculated shape
during iteration process. (b) Conductivity function for example 1. The star curve represents the exact conductivies, while the
solid curves are the calculated conductivies during iteration process. (c) The errors of shape and conductivity function versus
generation.

4. Numerical results

In this section, we report some numerical results obtained by computer simulations using the method
described in the Section 2.

Let us consider a conducting cylinder with non-uniform conducting profile which is partially im-
mersed in a lossless half-space (σ1 = σ2 = 0) and the parameter a is set to zero. In order to simu-
late sandy soil environment [42], the permittivity in Regions 1 and 2 is characterized by ε1 = ε0 and
ε2 = 2.7ε0, respectively. The frequency of the incident wave is chosen to be 1 GHz, with incident angles
φ1 equal to 45◦ and 315◦, respectively. For each incident wave 8 measurements are made at the points
equally separated on a semi-circle with the radius of 3 m in Region 1. Therefore, there are totally 16
measurements in each simulation. The number of unknowns is set to be 18 (i.e., 2(N +1) = 18), for the
sake of the computation time. The population size of 100 is chosen and rank selection scheme is used
with the top 30 individuals being reproduced accords to the rank. The search range for the unknown
coefficient of the shape function is chosen to be from 0 to 0.1 and the unknown coefficient of the con-
ductivity is chosen to be from 1 to 200 S/m. The extreme values of the coefficient of the shape function
can be determined by the prior knowledge of the object. The crossover rate is set to 0.1 such that only
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Fig. 3. Relative errors of shape and conductivity as a function of noise.

10 iterations are performed per generation. The mutation probability is set to 0.05 and the value of α in
Eq. (11) is set to be 0.001. In the following examples, the size of scatter is about one wavelength, so the
frequency is in the resonance range.

For the first example, the shape function and conductivity profile are chosen to be F (θ) = (0.03 +
0.02 sin 2θ) m and σ(θ) = (100 + 15 cos 2θ + 20 sin θ) S/m. The reconstructed shape function and
conductivity profile for the best population member are plotted in Figs 2(a) and (b). The errors for the
reconstructed shape DR and the reconstructed conductivity profile DSIG are shown in Fig. 2(c), of which
DR and DSIG are defined as

DR =

{
1

N ′

N ′∑
i=1

[
F cal (θi)− F (θi)

]2/
F 2(θi)

}1/2

(12)

DSIG =

{
1

N ′

N ′∑
i=1

[
σcal (θi)− σ(θi)

]2/
σ2(θi)

}1/2

(13)

whereN ′ is set to 100. The quantities DR and DSIG provide measures of how well F cal (θ) approximates
F (θ) and σcal (θ) approximates σ(θ), respectively. From Figs 2(a)∼(c), it is clear that the reconstruction
of the shape and the conductivity profile are quite good. In addition, we also see that the reconstruction
of conductivity profile does not change rapidly toward the exact value until DR is small enough. This can
be explained by the fact that the shape function makes a stronger contribution to the scattered field than
the conductivity does. In other words, the reconstruction of the shape function has a higher priority than
the reconstruction of the conductivity profile. To investigate the sensitivity of the imaging algorithm
against random noise, two independent Gaussian noises with zero mean have been added to the real
and imaginary parts of the simulated scattered fields. Normalized standard deviations of 10−5, 10−4,
10−3, 10−2 and 10−1 are used in the simulations. The normalized standard deviation mentioned earlier
is defined as the standard deviation of the Gaussian noise divided by the rms value of the scattered fields.
Here, the signal-to-noise ratio (SNR) is inversely proportional to the normalized standard deviation. The
numerical result for this example is plotted in Fig. 3. It is observed that the effect of noise is negligible
for normalized standard deviations below 10−3.

In the second example, we test the following shape function F (θ) = (0.025 + 0.015 cos 3θ +
0.005 sin θ) m and conductivity profile σ(θ) = (75 + 10 sin θ + 25 sin 3θ) S/m. The purpose of this
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Fig. 4. (a) Shape function for example 2. The star curve represents the exact shape, while the solid curves are the calculated
shape during iteration process. (b) Conductivity function for example 2. The star curve represents the exact conductivity, while
the solid curves are the calculated conductivies during iteration process.

Fig. 5. (a) Shape function for example 3. The star curve represents the exact shape, while the solid curves are calculated shape
during iteration process. (b) Conductivity profile for example 3. The star curve represents the exact conductivity, while the solid
curves are the calculated conductivies during iteration process.

example is to show that the proposed method is able to reconstruct different shape and conductivity
profile. Satisfactory results are shown in Figs 4(a) and (b).

In the third example, the shape function and conductivity profile are selected to be F (θ) = (0.07 +
0.03 sin θ + 0.01 sin 2θ + 0.01 cos 3θ) m and σ(θ) = (100 + 25 cos 2θ + 20 sin θ + 15 sin 3θ) S/m.
Note that the shape function is not symmetrical about either x axis and y axis. This example has further
verified the reliability of the proposed algorithm. Refer to Figs 5(a) and (b) for details.

5. Conclusions

We have presented a study of applying the SSGA to reconstruct the shape and conductivity profile
of a partially immersed metallic object through the measured scattered E fields. Based on an integral
equation, the microwave imaging problem is recast as a nonlinear optimization one. Then an objective
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function is defined in term of the difference between the measured scattered electric fields and the calcu-
lated scattered fields such that the shape and the conductivity profile of the conductor can be estimated
by using SSGA. The results show that even when the initial guess is far from the exact one, good recon-
struction can be achieved from the measured scattered fields both with and without the additive Gaussian
noise. Numerical results also illustrate that the conductivity reconstruction is more sensitive to noise than
the shape reconstruction is.
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